RICHARD STANLEY: *D*-FINITENESS OF CERTAIN SERIES ASSOCIATED WITH GROUP ALGEBRAS

Let G be a group and $\mathbb{Z}G$ its integral group algebra. For $u \in \mathbb{Z}G$ let $f_u(n) = [1]u^n$, the coefficient of the identity element of G when u^n is expanded in terms of the basis G. Set $F_u(x) = \sum_{n \geq 1} f_u(n)x^n$. If $F = F_d$, the free group on d generators, then it is known that $F_u(x)$ is algebraic. This goes back to Chomsky and Schützenberger and seems first to have been explicitly stated by Haiman. If $G = \mathbb{Z}^d$ then it follows from standard facts about D-finite series that $F_u(x)$ is D-finite, though it need not be algebraic.

Maxim Kontsevich asked whether $F_u(x)$ is always *D*-finite when $G = \operatorname{GL}(d, \mathbb{Z})$. This remains open, though it is known that the question of whether $F_u(x) = 0$ is undecidable. More generally, we can ask for which groups *G* is $F_u(x)$ algebraic for all $u \in \mathbb{Z}G$, and for which groups is $F_u(x)$ *D*-finite for all $u \in \mathbb{Z}G$.

NICK WORMALD: REDUCTION OF DEGREE IN THE COEFFICIENTS OF A GENERATING FUNCTION

Problem: Let $[y]_k$ denote $y(y-1)\cdots(y-k+1)$ and $A_t(y,z)$ the coefficient of x^t in

$$\log \sum_{k \ge 0} \frac{[y]_k[z]_k}{k!} x^k.$$

Clearly A_t has total degree at most 2t. Show that A_t has total degree at most t+1 for $t \ge 1$.

Notes:

- (1) A short solution was quickly found by Ira Gessel, Gilles Schaeffer and Richard Stanley, each independently.
- (2) A similar question: show that for $t \ge 1$ the coefficient of x^t in

$$\log \sum_{k \ge 0} \frac{|y|_{2m}}{m!} x^m$$

has degree t + 1. This was also solved by Ira Gessel, using the solution to the main problem.

- (3) Ira Gessel has obtained the leading coefficients in both questions.
- (4) The effect of 'reduction of degree' occurring in a similar context is explained in a paper of Valentin Féray, "Asymptotic behavior of some statistics in Ewens random permutations" (Electron. J. Probab. 18 (2013), no. 76, 32 pp).