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Abstract—For several classical nonnegative integer functions
we investigate if they are members of the counting complexity
class #P or not. We prove #P membership in surprising cases,
and in other cases we prove non-membership, relying on standard
complexity assumptions or on oracle separations.

We initiate the study of the polynomial closure properties of #P
on affine varieties, i.e., if all problem instances satisfy algebraic
constraints. This is directly linked to classical combinatorial
proofs of algebraic identities and inequalities. We investigate
#TFNP and obtain oracle separations that prove the strict
inclusion of #P in all standard syntactic subclasses of #TFNP
minus 1.

Index Terms—Counting complexity, combinatorial proofs,
TFNP, #P, GapP

I. INTRODUCTION

This is an extended abstract. All technical details can
be found in the full version on the arXiv under the label
2204.13149v1.

A. Foreword

Finding a combinatorial interpretation is an everlasting
problem in Combinatorics. Having combinatorial objects as-
signed to numbers brings them depth and structure, makes
them alive, sheds light on them, and allows them to be studied
in a way that would not be possible otherwise. Once combi-
natorial objects are found, they can be related to other objects
via bijections, while the numbers’ positivity and asymptotics
can then be analyzed.

Historically, this approach was pioneered by J.J. Sylvester
in his “constructive theory of partitions” [Syl82]. There,
Sylvester was able to rederive a host of old partition identities
and prove many new ones by interpreting the coefficients on
both sides as the numbers of certain Ferrers shapes (now
called Young diagrams), and relating two sides to each other.
G.H. Hardy marveled at such proofs, calling them “striking”
and “unlike any other” [Har40], see also [Pak06].

Since the 1960s, this approach became a staple in Enu-
merative Combinatorics, reaching as far as undergraduate
textbooks [SW86], monographs [Loe11] and multimedia com-
pendia [Vie16]. In Algebraic Combinatorics, even one com-
binatorial interpretation can introduce revolutionary changes.
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Notably, a Young tableau interpretation of the Littlewood–
Richardson (LR-) coefficients cλµν was discovered in [LR34].
These numbers describe the structure constants of the Schur
functions multiplication [Mac95], [Sta12]. Over the last few
decades, this result led to an avalanche of developments,
culminating with a complete resolution of the Horn prob-
lem [Kly98] (see also [Ful98]), proof of the saturation conjec-
ture [KT99], and polynomial time algorithms for the vanishing
of the LR–coefficients [BI13b], [MNS12], [Ike16].

When a combinatorial interpretation exists it is a modern
wonder, a starting point of a combinatorial investigation.
But what if none is known? Such examples in Enumerative
Combinatorics are too numerous to be listed, see e.g. [Pak18,
§4]. In Algebraic Combinatorics, the following are the top
three “most wanted” combinatorial interpretations, all from
Stanley’s list [Sta00]:
• Kronecker coefficients g(λ, µ, ν) which generalize LR–
coefficients and give structure constants of tensor products
of Sn-modules. This celebrated problem goes back to Mur-
naghan [Mur38] and plays a crucial role in Geometric Com-
plexity Theory (GCT), see [Mul09]. See [BDO15], [IMW17],
[PP17], [PPY19] for some recent combinatorial and complex-
ity work on the subject.
• plethysm coefficients pλ(µ, ν) which describe decompo-
sitions of Schur functors of Sn-modules, and is the main
subject of GCT7 [Mul07], see also [BIP19], [FI20], [IP17].
They also appear in connection to the Foulkes conjecture in
Representation Theory, see [Bri93], [CIM17], [Lan15].
• Schubert coefficients c(u, v, w) which give structure con-
stants of the product of Schubert polynomials, defined by
Lascoux and Schützenberger [LS82] in the context of coho-
mology of the Grassmannian, see [Mac91], [Man01]. We refer
to [Knu16], [KZ20], [MPP14] for examples of positive results.

In all three cases, there is a widespread belief that these co-
efficients must have a combinatorial interpretation. A positive
resolution of either problem would be a major breakthrough
culminating decades long study. In the context of GCT, Mul-
muley conjectured [Mul09] that both Kronecker and plethysm
coefficients are in #P (see [Val79]), as a step towards proving
that P 6= NP. Note that all three functions are in GapP≥0,
suggesting commonality of the obstacles.

Now, what if the community is wrong, and these functions
are not in #P? Such a possibility has only been raised recently
[Pak19], [Spe11]. Until now there has been little effort towards
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proving that some natural combinatorial functions are not
in #P (see below). With this paper we initiate a systematic
study of this problem.

We show that many natural combinatorial functions are not
in #P under various complexity assumptions. In a positive
direction, we prove that many functions are in #P, some
strikingly close to those that are not.

B. Motivational examples of #P functions

Let GapP≥0 be the class of nonnegative functions in
GapP := {f1 − f2 | f1, f2 ∈ #P}.1 More generally,
we consider the class PolynP :=

{
ϕ(f1, . . . , fk) | ϕ ∈

Q[x1, . . . , xk], fi ∈ #P
}

, and study the class PolynP≥0 of
nonnegative functions in PolynP. The place to start is to look
for natural integer functions in these classes and ask if they lie
in #P. For the three functions as above the problem remains
open, but what is known in other cases? Consider the following
motivating examples:
(1) Let e : P → N be the number of linear extensions of P ,
where P = (X,≺) is a poset with n elements. Recall that
e(P ) ≥ 1, so e′(P ) := e(P ) − 1 ∈ GapP≥0. Now observe
that e′ ∈ #P simply because finding the lex-smallest linear
extension L can be done in polynomial time (see e.g. [CW95]),
so e′(P ) counts linear extensions of P that are different
from L. Note aside that since e is #P-complete [BW91], then
so is e′.
(2) Recall Sperner’s lemma which states that for every
{1, 2, 3}-coloring χ of interior vertices in a side-length n-
triangle region ∆n of the plane whose sides are colored 1,
2 and 3, respectively, there is a rainbow (123) triangle. We
trust the reader is familiar with the setting, see e.g. [Pap94a]
and [MM11, §6.7]. Here n is given in binary and χ is given
by a polynomial size circuit. Denote by t(χ) the number of
rainbow triangles, so that t(χ)− 1 ∈ GapP≥0.

Since the typical proof of Sperner’s lemma involves tracing
down the path of non-rainbow triangles until a rainbow triangle
is reached, it may come as a surprise that t(χ) − 1 ∈ #P.
Indeed, simply observe that t(χ)− 1 = 2t−(χ), where t±(χ)
denotes the number of rainbow triangles with positive/negative
orientation. This follows from t(χ) = t+(χ) + t−(χ) and
t+(χ)− t−(χ) = 1 equations, see e.g. [Pak03, §8].
(3) Let G be a simple graph with at least one edge, and
let f(G) be the number of proper 3-colorings of G. Then
f(G)/6 is an integer valued function in PolynP≥0 by taking
into account permutations of colors. Of the six possible 3-
colorings corresponding to a given 3-coloring one can easily
choose the lex-smallest, implying that f(G)/6 ∈ #P.2 Such
solution is not always possible in other problems, see §I-C(4),
and algorithmic approaches to equivalence problems have been
studied in [BG83], [BG84], [FG11].

1The closure GapP = #P − #P of #P under subtraction was introduced
in [FFK94] and indep. in [Gup95].

2It is important to emphasize that while f(G) is #P-complete, it is
completely irrelevant to the conclusion. Crucially, the lex-smallest test is in P
in both this and the previous example. In non–#P examples of this kind, the
lex-smallest test is NP-hard (see below).

(4) Let δ(k,G) := mk(G)2 − mk−1(G)mk+1(G), where
mk(G) is the number of k-matchings in graph G. The function
δ ∈ GapP by definition. By the celebrated result of Heilmann
and Lieb [HL72], the sequence m1(G),m2(G), . . . is log-
concave, implying that δ ∈ GapP≥0. This result is a starting
point of many combinatorial investigations [God93], including
notably the “interlacing families” series [MSS13]. While all
signs point to δ being “difficult to handle”, it was observed
in [Pak19] that a beautiful proof in [Kra96] easily implies that
δ ∈ #P.
(5) Recall Fermat’s little theorem: For every prime p and a ∈
N, we have: ap ≡ a (mod p). This is one of the most basic
and most celebrated results in Number Theory, see e.g. [IR82,
§3.4], and is the starting point of the Miller–Rabin primality
test, see e.g. [MM11, §10.8.2]. The theorem can be rephrased
as: for all a ∈ N, we have ϕ(a) := 1

p (ap−a) ∈ N. It is readily
converted into a PolynP function by substituting a ← N(φ)
as follows: 1

p

(
N(φ)p −N(φ)

)
∈ ϕ(#P) ⊆ PolynP, where

N(φ) is the number of satisfying assignments of a Boolean
formula φ. It was shown by Peterson [Pet72] (see also [Gol56])
that this function is actually in #P by giving a combinatorial
interpretation for ϕ(a), and in this way reproving Fermat’s
little theorem. In other words, we have ϕ(#P) ⊆ #P, i.e., the
class #P is closed under the Frobenius map ϕ. At the heart
of the proof is a polynomial-time algorithm for identifying
lex-smallest elements as in §I-B(3), but here in a Z/pZ orbit.
(6) Consider the following inequality by Grimmett [Gri76]:

τ(G) ≤ 1
n

(
2m
n−1

)n−1
for the number of spanning trees τ(G)

in a simple graph G = (V,E) with |V | = n vertices and
|E| = m edges. One can turn this into a GapP≥0 function as
follows: f(G) := (2m)n−1−n(n−1)n−1τ(G). On the other
hand, given that the inequality holds, the claim f ∈ #P is
trivial since τ ∈ FP. Indeed, since f(G) can be computed in
polynomial time by the matrix-tree theorem, we conclude that
f(G) counts the set of n-bit binary strings from 0 to f(G)−
1.3 4 This is why it is important in the examples above that
our functions are not obviously in FP (e.g., being #P-hard is a
good indication), since otherwise the problem becomes trivial.

C. Motivational non-examples

It may come as a surprise that the non-example comes from
the simplest of the inequalities.
(1) Cauchy–Schwarz inequality5:

a2 + b2 ≥ 2ab where a, b ∈ R. (I-C.1)

3Combinatorialists would argue that a combinatorial interpretation should
explain why the inequality holds in the first place. In fact, there are several
schools of thought on this issue (see a discussion in [Pak18, §4]). We believe
that the computational complexity approach is both the least restrictive and
the most formal way to address this.

4In the context of GCT, motivated by the work on LR–coefficients,
Mulmuley asks if Kronecker and plethysm coefficients count the number
of integer points in a polytope defined by the inequalities with polynomial
description [Mul09]. We do not work with this narrower notion in this paper.
See, however, [KM18].

5actually a quick corollary thereof. (I-C.1) follows from 〈(1, 1), (a, b)〉2 ≤
〈(1, 1), (1, 1)〉 · 〈(a, b), (a, b)〉.



Now take a, b to be counting functions. Formally, for two
Boolean formulas φ and ψ, let

h(φ, ψ) := N(φ)2+N(ψ)2−2N(φ)N(ψ) =
(
N(φ)−N(ψ)

)2
.

(I-C.2)
By definition, the function h ∈ GapP≥0. Note, however, that
if h ∈ #P, then we get a polytime witness for N(φ) 6=
N(ψ). This is unlikely, as it would imply the collapse of
polynomial hierarchy to the second level: PH = Σp

2 (see
Proposition II-C.1). Colloquially, this says that under the nat-
ural complexity assumption PH 6= Σp

2, the Cauchy–Schwarz
inequality (I-C.1) does not have a combinatorial interpretation
in full generality.
(2) The Hadamard inequality for real d× d matrices states:

det

a11 · · · a1d
...

. . .
...

ad1 · · · add


2

≤
∏d
i=1

(
a2i1 + . . .+ a2id

)
. (I-C.3)

Geometrically, it says that the volume of a parallelepiped in Rd
is at most the product of its basis edge lengths, with equality
when these edges are orthogonal. Note that standard proofs
of (I-C.3) involve the eigenvalues of A = (aij), see e.g.
[HLP52, §2.13] and [BB61, §2.11], suggesting that translation
into combinatorial language would be difficult.

Substitute all aij ← N(φij) in (I-C.3), where φij are
Boolean formulas. Denote by Hd the resulting counting func-
tion written in the style of (I-C.2), i.e, Hd is the difference
of the right-hand side and the left-hand side of (I-C.3). It is
easy to see that H2 ∈ #P, see §II-A. For d ≥ 3, we prove
that Hd /∈ #P under an assumption that we call the univariate
binomial basis conjecture. This is a general conjecture about
the structure of #P. Formally, we show the existence of an
oracle A ⊆ {0, 1}∗ with H3(

#  »

#PA) 6⊆ #PA.
(3) For a simple graph G on n vertices, denote by d(G) =
(d1, . . . , dn) the degree sequence. Consider the following
natural inequality:

P[G is planar] ≤ P[G is planar | d(G) 6 c], (I-C.4)

where c = (c1, . . . , cn) is a given sequence, the inequality
d(G) 6 c is coordinate-wise: di ≤ ci for all 1 ≤ i ≤ n,
and where the probability is over uniform random graphs on
[n] = {1, . . . , n}. This says that being planar correlates with
having small degrees.6

We can convert (I-C.4) it into a
GapP≥0 function as follows: %(c) :=

2(n
2)#

{
planar graphs G on [n] with d(G) 6 c

}
−

#
{

plan. graphs on [n]
}
·#
{

graphs G on [n] with d(G) 6 c
}
.

This inequality is a simple special case of the
Kleitman inequality [Kle66], which is a corollary of the
Ahlswede–Daykin inequality [AD78] (see full version). In

6Note aside that the number of labeled planar graphs on n vertices can
be computed in time polynomial in n using Tutte’s generating function
formulas [Tut63], see also [Noy14], [Sch15]. On the other hand, the number
of labeled graphs with a given upper bound on the degrees is likely not in FP,
cf. [Wor18].

Proposition II-E.1, we show that the polynomial inequality
implied by the Ahlswede–Daykin inequality is not in #P,
again under the univariate binomial basis conjecture.
(4) Recall the following Smith’s theorem [Tut46]. Let e =
(v, w) be an edge in a cubic graph G. Then the number
Ne(G) of Hamiltonian cycles in G containing e is always even.
Denote f(G, e) := Ne(G)/2 and observe that f ∈ PolynP≥0.
Is f ∈ #P? We don’t know. This seems unlikely and remains
out of reach with existing technology. But let us discuss the
context behind this problem.

Tutte’s original proof in [Tut46] uses a double counting
argument. The Price–Thomason algorithm for finding an-
other Hamiltonian cycle in a cubic graph [Pri77], [Tho78]
gives a more direct combinatorial proof of Smith’s theo-
rem and implies that this search problem is in PPA, the
class defined by the polynomial parity argument. In fact,
ANOTHERHAMILTONIANCYCLE is a motivational problem
for PPA, while SPERNER, see §I-B(2), is a motivational
problem for PPAD [Pap94a]7.

Note that the Price–Thomason algorithm partitions the set of
all Hamiltonian cycles into pairs, but this pairing algorithm is
known to require an exponential number of steps in the worst
case, see [Cam01], [Kra99]. A polynomial-time algorithm
instead would allow us to search for Hamiltonian cycles and
only count the ones that are lexicographically smaller than
their pairing partner, which would show that Ne(G)/2 ∈ #P,
and (ALLOTHERHAMILTONIANCYCLESTHROUGHEDGE −
1)/2 ∈ #P. Note that such a pairing algorithm (not for
the symmetric group S2, but for S3) is the reason why
f(G)/6 ∈ #P in §I-B(3).

We study the basic search problem LEAF8 that is used
to define PPA, and that arises directly from SPERNER by
a parsimonious reduction from the PPAD-complete problem
SOURCEORSINK and removing the edge directions. We show
that for the corresponding counting problem we have an oracle
separation that shows ALLLEAVESA/2 /∈ #PA. In fact, for
the counting version of LEAF, where we are given one leaf
and count all others, we show that LEAFA − 1 /∈ #PA. This
has to be contrasted to SPERNER, where the membership
SPERNER − 1 ∈ #P relativizes, i.e., holds with respect
to all oracles. The oracle instances are significantly more
complicated than for the HADAMARD problem, see §I-C(2).
(5) We have seen that SPERNER(χ) − 1 = 2t−(χ),
hence (SPERNER − 1)/2 ∈ #P. It is easy to see
that the reverse inclusion holds: The counting class

7Several versions of SPERNER on non-orientable manifolds are PPA-
complete [Gri01], [DEF+21], as well as e.g. the problems Consensus-
Halving/Necklace Splitting [FRG18], [FRH+20], [DFHM22], and integer fac-
toring (assuming the GRH) [Jeř16]. Main PPAD-complete problems include
Nash equilibrium [DGP09], [CD09] and hairy ball [GH21].

8Search problems are often of the type ANOTHERSOLUTION, but the
name does not suggest that. LEAF for example could reasonably be called
ANOTHERLEAF. We adapt the search problem notation and drop the
ANOTHER prefix and mean the corresponding problem of counting all but
the given leaf. The problem of counting all leaves when we are not given
one is called ALLLEAVES. Since all our problems are counting problems, we
drop the customary # in front of the problem name, also to avoid having two
# in the class names, see §III-D.



#PPAD(SPERNER) defined by the SPERNER problem con-
tains 2#P+1, or, in other words, #P = (#PPAD(SPERNER)−
1)/2. For the other classes in TFNP we similarly get
#P =

(
#PPAD(SPERNER) − 1

)
/2 = #PPADS(SINK) −

1 = #CLS(EITHERSOLUTION(SPERNER,ITER)) − 1 and
these equalities relativize. But for the more complex
classes we get oracle separations: (#PPA(LEAF) − 1)/2,
#PPP(PIGEON)− 1 and #PLS(ITER) − 1 strictly contain
#P with respect to an oracle.

But this does not give the complete picture, since non-
parsimonious reductions between complete problems give dif-
ferent counting classes. For example if instead of leaves in a
graph we count the nodes that are adjacent to leaves (which
we call preleaves), then this does not change the complexity
of the search problem, but it changes the counting class from
#PPA(LEAF) to the class #PPA(PRELEAF) (note that the
functions in #PPA(LEAF) always attain odd values, while the
functions in #PPA(PRELEAF) do not have this restriction).
The underlying argument is the chessplayer algorithm, see
e.g. [Pap90], [BCE+98], which results in non-parsimonious
reductions, which then give rise to a complexity class inclusion
diagram where we have an oracle with respect to which we
have a strict inclusion of #P in all the classes #PPAD − 1,
#PPADS−1, #CLS−1, #PPA−1, #PPP−1 and #PLS−1.
The full class inclusion diagram of our results can be found
in Figure 1. The definitions of the classes and problems can
be found in the full version.

These problems are syntactically guaranteed to be nonnega-
tive, but in contrast to the HADAMARD problem (for example),
here the oracle separations are much more delicate, as we
have to fool the Turing machine while producing instances
of the correct cardinality (which is easier if the problem is a
polynomial evaluated at arbitrary #P functions). To overpass
these obstacles, we introduce the notion of a set-instantiator
in the full version. We will also treat cases where we have
a nonnegativity guarantee, but no further information about
the reason. This requires extra care, see Propositions II-C.3
and see Proposition 7.5.5 in the full version.

II. DEFINITIONS, NOTATIONS AND FIRST STEPS

We start in §II-B with the concept of polynomial closure
properties of #P. We then prove some simple separations in
§II-C and §II-D, as a warmup before our main results in the
next section.

A. Basic notation

Let N = {0, 1, 2, . . .}, Q+ = {x ∈ Q, x ≥ 0}. For i ∈ N
and x ∈ R, we write(

x

i

)
=

1

i!
x(x− 1) · · · (x− i+ 1).

In particular,
(
i
0

)
=
(
i
i

)
= 1. We think of

(
x
i

)
as a rational

polynomial of degree i. Note that for 0 ≤ x < i, x ∈ N, we
have

(
x
i

)
= 0. For a vector (a1, . . . , an) ∈ Rn, we use both

#»a and a to denote this vector.

We are assuming the reader is familiar with basic com-
plexity theory and standard complexity classes: P, NP, UP,
PH, FP, #P, GapP, PPA and PPAD. We refer to [AB09],
[MM11], [Pap94b] for the definitions and standard results, and
to [Aar16], [Wig19] for further background.

B. Closure properties

We say that a map ϕ : Nk → Q is integer-valued if it only
attains integer values. Similarly, map ϕ is nonnegative, write
ϕ > 0, if it only attains nonnegative values.

We say that ϕ is a closure property of #P, if for all
f1, . . . , fk ∈ #P we have ϕ(f1, . . . , fk) ∈ #P. More concisely,
we also write: ϕ

( #  »

#P
)
⊆ #P.

This is a generalization of the notation GapP = #P − #P
from [FFK94].9 Let S ⊆ Nk be a fixed subset. We say that ϕ
is a closure property of #P restricted to S (or on S), if for all
f1, . . . , fk ∈ #P which satisfy

(
f1(w), . . . , fk(w)

)
∈ S for all

w ∈ {0, 1}∗, we have ϕ(f1, . . . , fk) ∈ #P.
Note that we evaluate these #P functions on the same input.

For example, in the notation of §I-B(2), the map ϕ(t−, t+) :=
t(χ) − 1 = t+ + t− − 1 is restricted to S = {(t−, t+) |
t+ − t− = 1}. Similarly, in the notation of §I-B(3), we have
S = 6N.

We write the restriction to S as a subscript, usually denoted
#  »

#P∈S , but the property “∈ S” is sometimes notationally
replaced by other properties such as “≥ 1” (in which case
S = N≥1) or “even” (in which case S = 2N). For example,
in notation of §I-B(1), we have e(P ) ∈ #P≥1. Similarly,
in the notation of §I-C(4), we have Ne(G) ∈ #Peven. This
allows us to write statements such as #P≥1 + 1 ⊆ #P, and
#PAeven/2 6⊆ #PA for the oracle A separation. More generally,
in the multivariate case we write ϕ

( #  »

#P∈S
)
⊆ #P for the

closure property of #P restricted to S. [HR00] study the
univariate case and call such a restriction a counting property.
These univariate restrictions also play a role in [CGH+89] and
are the main focus of [GW87]. The most famous example
is probably UP = #P∈{0,1} (if one identifies languages
with their characteristic functions, which we do), see [Val76],
[GS88], [Ko85], [HT03]. In some contexts it is natural to
consider a promise version of UP, see [VV85], but that is
different from what we consider here. To make connections to
TFNP more visible, we define #TFNP := #P≥1.

Let ϕ,ψ ∈ Q[x1, . . . , xk] be rational polynomials. We write
ϕ ># ψ if

ϕ(f1, . . . , fk)−ψ(f1, . . . , fk) ∈ #P for all f1, . . . , fk ∈ #P,

or, equivalently, (ϕ−ψ)(
#  »

#P) ⊆ #P. For example, x2+3x >#

0. Less obviously, x2 ># x, since x2 − x = 2
(
x
2

)
which

counts unordered pairs (i, j), where 1 ≤ i < j ≤ x. For the

9When defining
# »

#P, two different definitions are equivalent (in the same
way as for GapP). First, one can define

# »

#P via k many nondeterministic
polynomial time Turing machines and consider the k-vector of their number
of accepting paths as the output. Alternatively, one can define it via one
nondeterministic polynomial time Turing machine that has k many different
states of acceptance and one reject state (these states of acceptance are usually
labeled with +1 and −1 in GapP). This is a complexity class of multi-output
functions, as, for example, considered in [Val76].



Hadamard inequality (I-C.3), we easily have H2 ># 0, since

det

(
a b
c d

)2

= (ad − bc)2 = a2d2 − 2abcd + b2c2 6#

a2c2+a2d2+b2c2+b2d2 = (a2+b2)(c2+d2). We emphasize
again that over the reals this is not a valid proof of the
Hadamard inequality for 2× 2 matrices since the 2abcd term
can be negative. The inequality H2(a, b, c, d) ≥ 0 over the
reals follows from the Cauchy–Schwarz inequality in this case.

C. Complete squares

As in the introduction, we have GapP = #P−#P = {f1−
f2 | f1, f2 ∈ #P}. We use the notation [C = 0] to denote
the class of languages L ⊆ {0, 1}∗ for which there exists a
function f ∈ C with: w ∈ L if and only if f(w) = 0. For
example, [#P = 0] = coNP and [GapP = 0] = C=P. The
following proposition about k-th powers of GapP functions
is well known:

II-C.1 Proposition. Let GapPk := {fk | f ∈ GapP},
where the exponent k denotes the exponentiation of integers.
If GapPk ⊆ #P for some even k, then PH = Σp

2.

Proof. Recall that PH ⊆ NPC=P, which can be found for
example in [Tar91], [Gre93] and [Cur16], which follows from
Toda’s PH ⊆ P#P theorem (see [Toda91], [KVVY93], [For97],
[For09]) as follows: PH = NPPH ⊆ NPP#P

= NP#P =
NPGapP =10 NPC=P. We now observe: PH ⊆ NPC=P =

NP[GapP=0] = NP[GapPk=0] ⊆ NP[#P=0] = NPcoNP =
Σp

2.

II-C.2 Corollary (Cauchy–Schwarz inequality). a2 + b2 6>#

2ab unless PH = Σp
2.

This innocent looking corollary has immediate negative
consequences on the existence of combinatorial proofs for
inequalities (in the sense of #P interpretations of the difference
of both sides of the inequality), for example the Cauchy
inequality or the Alexandrov–Fenchel inequality, see the full
version for the details.

Given the success in our matching polynomial example
§I-B(4), one can ask if this example is generalizable to other
log-concave properties. Formally, is it true that g2 ># fh
when functions (f, g, h) are restricted to S =

{
(f, g, h) ∈ N3 |

g2 − fh ≥ 0
}

? We give a negative answer to this question,
suggesting that many log-concavity results and open problems
(see full version) are unlikely to have a direct combinatorial
proof.

II-C.3 Proposition (Log-concavity). Let ϕ(f, g, h) := g2 −
fh, and let S := {(f, g, h) ∈ N3 | g2 − fh ≥ 0}. Then
ϕ
(
#P×3∈S

)
6⊆ #P unless PH = Σp

2.

Proof. Let f := 1, g := (x + y) and h := 4xy. Observe
that g2 − fh = (x − y)2 ≥ 0 for all x, y ∈ R. The resulting

10NPGapP ⊆ NPC=P holds because instead of calling the oracle for a
function g ∈ GapP we can nondeterministically guess its return value i =
g(w) and call the C=P oracle [g − i = 0] on the input w to check for
correctness (continue the computation if the guess was correct; reject the
computation if the guess was wrong).

complete square allows us to use Corollary II-C.2 and prove
the result. We now formalize this approach in the notation
above.

Let #»γ : N2 → N3 defined by (x, y) 7→
(
1, (x + y), 4xy

)
.

Then #»γ
(
#P×2

)
⊆ #P×3∈S . Note that on the left-hand side

we have no subscript anymore, as the image is guaranteed
to lie in S. If we have ϕ

(
#P×3∈S

)
⊆ #P, then it follows

ϕ
(

#»γ
(
#P×2

))
⊆ #P. But we have ϕ

(
#»γ
(
#P×2

))
= GapP2.

We conclude: if ϕ
(
#P×3∈S

)
⊆ #P then GapP2 ⊆ #P. Hence,

by Proposition II-C.1, we have PH = Σp
2.

D. Non-monotone closure properties

A map ϕ : Nk → Q is called monotone if ϕ(a1, . . . , ak) ≤
ϕ(a′1, . . . , a

′
k) for all integer a1 ≤ a′1, . . . , ak ≤ a′k. For

example, polynomials x/2, x − 1 and x + y are monotone,
but x2 − 2x and (x− y)2 are not.

II-D.1 Proposition (Non-monotone closure properties). Fix
k ≥ 1. If ϕ : Nk → N is a non-monotone closure property of
#P, then UP = coUP.

Proof. Let ϕ be a k-variate non-monotone closure property
of #P. Then there exists #»c ∈ Nk and i ∈ [k] with ϕ( #»c ) >
ϕ( #»c + #»ei), where #»ei is the i-th standard basis vector. Let
D := ϕ( #»c ), and let d := ϕ

(
#»c + #»ei

)
. Note that

ψ : f 7→
(
ϕ(f · #»ei + #»c )

D

)
is a univariate closure property of #P.

Now let f ∈ UP = #P∈{0,1} be arbitrary. Let β = f(w)
for an arbitrary w ∈ {0, 1}∗. We have β = 0 if and only if
β · #»ei+

#»c = #»c , and if and only if ϕ(β · #»ei+
#»c ) = D. Similarly,

we have β = 1 if and only if β · #»ei + #»c = #»c + #»ei, and if and
only if ϕ(β · #»ei+

#»c ) = d. Therefore, ψ(β) = 1−β. Hence, we
have seen that ψ(f) = 1− f and that ψ(f) ∈ UP. It follows
that f ∈ 1− UP = coUP.

A similar use of binomial coefficients can also be found
in [BG92]. Curiously, x(x − 1)2 ># 0 since x(x − 1)2 =
6
(
x
3

)
+ 2
(
x
2

)
, yet by Proposition II-D.1 we have:

II-D.2 Corollary. (x− 1)2 6># 0 unless UP = coUP.

Note that a2+b2 > ab holds over N, and is halfway between
a2 + b2 > 2ab and a2 + b2 > 0. So one can ask if a2 + b2 >#

ab. Observe that ϕ(a, b) := a2 − ab + b2 is non-monotone:
ϕ(0, 2) = 4 and ϕ(1, 2) = 3. Proposition II-D.1 then gives:

II-D.3 Corollary. a2 + b2 6># ab unless UP = coUP.

Recall the Motzkin polynomial M(x, y) := x2y4 + x4y2 −
3x2y2 + 1. It follows from the AM-GM inequality applied to
positive terms, that M(x, y) ≥ 0 for all x, y ∈ R. On the
other hand, this polynomial is famously not a sum of squares,
and is a fundamental example in Semidefinite Optimization,
see e.g. [Ble13], [Mar08]. Now, observe that M(x, y) is not
monotone: M(0, 1) = 1 and M(1, 1) = 0. Proposition II-D.1
then gives:

II-D.4 Corollary. M(x, y) 6># 0 unless UP = coUP.



E. The binomial basis theorem

In this section we recall a classical result, describing all
relativizing polynomial closure properties of #P and GapP.
Note that we considered only non-monotone examples in §II-C
and §II-D, while many natural polynomials are monotone.
Clearly, every polynomial with integer coefficients is a closure
property of GapP, but might not be a closure property of #P.
If all coefficients of ϕ are nonnegative integers, then ϕ is
clearly a closure property of #P, but we have seen that there
are more, e.g. 1

2x
2 − 1

2x =
(
x
2

)
># 0.

The main tool to shed light onto these issues is the binomial
basis for the polynomial ring Q[x1, . . . , xk], which is given by
the polynomials βa ∈ Q[x1, . . . , xk], a = (a1, . . . , ak) ∈ Nk,
via

βa(x1, . . . , xk) :=

(
x1
a1

)
· · ·
(
xk
ak

)
.

Every polynomial has a unique expression of finite support
in this basis. The univariate version is well-known under the
name of classical numerical polynomials. The study of the
multivariate version goes back to Nagell [Nag19]. This basis
explains the behavior we observe, as stated in the following
fundamental theorem, for which the proof is split up into the
#P part, see [HVW95, Thm. 3.13], and the GapP part, see
[Bei97, Thm. 6] (see also the bibliographic notes in [HO02,
§5.6]). The GapP part can be obtained as a direct consequence
of the algebraic properties of the binomial basis, see the full
version. We will reprove the #P part as a direct corollary of
our much more general Diagonalization Theorem (see §III-A).

Theorem (Binomial basis theorem). The following four prop-
erties for a multivariate polynomial ϕ over Q are equivalent:
• ϕ is a closure property of GapP
• ϕ is a relativizing closure property of GapP
• ϕ is integer-valued
• the expression of ϕ over the binomial basis has only integer
coefficients.
Moreover, the following are equivalent:
• ϕ is a closure property of GapP≥0
• ϕ is a relativizing closure property of GapP≥0
• ϕ is integer-valued and attains only nonnegative integers
• the expression of ϕ over the binomial basis has integer co-
efficients and ϕ attains only nonnegative integers if evaluated
at integer points in the nonnegative cone.
Moreover, the following are equivalent:
• ϕ is a relativizing closure property of #P,
• the expression of ϕ over the binomial basis has only
nonnegative integer coefficients.

Note that even though #P and GapP≥0 have different rel-
ativizing closure properties, this does not unconditionally
separate these two classes. Note also that the theorem implies
that all polynomial closure properties of GapP and GapP≥0
relativize. We conjecture that this is true for #P as well, which
we call the Binomial Basis Conjecture (which would imme-
diately imply that GapP≥0 6= #P). Proving this, however,
would imply #P 6= #PNP (and hence P 6= NP), even just for

the univariate ϕ =
(
x−1
2

)
(see the full version). We get the

following sequence of implications: P = NP =⇒ #P =

#PNP full version
=⇒

(#P−1
2

)
⊆ #P

Prop. II-D.1
=⇒ UP = coUP. We

call polynomials ϕ whose expression over the binomial basis
has only nonnegative integer coefficients binomial-good, all
others are called binomial-bad.

The fact that Hd in §I-C(2) is binomial-bad gives us the
described separation. One famous instance of a binomial-
good polynomial is the Frobenius map from §I-B(5). There,
binomial-goodness can be interpreted as a combinatorial proof
of Fermat’s little theorem, see Peterson’s proof in the full
version.

The Binomial Basis Theorem is proved in [HVW95,
Thm. 3.13] together with [Bei97, Thm. 6], which is in fact
an extension of an argument of [CGH+89, Thm 3.1.1] and
[OH93, p. 310] about the weakness of #P machines in
the presence of oracles. We prove it as a corollary of our
Diagonalization Theorem (see §III-A), which greatly extends
the Binomial Basis Theorem.

1) The Ahlswede–Daykin inequality: More advanced prob-
lems, where the set S is given as a semialgebraic set, are also
possible, for example for the Ahlswede–Daykin inequality,
see §I-C(3) with more details in the full version.

II-E.1 Proposition (Ahlswede–Daykin inequality). Let S :={(
α0, α1, β0, β1, γ0, γ1, δ0, δ1, h1, h2, h3, h4

)
∈ N12

∣∣ α0β0 +

h1 = γ0δ0, α0β1+h2 = γ0δ1, α1β0+h3 = γ0δ1, α1β1+h4 =

γ1δ1

}
and let ϕ :=

(
γ0 + γ1

)(
δ0 + δ1

)
−
(
α0 + α1

)(
β0 +

β1
)
. Then, under the Univariate Binomial Basis Conjecture

we have ϕ(
#  »

#P∈S) 6⊆ #P.

Proof. Define #»γ : N → N12 via γ(x) =(
1, 1, x, x, x, 1, 1, x, 0, 2

(
x
2

)
, 2
(
x
2

)
, 0
)
. Then #»γ (#P) ⊆ #P×12∈S .

Note that on the left-hand side we have no index anymore,
as the image is guaranteed to lie in S. Assume for the sake
of contradiction that we have an inclusion ϕ(#P×12∈S ) ⊆ #P.
Then it follows that we have an inclusion ϕ

(
#»γ (#P)

)
⊆ #P.

The Binomial Basis Conjecture implies that this inclusion
relativizes. Therefore, by the Binomial Basis Theorem the
univariate polynomial ϕ ◦ #»γ is binomial-good. But we
have ϕ

(
#»γ (f)

)
= f2 − 2f + 1 = 2

(
f
2

)
− f + 1, which is

binomial-bad, a contradiction.

III. MAIN RESULTS

In this section we state our main results. In §III-A we
state the Diagonalization Theorem and we give Karamata’s
inequality as an involved example for its application. In §III-D
we lift these techniques to handle TFNP and its subclasses.
We obtain several oracle separations from #P in this way, see
Figure 1.

A. The diagonalization theorem

In Proposition II-E.1 the set S lies on an affine algebraic
variety, and the proof goes by embedding a curve given
by binomial-good polynomials. This is a way of finding
separations, but it remains unclear if such curves always exist



or how we can find them. In general, if S lies on an affine
variety Z with vanishing ideal I , then we know that if there
exists a polynomial ξ ∈ I such that ϕ + ξ is binomial-good,
then ϕ is a polynomial closure property of #P on S. This is
exactly the insight that gives SPERNER − 1 ∈ #P, where all
instances lie on the variety {(t+, t−) ∈ N2 : t+−t−−1 = 0}.

The reverse is true in the important case of graph varieties
(all our examples fall in this category), as we show in the
following Diagonalization Theorem. Formally, assume that
there exist ` ∈ {0, . . . , k}, and polynomial maps ζb : Q` →
Q, where b ∈ {` + 1, . . . , k}, such that Z is the image(
f1, . . . , f`, ζ`+1(f1, . . . , f`), . . . , ζk(f1, . . . , f`)

)
. In this case

the vanishing ideal I is generated by the ζb − fb (see the full
version). We call a coset ϕ+ I binomial-good, if it contains a
binomial-good polynomial, otherwise ϕ+ I is binomial-bad.

Informally, the Diagonalization Theorem states that in many
situations we have: if ϕ+I is binomial-bad, then for all sets S
and for all functions MULTIPLICITIES we have that for pA =
ϕ(MULTIPLICITIES(A)) for which we have set-instantiators
there exists an oracle A such that pA /∈ #PA. This is not only
useful for proving ϕ(#PAS ) 6⊆ #PA, but will also be used for
problems where the relations among the input #P functions
are guaranteed syntactically, see §III-D.

To state the Diagonalization Theorem we first introduce set-
instantiators in the next subsection.

For a subset B ⊆ {0, 1}j , we write B̃ ⊆ {0, 1}j−1 to denote
the set of suffixes of all strings in B that start with 1. For a
subset B ⊆ {0, 1}j−1, we write {1}�B ⊆ {0, 1}j to denote
the union of {0j} with the set of strings that start with 1 and
continue with a string from B.

B. Set-instantiators

We want to consider computation paths of nondeterministic
Turing machines, but the actual computational device we
are arguing about is a nondeterministic Turing machine with
oracle access to an oracle that is defined up to strings of length
< j, and where the oracle answers with 0 for all oracle queries
of length > j. We capture this in the following definition.

III-B.1 Definition. A computation path τ of a nondeterminis-
tic Turing machine on some input is defined as the sequence of
its nondeterministic choice bits and the answers to its length
j oracle queries (both types of bits appear in the same list,
ordered chronologically). Formally, it is an element of {0, 1}∗.

The same Turing machine can yield the same computation
path on different inputs (for example, when not the whole input
is read) or when having access to different oracles, because
the oracles can differ in positions that are not queried. We
are especially interested in the case where the input is 0j and
the oracles differ in exactly the set Aj ⊆ {0, 1}j of length j
strings.

Given a nondeterministic Turing machine M and an oracle
A<j :=

⋃
j′<j Aj′ where Aj′ ⊆ {0, 1}j

′
, and given a subset

B ⊆ {0, 1}j−1, we are interested in the number of accepting

paths of M when given oracle access to A<j ∪ ({1} � B),
where A<j is fixed. We define

hBM (w) := #acc
MA<j∪({1}�B)(w). (III-B.2)

It is instructive to think of A<j and M as together forming
a computational device that has oracle access to some subset
B ⊆ {0, 1}j−1.

For
#»

b ∈ Nk, we write B(
#»

b ) := B([b1]) × · · · ×B([bk]),
where B([a]) is the set of all subsets of [a] = {1, . . . , a}. For
#»s ,

#»
t ∈ B(

#»

b ), we write #»s ⊆ #»
t if sa ⊆ ta for all 1 ≤ a ≤ k.

For an element #»s ∈ B(
#»

b ), we write | #»s | :=
(
|s1|, . . . , |sk|

)
.

III-B.3 Definition (Set-instantiator against (M, j,A<j , S,
#»

b )).
Let M be a nondeterministic Turing machine, let j ∈ N, and
let A<j ⊆ {0, 1}∗ be a language that contains only strings
of length < j. Let S ⊆ Nk be a set and let

#»

b ∈ Nk. We set
B(

#»

b )S :=
{

#»s ∈ B(
#»

b ) : | #»s | ∈ S
}

.
Let > be a symbolic top element above B(

#»

b ), i.e. #»s ( >
for all #»s ∈ B(

#»

b ). A set-instantiator SI is a pair of
◦ an instantiation function instSI : B(

#»

b )S → {0, 1}[2
j−1],

and
◦ a perception function percSI : {0, 1}∗ → B(

#»

b ) ∪ {>},
such that the following property holds for all #»s ∈ B(

#»

b )S :

• τ ∈ {0, 1}∗ is an accepting path for the computation
h

instSI( #»s )
M (0j) if and only if percSI(τ) ⊆ #»s .

The intuition is that a computation path queries the oracle
and sees the existence of several objects (k different types of
objects), and then decides to accept or not based solely on the
set of objects perceived, independent of whether or not there
are actually other unqueried objects in the oracle. The Turing
machine might even know that there must be other objects
for some syntactic reason and can take that information into
account.

For example, in SPERNER we have k = 2, and we consider
rainbow triangles of positive/negative orientation. We know
that t+ − t− − 1 = 0, so if we see t+ ≥ 3 and t− ≥ 3,
then we know that there must be at least one rainbow triangle
of positive orientation that we have not seen. Note that if an
accepting path τ sees an object in the oracle and then we
remove that object by changing the oracle, then running the
same computation we will at some point get a different oracle
answer, and hence τ will not be a computation path of this
(input, oracle) tuple.

Formally, in the above definition we think of accepting paths
as having a perception from B(

#»

b ), while computation paths
that never accept on any of the instantiations are given per-
ception >. Note also that from the definition it is immediately
clear that from a set-instantiator with a set S, we get a set-
instantiator with the same parameters for every subset of S.

We usually do not mention A<j in the context of set-
instantiators, as it has no effect on the construction of
set-instantiators, and is also understood from the context.
When discussing polynomial closure properties of #P, set-
instantiators almost trivially exist, but for counting classes



coming from TFNP this is not obvious. We create the neces-
sary set-instantiators in the full version.

C. Formal statement of the diagonalization theorem

Our main tool for constructing oracles that separate from
#P is the following Diagonalization Theorem, which depends
on the parameters ϕ, ζ, S, MULTIPLICITIES, and #»

t . In most
situations #»

t ∈ S can be arbitrary, so #»
t is often not specified.

To use the theorem well, MULTIPLICITIES should map into S.
For A<j ∈ {0, 1}<j , we say that a nondetermin-

istic oracle Turing machine M answers consistently for
(j, A<j ,MULTIPLICITIES), if for every B ⊆ {0, 1}j−1 we
must have the number #accA<j∪({1}�B)

M (w) is the same
for all B that have the same MULTIPLICITIES(B), for all
w ∈ {0, 1}∗. In other words, we must have:

#accA<j∪({1}�B)
M (w) = #accA<j∪({1}�C)

M (w)

for all C ∈ {0, 1}j−1 with MULTIPLICITIES(B) =
MULTIPLICITIES(C).

III-C.1 Theorem (Diagonalization Theorem). Fix k and 0 ≤
` ≤ k. We write

#»

f = (f1, . . . , fk) and #»v = (v1, . . . , v`). Let
ϕ ∈ Q[

#»

f ]. Fix non-constant functions ζb ∈ Q[ #»v ], `+1 ≤ b ≤
k. Set I to be the ideal generated by the ζb( #»v ) − fb, where
`+ 1 ≤ b ≤ k.

Define Z := { #»

f ∈ Qk | eq`+1(
#»

f ) = . . . = eqk(
#»

f ) = 0},
where eqb := ζb(

#»v ) − fb. Denote T := Nk≥0 ∩ Z and let
S ⊆ T . Consider a map τ : Q` → Z defined as

τ( #»v ) :=
(

#»v , ζ`+1( #»v ), . . . , ζk( #»v )
)
.

Set C ′S :=
{

#»v ∈ Q`≥0 : |τ−1(S)∩Q #»v | =∞
}

. Assume that

(1) Z contains at least one integer point,
(2) The Zariski closures coincide: C ′S

Zar
= C ′T

Zar
, and

(3) there exists a point #»v ∈ Q`≥0 that satisfies strict
inequalities

ζhom
b ( #»v ) > 0 for all `+ 1 ≤ b ≤ k,

where ζhom
b ∈ Q[ #»v ] is the top nonzero homogeneous

part of ζb.

Fix a set of multivariate functions MULTIPLICITIES :
B
(
{0, 1}j−1

)
→ Nk≥0. Assume that for every nondeter-

ministic polynomial-time Turing machine M and for ev-
ery

#»

f there exist infinitely many j ∈ N such that
for every A<j ∈ {0, 1}<j either M does not an-
swer consistently for

(
j, Aj ,MULTIPLICITIES

)
or there

is a set-instantiator SI against
(
M, j,A<j , S,

#»

f
)

with
MULTIPLICITIES

(
instSI( #»s )

)
= | #»s | for all #»s ∈ B(

#»

f )S .

Fix any #»
t ∈ S. For A ⊆ {0, 1}∗, we write: A =⋃

j≥0Aj , where Aj ⊆ {0, 1}j . Define

pA(w) :=

{
ϕ
(
MULTIPLICITIES

(
Ã|w|

))
if A|w|(0

|w|) = 1

ϕ(
#»
t ) otherwise,

where Ãj is the set of length j − 1 suffixes of the strings in
Aj that start with a 1.

Finally, suppose ϕ + I is binomial-bad. Then there exists
an oracle A ⊆ {0, 1}∗ such that for every nondeterministic
polynomial-time Turing machine M there exists j such that
pA(0j) 6= #accMA(0j) and whenever A(0j) = 1, then Aj =
{1}� instSI( #»s ) for some #»s and one of the SI above.

Note that the technical conditions (1), (2), and (3) are
very easy to check in most situations. They exist to prevent
degenerate cases.

The Diagonalization Theorem is the technical heart of this
paper. It is stated in high generality, and we apply it to a
large set of examples of very different flavors, such as for
example the Hadamard inequality or #PPA−1. Its proof relies
on the Witness Theorem (see full version), whose proof uses
methods from several areas of mathematics including algebraic
geometry and Ramsey theory.

As an illustration we now apply the Diagonalization Theo-
rem to Karamata’s inequality, see the full version for the full
details. In the Karamata setting we are given fi, gi ∈ #P,
1 ≤ i ≤ n, such that the following functions hi, 1 ≤ i < n,
are also all in #P :

hi := f1 + . . .+ fi − g1 − . . .− gi,

and we are also guaranteed that

f1 + . . .+ fn − g1 − . . .− gn = 0. (III-C.2)

This assumption is called majorization. Moreover, the func-
tions

di := fi − fi+1 and ei := gi − gi+1 (III-C.3)

are also in #P for all 1 ≤ i < n. Let Z ⊆ Q5n−3 denote
the variety of points that satisfy the constraints (III-C.2)
and (III-C.3), and let S = Z ∩ N5n−3. Let γ ∈ GapP≥0
be any monotone integer-valued convex function. Define the
Karamata function as

Kn,γ(
#»

f , #»g ) :=
∑n
i=1 γ(fi) −

∑n
i=1 γ(gi).

Clearly Kn,γ(
#  »

#P∈S) ⊆ GapP. In fact, even Kn,γ(
#          »

GapP) ⊆
GapP. Karamata’s inequality implies that the answer is al-
ways nonnegative for inputs from S. Hence, Kn,γ(

#  »

#P∈S) ⊆
GapP≥0. For which γ do we have Kn,γ(

#  »

#P∈S) ⊆ #P?

• For affine linear γ we clearly have Kn,γ = 0 ∈ #P.
• For γ(t) = t2, we have K2,γ(f1, f2, g1, g2) = (d1+e1)h1

on S. This can be seen by plugging in d1 = f1−f2, e1 =
g1−g2, and g2 = f1+f2−g1. Clearly (d1+e1)h1 ∈ #P.
There are other proofs, for example instead of (d1+e1)h1
we could have taken 2h1 + 2e1h1 + 4

(
h1

2

)
with the same

argument.
• For γ(t) = t2, we have K3,γ(f1, f2, f3, g1, g2, g3) =

(d1 + e1)h1 + (d2 + e2)h2 ∈ #P on S.
• For γ(t) =

(
t
2

)
, we have K2,γ(f1, f2, g1, g2) = (e1 +

1)h1 + 2
(
h1

2

)
∈ #P on S.

• For γ(t) =
(
t
2

)
, we observe that for the double we have

2K3,γ(
#  »

#P∈S) ⊆ #P via the observation that 2K3,(t
2)

=

K3,t2 on S (the affine linear parts cancel out).



All inclusions Kn,γ(
#  »

#P∈S) ⊆ #P in this section so far
relativize. The next proposition shows that the doubling we
just used was in fact necessary, because otherwise we obtain
an oracle separation.

Proposition. ∃A ⊆ {0, 1}∗ such that K3,(t
2)
( #  »

#PA∈S
)
6⊆ #PA.

Proof sketch. We use the Diagonalization Theorem. We have
5n−3 = 12, so S = Z∩N12. We fix an arbitrary order of the
12 variables:

(
f1, f2, f3, g1, g2, g3, d1, d2, e1, e2, h1, h2

)
. The

variety Z is then given as the kernel of the linear map given
by the following top matrix:

1 −1 0 0 0 0 −1 0 0 0 0 0
0 1 −1 0 0 0 0 −1 0 0 0 0
0 0 0 1 −1 0 0 0 −1 0 0 0
0 0 0 0 1 −1 0 0 0 −1 0 0
1 0 0 −1 0 0 0 0 0 0 −1 0
1 1 0 −1 −1 0 0 0 0 0 0 −1
1 1 1 −1 −1 −1 0 0 0 0 0 0


↓ Gauss-Jordan

1 0 0 0 0 −1 0 0 −1 −1 −1 0
0 1 0 0 0 −1 0 0 0 −1 1 −1
0 0 1 0 0 −1 0 0 0 0 0 1
0 0 0 1 0 −1 0 0 −1 −1 0 0
0 0 0 0 1 −1 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 −1 0 −2 1
0 0 0 0 0 0 0 1 0 −1 1 −2


To obtain the necessary parametrization ζ of Z, we con-
vert it to row echelon form (the fact that the entries
are integer is convenient, but not necessary for our tech-
niques to apply), which is the bottom matrix. We set
` = 5, k = 12. Permuting the order of the columns to
(6, 9, 10, 11, 12, 1, 2, 3, 4, 5, 7, 8), we obtain affine linear func-
tions ζ8, . . . , ζ12, each ζb depends linearly on the first 5 vari-
ables. We set MULTIPLICITIES = OCCURRENCEMULTI12,
which is the function defined as follows: on input w ∈ {0, 1}∗
we split w into 12 parts of roughly the same size, and
the output is the vector that specifies how many 1s are in
the first part, how many 1s are in the second part, and
so on. We set ϕ

(
f1, f2, f3, g1, g2, g3, d1, d2, e1, e2, h1, h2

)
:=

f21 + f22 + f23 − g21 − g22 − g23 . After verifying the technical
assumptions, to apply the theorem it remains to show that
ϕ+ I is binomial-bad. Since all ζb are affine linear, this claim
boils down to checking that polyhedron Pϕ,ζ does not have
integer points. We formalize and generalize this implication
in the Polyhedron Theorem (see full version). Here we have
a polyhedron in Q91 given by 21 linear equations intersected
with the nonnegative orthant. We use a computer to set up
the polyhedron. Indeed, it contains the half-integer point that
shows that 2K3,(t

2)
(

#  »

#P∈S) ⊆ #P, but it does not contain an

integer point, which gives A such that ϕ(pA) /∈ #PA, but
ϕ(pA) ∈ K3,(t

2)
(

#  »

#PA∈S).

Let us point out that the proof above illustrates how the
existence of an oracle separation between counting classes is
reduced to a finite calculation. The Polyhedron Theorem is
also what we use for studying counting classes from TFNP
(see §III-D), but the corresponding polyhedra there are very
simple. The polyhedron for SPERNER for example has the
integer point (2, 0) to represent that ϕ = 2t− + 0t+ on
the variety. The technical difficulty in those cases is not the
polyhedron, but the existence of set-instantiators (see the full

version, §6.1). If we just study closure properties of #P, then
trivial set-instantiators can be used.

D. Counting classes and TFNP
In this section define the counting classes for which we

claimed in (4) in §I-C that many of them coincide with #P,
while others are strictly stronger w.r.t. an oracle. In order to do
so, we attach oracles to the syntactic subclasses of TFNP.11

Consider for example the relation RLONELY. This is for
PPA, as the other classes are handled analogously. Let
(C, x) ∈ RLONELY if and only if x 6= 0 ∧

(
C ′(x) =

x ∨ C ′(C ′(x)) 6= x
)
, where C is the description of a

polynomially-sized multi-output Boolean circuit that describes
the partner function on an exponentially large graph, and C ′

is the syntactic modification to C that ensures that C ′(0) = 0.
Now, let rPPA be the set of polynomially balanced relations

R for which a pair (α, β) of polytime computable maps exists
with (C, β(x)) ∈ R if and only if (α(C), x) ∈ RLONELY.
These are the relations that correspond to search problems in
PPA. Let rP denote the set of polynomially balanced relations
that can be evaluated in polynomial time. By definition,
rPPA ⊆ rP.

For a language A ⊆ {0, 1}∗ we define analogously (C, x) ∈
RLONELYA if and only if

(
C(x) = x ∨ C(C(x)) 6= x

)
, but

now we allow the circuit C to have arbitrary arity oracle gates
that query the oracle A. Let rPPAA be the set of polynomially
balanced relations R for which a pair (α, β) of polynomial-
time computable maps exists with (C, β(x)) ∈ R if and only
if (α(C), x) ∈ RLONELYA. Note here that the only difference
is that α(C) can have oracle gates. Let rPA denote the set
of polynomially balanced relations that can be evaluated in
polynomial time with access to A. By definition, we have
rPPAA ⊆ rPA.12

We define the corresponding counting class #PPAA via
f ∈ #PPAA ⇔ ∃R ∈ rPPAA : f(w) =

∑
y∈{0,1}∗ R(w, y).

Recall that f ∈ #PA ⇔ ∃R ∈ rPA : f(w) =∑
y∈{0,1}∗ R(w, y). Hence, clearly #PPAA ⊆ #PA, and in

fact #PPAA ⊆ #PA≥1 for all languages A.13 14

For the study of whether or not a problem is in #P we
need the finer viewpoint that is obtained when insisting on
(α, β) being a parsimonious reduction, i.e.,

(
(C, β(x)) ∈ R

and (C, β(y)) ∈ R
)

implies x = y. Since not all PPA-
complete problems are equivalent to each other via parsimo-
nious reductions, this gives rise to different counting com-
plexity classes, depending on the PPA-complete problem. We

11We consider CLS, PLS, PPAD, PPADS, PPA, and PPP here, see
e.g. [GP17]. The instances are exponentially large (di)graphs given succinctly
by circuits or lists of circuits. For the sake of simplicity, we will assume in
this discussion that finite lists of circuits are merged into a single circuit with
additional input bits.

12We use the r-prefix to avoid notational issues similar to the ones discussed
in [HV95], [BS01]. We do not claim to have found a particularly good
notation, but a suggestive one.

13In fact, #P≥1 can be thought of as the counting analogue of TFNP, i.e.,
it is reasonable to define #TFNP := #P≥1.

14We choose this approach, which is different from the type-2 complexity
approach in [BCE+98], [BM04], because we want to compare our counting
classes to #PA.



#P = (#PPAD(SOURCEORSINK)− 1)/2

= #PPAD(SOURCEORPRESINK)− 1

= #COUNTALL-PPAD(SOURCEORSINK)/2

= #PPADS(SINK)− 1

= #PPADS(PRESINK)− 1

= #CLS(EITHERSOLUTION(SOURCEORSINK,ITER))− 1

= #CLS(EITHERSOLUTION(SOURCEORPRESINK,ITER))− 1

#CLS(EITHERSOLUTION(SOURCEOREXCESS(2,1),ITER))− 1

#PLS(ITER)− 1

#PPAD(SOURCEOREXCESS(2,1))− 1

#PPA(PRELEAF)− 1(#PPA(LEAF)− 1)/2

#PPADS(EXCESS(2,1))− 1

#PPP(PIGEON)− 1

#COUNTALL-PPA(LEAF)/2

#COUNTGAP(BIPARTITEUNBALANCE)

!!

!

Fig. 1. The relativizing equalities and inclusions; and the oracle separations.
All equalities with #P are shown via relativizing parsimonious reductions. A
solid arrow represents a relativizing parsimonious reduction. An arrow with a

! represents a relativizing parsimonious reduction where there is an oracle
separation in the other direction.

write #PPA(P) to indicate that we mean the counting class
defined by problem P under parsimonious reductions.15 For
example, observe that all functions in #PPA(LONELY) output
odd integers on every input, while the class #PPA contains
more functions than that (as we will see when discussing
PRELEAF). In fact, for that reason it makes sense to study the
class (#PPA(LONELY) + 1)/2 and (#PPA(LONELY)− 1)/2
and ask if they are subsets of #P.

Aside from the classical problems we study slightly adjusted
problems that are not equivalent via parsimonious reductions
(see the detailed list in the full version). Each class is defined
via parsimonious reductions to a complete problem. The
naming prefixes #COUNTALL-PPA and #COUNTGAP are
essentially flavor. By definition we have #PPA(P) ⊆ #PPA
for all search problems P ∈ PPA, and analogously for all
other search problems. The relativizing inclusions and oracle
separations that we find are depicted in Figure 1. All equalities
with #P are shown in the full version via relativizing parsi-
monious reductions. A solid arrow represents a relativizing
parsimonious reduction. An arrow with a ! represents a
relativizing parsimonious reduction where there is an oracle
separation in the other direction. This means that all classes
that are above #P in the figure strictly contain #P (with respect
to an oracle).

We find a surprisingly large number of counting problem
classes that, if adjusted properly with “−1” and “/2” are equal
to #P. This includes the canonical counting versions of PPAD,
PPADS and CLS. Only after making slight changes to the
problems via non-parsimonious polytime equivalences (similar
to the chessplayer algorithm, see e.g. [Pap90], [BCE+98]),
we obtain that the non-parsimonious counting classes strictly
contain #P, which puts the new problems outside of #P.

15Note that the prefix PPA is actually superfluous in this case, but we keep
it for clarity.

We identify two main “reasons” (i.e., oracle separations),
one for “−1”, and one for “/2”. There are two versions
of #PPA at the top of the diagram, one for each of the
two reasons, and they are not easily comparable.16 It is also
noteworthy that we know of no counting version of PPA, PLS
or PPP that equals #P.17

Since the polynomials x−1, x2 , and x−1
2 are monotone, the

tool to prove the separations is the Diagonalization Theorem.
The main difference from all separations so far is that now the
instances are much more involved. In the halving separation
we have to “hide” the partner vertex from the #P machine, and
in the decrementation separation we have to “hide” which of
the solutions is connected to the zero vertex. This is especially
difficult for #PLS(ITER)−1 (and hence for #CLS−1).18 We
formalize our approach in the definition of a set-instantiator
and create the necessary set-instantiators in the full version.

Even though we are mainly interested in membership
and non-membership in #P, with only a little
extra work our techniques directly give us another
oracle separation #COUNTALL-PPA(LEAF)

A
/2 (

#COUNTGAP(BIPARTITEUNBALANCE)
A
.

This is because after doubling we have
#COUNTALL-PPA(LEAF)

A ⊆ #PA, while still
#PA ( 2#COUNTGAP(BIPARTITEUNBALANCE)

A

(see the full version).
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ed.), Cambridge Univ. Press, 1952, 324 pp.

[HL72] O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer systems,
Comm. Math. Phys. 25 (1972), 190–243.

[HO02] L. A. Hemaspaandra and M. Ogiwara, The complexity theory
companion, Springer, Berlin, 2002, 369 pp.

[HR00] L. A. Hemaspaandra and J. Rothe, A second step towards
complexity-theoretic analogs of Rice’s theorem, in Proc. 23rd
MFCS (1998), 418–426; Theoret. Comput. Sci. 244 (2000), 205–
217.

[HV95] L. A. Hemaspaandra and H. Vollmer, The satanic notations: count-
ing classes beyond #P and other definitional adventures, SIGACT
News 26 (1995), no. 1, 2–13.

[HVW95] U. Hertrampf, H. Vollmer and K. Wagner, On the power of
number-theoretic operations with respect to counting, in Proc. 10th
CCC (1995), 299–314.

[HT03] C. M. Homan and M. Thakur, One-way permutations and self-
witnessing languages, in Proc. 2nd IFIP TCS (2002), 243–254; J.
Comput. System Sci. 67 (2003), 608–622.

[IMW17] C. Ikenmeyer, K. D. Mulmuley and M. Walter, On vanishing of
Kronecker coefficients, Comput. Complexity 26 (2017), 949–992.

[Ike16] C. Ikenmeyer, Small Littlewood–Richardson coefficients, J. Alge-
braic Cominatorics 44 (2016), 1–29.

[IP17] C. Ikenmeyer and G. Panova, Rectangular Kronecker coefficients
and plethysms in geometric complexity theory, in Proc. 57th FOCS
(2016), 396–405; Adv. Math. 319 (2017), 40–66.

[IR82] K. F. Ireland and M. I. Rosen, A classical introduction to modern
number theory, Springer, New York, 1982, 341 pp.
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