
UNIVERSITY OF CALIFORNIA

Los Angeles

Computational Complexity in Combinatorics and Algebra

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

David Soukup

2024



© Copyright by

David Soukup

2024



ABSTRACT OF THE DISSERTATION

Computational Complexity in Combinatorics and Algebra

by

David Soukup

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Igor Pak, Chair

We present a series of results on the theme of using computational complexity to analyze

combinatorial objects with algebraic significance.

Chapter 1 concerns the cogrowth sequence of nilpotent groups. We prove that congru-

ences of such sequences are undecidable in general. We then show that related problems in

analytic combinatorics are uncomputable as well. This is done by constructing matrices of

size ≤ 1086 which create a universal Turing machine.

In Chapter 2 we present negative results to versions of questions posed by Sergey Fomin

on quiver mutation equivalence. We do this by embedding versions of classic computationally

difficult problems into quivers. Finally, we give a quick characterization of mutation classes

of quivers with two mutable vertices as a contrast.

Chapters 3 and 4 are centered around the use of involutions to count posets. We give tight

bounds for the number of posets of height 2 with an odd number of linear extensions, shedding

new light on a conjecture of Chan and Pak. Then, we give a combinatorial interpretation

(and corresponding positivity result) of area generating functions of partitions evaluated at

−1.
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Cogrowth
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CHAPTER 1

Algebraic and arithmetic properties of the cogrowth

sequence of nilpotent groups

1.1 Introduction

On a fundamental level, the growth and cogrowth sequences are used to extract global prop-

erties of finitely generated groups from a local information. Although many problems remain

unresolved, the asymptotic approach to both sequences has led to a number of spectacular

advances (see below).

The algebraic approach to growth and cogrowth sequences is usually stated in terms

of their generating functions (GF). Do they satisfy an algebraic equation? What about a

differential-algebraic equation? Given that both sequences are sensitive with respect to the

change in the generating sets, one might not think there is much to this problem, and yet

there is a plethora of positive results and some notable negative results in this direction (see

below).

In this paper we present an arithmetic approach to the cogrowth sequences of nilpotent

groups as a means to obtain negative results for their algebraic properties. We first state

the main results and historical remarks. We postpone the applications until Section 1.3.
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1.1.1 Main results

Let G be a fixed finitely generated group, and let S = S−1 be a symmetric generating set

⟨S⟩ = G. Denote by

cogS(n) :=
∣∣{(s1, . . . , sn) ∈ Sn : s1 · · · sn = 1

}∣∣.
the number of products of generators equal to one. The sequence {cogS(n)} is called the

cogrowth sequence. It can be viewed as the number of closed walks of length n in the Cayley

graph Γ(G,S). The unitriangular group UT(m,Z) is the (nilpotent) group of m×m upper

triangular matrices with 1’s on the diagonal.

Theorem 1.1.1 (Main theorem). There exist integers m ≥ 3, a ≥ 1, and a prime p,

such that the following problem is undecidable: Given symmetric generating sets S, T in

UT(m,Z), determine whether

∀n ∈ N : cogS(n) ≡ cogT (n) mod pa .

Moreover, the result holds for p = 2, a = 40, and some m ≤ 9.6 · 1085.

This is a rare undecidable problem for the relatively tame class of nilpotent groups.

The proof uses a technical yet explicit embedding of general Diophantine equations into

the cogrowth. Solvability of Diophantine equations is famously undecidable by the negative

solution of Hilbert’s 10th problem (the Matiyasevich, Robinson, Davis and Putnam theorem),

see e.g. [Mat1].

Our main theorem should be compared with the following result:

Theorem 1.1.2. Let a ≥ 1 be an integer, let p be a prime, and let G be a finitely generated

abelian group. The following problem is decidable: Given finite symmetric generating sets

S, T in G, determine whether

∀n ∈ N : cogS(n) ≡ cogT (n) mod pa .

3



This result is derived from a remarkable theorem of Adamczewski and Bell [AB], which in

turn extends a series of results by Furstenberg [Fur], Deligne [Del], Denef and Lipshitz [DL],

on diagonals of rational functions modulo prime powers. Our own motivation for the main

theorem comes from the opposite direction, and can be stated as follows.

The cogrowth series for the group G = ⟨S⟩ is defined as

CogS(t) := 1 +
∞∑
n=1

cogS(n)t
n .

Let

B(x1, . . . , xk) =
∑

(n1,...,nk)∈Nk

b(n1, . . . , nk)x
n1
1 · · ·x

nk
1 ∈ Z[[x1, . . . , xk]]

be a multivariate generating function. The diagonal of B is defined as
∑

n≥0 b(n, . . . , n)t
n.

Theorem 1.1.3. For a fixed sufficiently large integer m ≥ 0, the following problem is

not computable: Given a symmetric generating set S of the unitriangular group UT(m,Z),

write the cogrowth series CogS(t) as a diagonal of a rational function P/Q, for some poly-

nomials P,Q ∈ Z[x1, . . . , xk], and k ≥ 1. Moreover, the result holds for some m ≤ 9.6 ·1085.

In other words, either some cogrowth series are not diagonal, or all of them are diagonals,

but the proof of that result would be ineffective to make the diagonals uncomputable. Let

us mention a quick motivation for this problem (see more on this below).

Kontsevich’s question, for the case of nilpotent groups (see below), asks whether the

cogrowth series CogS(t) is always D-finite, i.e. a solution of an ODE with polynomial coef-

ficients. Christol’s Conjecture 1.3.1 (see below), reduces the problem to whether CogS(t) is

always a diagonal of a rational function. Until Theorem 1.1.3, no progress has been made in

this direction.

Remark 1.1.4. Let us further discuss our Theorem 1.1.3 in context of Kontsevich’s question.

First, it is possible and even likely, that already for the Heisenberg group UT(3,Z) with four

standard generators, the cogrowth series is not a diagonal (and non-D-finite), see §1.6.3. It
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is also possible and even likely, that for all m ≥ 3, and all symmetric generating sets S of

UT(m,Z), the cogrowth series is not a diagonal. Theorem 1.1.3 gives no contradiction with

that.

On the other hand, it is possible that for some S the cogrowth series is a diagonal. It is

also possible that for all S the cogrowth series is a diagonal. What Theorem 1.1.3 shows is

that there is no constructive proof that the cogrowth series is always a diagonal.

1.1.2 Historical background

Here we give a very brief overview of the vast literature on the subject.

(1) The growth of groups goes back to the works of Schwarz (1955) and Milnor (1968),

and is now a staple of Geometric Group Theory [Har2]. Notably, all nonamenable groups

have exponential growth, but not vice versa. Gromov’s theorem proves that the growth is

polynomial if and only if the group is virtually nilpotent. We refer to [Har1, Ch. VI,VII] for

an extensive introduction, and to [Mann] for a detailed treatment.

In probabilistic context, the cogrowth was first introduced by Pólya [Pól], to study tran-

sience and recurrence of random walks in Zd, via asymptotic estimates on the return prob-

ability cogS(n)/|S|n, and later by Kesten [Kes] in connection with amenability. In Group

Theory, the study of cogrowth was initiated by Grigorchuk [Gri] and extended by Cohen

[Coh] and others. We refer to [Woe] for a comprehensive presentation of both group theo-

retic and probabilistic results.

(2) The generating function (GF) approach became popular after the Golod–Shafarevich

theorem on the growth of algebras [Ufn, §3.5]. In a remarkable development, the growth

series (the GF for the growth sequence) is shown to be rational for every generating set of

many classes of groups, including virtually abelian [Ben] and hyperbolic [Can].

For other classes of groups, growth series can be more complicated. Notably, there are
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wreath products of abelian groups for which growth series are algebraic but not rational [Par].

For the fundamental group of a 3-dimensional PSL(2,R)-manifold, which is a Z-extension of

a hyperbolic group, the growth series is rational for one generating set and non-algebraic for

another [Sha]. It is known (see e.g. [GP3]) that the growth series is non-algebraic (in fact,

non-D-finite), for all groups of intermediate growth. See [GH, §4] for further examples and

many references.

For nilpotent groups, the growth series is especially interesting. In a breakthrough paper

[Sto], Stoll gave an example of a higher Heisenberg group H5 ⊂ UT(4,Z) and two generating

sets so that one growth series is rational while another is non-algebraic. Curiously, for the

(usual) Heisenberg group H3 = UT(3,Z), the growth series is always rational [DS].

(3) After Pólya’s work, lattice walks on Zd have been intensely studied for various generating

sets S (called steps). The corresponding return probabilities are always diagonals of rational

functions, but this stops being true when geometric constraints are added. These walks

continue to be intensely studied in Enumerative and Asymptotic Combinatorics, see e.g.

[Bou, Mis].

For free groups Fk, the cogrowth series are always algebraic. This was shown indepen-

dently in [Hai] in a combinatorial context, and in [Aom, FTS] in a probabilistic context. The

cogrowth series is algebraic for many free products of groups [BM, Kuk2], and D-finite for

Baumslag–Solitar groups BS(N,N) [ERRW].

In recent years, the interest to the problem came from Kontsevich’s question whether the

cogrowth series is always D-finite on linear groups, see [Sta2]. By the Tits alternative and the

Milnor–Wolf theorem, Kontsevich’s question is reduced to three cases: virtually nilpotent

groups, virtually solvable groups of exponential growth, and groups containing free group F2

as a subgroup. Our state of knowledge is very different in these three cases.

For solvable groups the question was resolved in the negative in [GP3] by the following

argument. Let G be a solvable group of exponential growth and bounded Prüfer rank. It

6



was proved by Pittet and Saloff-Coste in [PS2], that for every symmetric generating set S,

the cogrowth satisfies

|S|ne−αn1/3 ≤ cogS(n) ≤ |S|ne−βn1/3

.

The Birkhoff–Trjitzinsky theorem1 then implies that the cogrowth series not D-finite [GP3].

An easy example of such group is Z⋉Z2 ⊂ SL(3,Z), see e.g. [Woe, §15.B]. In response to a

solution in [GP3], Katzarkov, Kontsevich and Stanley independently asked if the cogrowth

series is always D-algebraic.2 This strengthening of Kontsevich’s question remains unre-

solved.

In fact, the bounded Prüfer rank assumption above is not necessary for the conclusion.

Recently, Bell and Mishna used an analytic argument [BM] to show that, for all amenable

groups of superpolynomial growth, the cogrowth series is non-D-finite, resolving the conjec-

ture in [GP3] and completing this case of Kontsevich’s question.

For nilpotent groups, the subject of this paper, the Bass–Guivarc’h formula computes

the polynomial degree d(G) of the growth sequence. Several notable probabilistic results

can be combined to give the following asymptotics

C1 |S|nn−d(G)/2 ≤ cogS(n) ≤ C2 |S|nn−d(G)/2,

see [Woe, §3.B,§15.B] and references therein. Now Jungen’s theorem [Jun], implies that the

cogrowth series is not algebraic for even d(G). For odd d(G) ≥ 5, only a weaker result is

known, that the cogrowth series is not R+-algebraic; this follows from [BD, Thm 3]. At this

point the analytic arguments lose their power as there are numerous examples of D-finite and

even algebraic GFs with the same asymptotics as the cogrowth sequences, see e.g. [BD, FS].

(4) Hilbert’s 10th problem was resolved by Matiyasevich (1970) building on the earlier work

by Davis, Putnam and Robinson (1949–1969). Solvability of Diophantine equations over

1There are gaps in the proof of this result and it remains an open problem in full generality, see a
discussion in [FS, §VIII.7] and [Odl, §9.2]. For integral sequences which grow at most exponentially, the
gaps were filled in a series of paper, see [GP3, §5.1].

2Personal communication, 2015.
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various rings is now fundamental in both Logic and Number Theory, and applied throughout

mathematical sciences, from Group Theory to Integral Programming. We refer to [Mat1] for

a thorough treatment, to [Poo1] for a short note introduction to recent developments, and

to [MF] for an introductory textbook.

(5) The study of classes of GFs was initially motivated by applications in Number Theory

and Analysis, but came to prominence in connection to Formal Languages Theory. The GF

for the number of accepted paths by a Finite State Automaton is always rational (see e.g.

[Sta1, §4.7]), and algebraic for a Pushdown Automaton (see references in [BD]).

The class of diagonals of rational functions coincides with the class of GFs for (balanced)

binomial sums, see [BLS, Gar]. This class received much attention after the work of Wilf

and Zeilberger on binomial identities [WZ, Zei], which made heavy use of the fact that they

are D-finite (holonomic in their terminology).

Finding an explicit presentation of a GF as a diagonal of a rational function is of great

interest in Computer Algebra due to its many applications, see e.g. [BLS, Mel]. These

range from congruences of combinatorial sequences, see [AB, RY], to asymptotic analysis,

see [BMPS, MS]. We should note that there can be more than one way a function can

be presented as diagonal, see e.g. [RY]. On the other hand, for many series finding its

presentation as a diagonal is a challenging open problem, see §1.6.6. Our Theorem 1.1.3

proving uncomputability of such presentation is the first negative result in this direction.

Proving that a series is not D-finite (not D-algebraic) is a major challenge, of interest both

in Enumerative Combinatorics [Pak] and Differential Algebra [ADH]. Outside of analytic

arguments, an Automata Theory approach was developed in [GP2], which proves non-D-

finiteness for GFs of various permutation classes. In the context of cogrowth series, [GP3]

uses this approach to prove non-D-finiteness in the (less interesting) case of non-symmetric

generating sets of nonamenable groups.

(6) The undecidability approach to algebraic properties of cogrowth series appears to be new.
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It is also surprising, since both the word, the conjugacy and even the isomorphism problems

are decidable for finite nilpotent groups [GS] (see also discussion in [Sap, §3.2]). On the other

hand, the solvability of a system of equations is undecidable for H3 = UT(3,Z) [DLS, GMO],

as well group membership in the product of cyclic subgroups of UT(m,Z) [Loh]. The proofs

of these results are similarly based on Hilbert’s 10th problem, cf. §1.6.3.

1.1.3 Paper structure

After a few notation in Section 1.2, we start with a technology of generating functions

in Section 1.3. There, we give quick proofs of Theorem 1.1.2 from the Adamczewski–Bell

theorem (Theorem 1.3.3), and of Theorem 1.1.3 from the Main Theorem 1.1.1. There, we

also formulate Theorem 1.3.5 on a possible non-D-algebraic cogrowth series for UT(m,Z).

We then prove Main Theorem 1.1.1 in a lengthy Section 1.4. The proof of Theorem 1.3.5 is

given in Section 1.5. We conclude with final remarks and open problems in Section 1.6.

1.2 Notation

We use the convention that bold letters represent multi-indices, e.g. x = (x1, . . . , xk) ∈ Zk.

We use |x | := |x1|+ . . .+ |xk| to denote the ℓ1 norm of x .

For vectors a , b ∈ Zk, denote(
a

b

)
:=

(
a1
b1

)
· · ·
(
ak
bk

)
. (1.1)

The unipotent group UT(m,Z) is the group of allm×m upper-triangular integer matrices
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with ones on the diagonal: 

1 Z Z · · · Z Z

0 1 Z · · · Z Z

0 0 1 · · · Z Z
...

...
...

. . .
...

...

0 0 0 · · · 1 Z

0 0 0 · · · 0 1


Since we will be working with many families of indexed matrices, we will adopt the

convention that [A]ij refers to the (i, j)-th entry of matrix A. Let In be the n × n identity

matrix, and Ei,j be the matrix that is 1 in the (i, j)-th coordinate and 0 otherwise.

When working with matrices, we write XY to denote the product of matrices X and Y .

We use X ◦Y to denote the word with matrices as letters. Lastly, we use ⊕ for the operation

of making a block-diagonal matrix out of smaller matrices:

X ⊕ Y :=

X 0

0 Y

 .

We use X⊕kY to mean that Y is added k times: X⊕Y ⊕· · ·⊕Y . Finally, a word (s1 · · · sn)

in the generators si ∈ S, is called a cogrowth word, if the product s1 · · · sn = 1.

1.3 Cogrowth series

1.3.1 Classes of generating functions

Let {an} be an integer sequence, and let

A(t) :=
∞∑
n=0

an t
n ∈ Z[[t]]
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be the corresponding generating function (GF). We write an = [tn]A to denote the coefficient

of the GF. For a multivariate GF B ∈ Z[[x1, . . . , xk]], the diagonal of B is defined as

diagB :=
∞∑
n=0

([
xn
1 · · ·xn

k

]
B
)
tn ∈ Z[[t]],

the GF for diagonal coefficients of B.

For A ∈ Z[[t]], we define the following five main classes of GFs, see e.g. [Sta1, Ch. 6]:

Rational : A(t) = P (t)/Q(t), for some P, Q ∈ Z[t],

Algebraic: c0A
k + c1A

k−1 + . . . + ck = 0, for some k ∈ N, ci ∈ Z[t],

Diagonal : A(t) = diagP/Q, for some P, Q ∈ Z[x1, . . . , xk], k ≥ 1,

D-finite : c0A + c1A
′ + . . . + ckA

(k), for some k ∈ N, ci ∈ Z[t],

D-algebraic: Q
(
t, A,A, . . . , A(k)

)
= 0, for some k ∈ N, Q ∈ Z[t, x0, x1, . . . , xk].

It is well known and easy to see that

Rational ⊊ Algebraic ⊊ Diagonal ⊊ D-finite ⊊ D-algebraic

It is known that the cogrowth series CogS(t) ∈ Rational if and only if G is finite [Kuk1].

For example, for G = Z and S = {±1}, we have:

CogS(t) =
∞∑
n=0

(
2n
n

)
t2n = diag

1

1− x− y
=

1√
1− 4t2

∈ Algebraic .

For G = Z2 and S = {(±1, 0), (0,±1)}, the cogrowth series CogS(t) =
∑

n≥0

(
2n
n

)2
t2n is di-

agonal but not algebraic.3 Diagonal GFs have coefficients which grow at most exponentially,

so
∑

n≥0 n!t
n is D-finite but not a diagonal. Christol’s Conjecture claims that this is the

only restriction:

3This was observed by Furstenberg [Fur] via Schneider’s theorem on transcendental numbers. As noted

in [Mel, p. 137], this is also immediate from
(
2n
n

)2 ∼ 1
πn 16

n. Jungen’s theorem can be used to show that the
cogrowth series is non-algebraic for all generating sets of Z2.
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Conjecture 1.3.1 (Christol [Chr1]). Let A(t) =
∑

n≥0 ant
n ∈ Z[[t]]. Let |an| < cn for all

n ∈ N and some c > 0, and let A ∈ D-finite. Then A ∈ Diagonal.

Note that Euler’s partition function

P (t) := 1 +
∞∑
n=1

p(n)tn =
∞∏
i=1

1

1− ti
∈ D-algebraic,

see [MC]. See also an explicit algebraic differential equation in [Pak, §2.5]. Since p(n) =

eO(
√
n), it follows that P (t) /∈ D-finite. In particular, Christol’s Conjecture does not extend

to D-algebraic GFs.

1.3.2 Proofs of Theorems 1.1.2 and 1.1.3

We start with the following two results.

Theorem 1.3.2 ( Kuksov [Kuk2, §5.1]). Let G be a finitely generated abelian group with a

finite symmetric generating set S. Then the cogrowth series CogS(t) ∈ Diagonal.

For G = Zd, this result is folklore, see e.g. [Mis, §3.1.4]. Note that Kuksov’s formulation

is different, but equivalent to ours.

Theorem 1.3.3 (Adamczewski–Bell [AB, Thm. 9.1(i)]). Let C(t) =
∑

n≥0 cnt
n ∈ Diagonal,

let p be a prime, and let a ≥ 1, b ≥ 0 be integers. The following problem is decidable:

∃n ∈ N : cn ≡ b mod pa.

Theorems 1.1.2 and 1.1.3 now follows easily by a combination of these results and the

Main Theorem 1.1.1.

Proof of Theorem 1.1.2. Note that the proof of Theorem 1.3.2 in [Kuk2, §5.1] is completely

constructive, giving CogS = diagP1/Q1 and CogT = diagP2/Q2 for some explicit polyno-

mials P1, P2, Q1, Q2 ∈ Z[x1, . . . , x2]. Let C(t) =
∑

n≥0 cnt
n := diag

(
P1/Q1 − P2/Q2

)
. Apply

12



Theorem 1.3.3 to C(t) with all possible 1 ≤ b < pa, to check if there is a solution for b ̸≡ 0

mod pa. If not, then we have cn ≡ 0 mod pa for all n ∈ N, as desired.

Proof of Theorem 1.1.3. Let p = 2, a = 40, and let G = UT(m,Z) be as in Theorem 1.1.1.

Suppose every cogrowth series CogS(t) is a diagonal of polynomials which are computable

(given S). Then the same holds for the difference: CogS(t)−CogT (t) = diagP/Q, for every

two symmetric generating sets S and T of G, and some computable multivariate polynomials

P,Q. By Theorem 1.3.3, the congruence

∀n ∈ N : cogS(n) ≡ cogT (n) mod 240

is decidable, a contradiction with Theorem 1.1.1.

1.3.3 Non-D-algebraic cogrowth series

Ideally, one would want to give a construction of a non-D-algebraic cogrowth series of a

unitriangular group. As an application of our tools we give such a construction assuming

there is a Diophantine equation with certain properties.

Denote x = (x1, . . . , xk), and let f ∈ Z[x1, . . . , xk]. Consider a Diophantine equation

f(x ) = 0. Denote by R(f) := {x ∈ Zk : f(x ) = 0} be the set of roots.

We say that f is sparse if all roots x ∈ R(f) have distinct ℓ1 norm: |x | ̸= |y | for all

x ,y ∈ R(f). In this case we can assume that the roots of f are ordered according to the

norm: R(f) = {r 1, r 2, . . .}, where |r 1| < |r 2| < . . . For a sparse f , we use ρi := |r i|.

Finally, for z ∈ Z, let bin(z) denote the number of 1’s in the binary expansion of |z|.

Conjecture 1.3.4. There exists k ∈ N and a sparse f ∈ Z[x1, . . . , xk] which satisfies:

(1) ρi is even for all i ≥ 1,
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(2) ρi+1/ρi →∞ as i→∞,

(3) for every integers a, b ≥ 1, there exists i ≥ 1, s.t. ρi/2 ≡ a mod 2b,

(4) for every integers a, b, h ≥ 1, there exists some N = N(a, b, h) ≥ 1, s.t. for all i > N

we have:

min
{
y : bin(cρi − y) ≤ a

}
≥ bρi−1 for all 1 ≤ c ≤ h.

Theorem 1.3.5. Suppose Conjecture 1.3.4 holds. Then there exists an integer m ≥ 1 and a

symmetric generating set S of UT(m,Z), s.t. the cogrowth series CogS(t) is not D-algebraic.

We prove Theorem 1.3.5 in Section 1.5. The proof is based on the following result of

independent interest. It also explains the nature of assumptions in the conjecture.

Lemma 1.3.6. Let {λn} ∈ N∞ be an integer sequence s.t. λ0 = 1. Suppose there exists an

increasing integer sequence {n1 < n2 < . . .} with the following properties:

(1) λni
is odd for every i ∈ N,

(2) ni+1/ni →∞ as i→∞,

(3) for every integers a, b ≥ 1, there exists i ≥ 1, s.t. ni ≡ a mod 2b,

(4) for every C,D ≥ 1, there exists N = N(C,D) > 0, s.t. for every i1, . . . , iD > N , if

ni1 + · · ·+ niD − C ≤ b1 + · · ·+ bD ≤ ni1 + · · ·+ niD

for some nonnegative integers b1, . . . , bD, then either:

◦ λbj is even for at least one j.

◦ {b1, . . . , bD} and {n1, . . . , nD} are equal up to rearrangement.

Then the sequence {λn} is not D-algebraic.
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For example, the sequence {ni = i!+ i} satisfies properties (2) and (3) above. Therefore,

every integer sequence {λn}, where all λn are odd if and only if n = i! + i for some i, is not

D-algebraic.

More generally, every integer sequence {λn}, where λn is odd whenever n = i! + i, and

even when n is not between i! + i and i! + 2i for some i, is also not D-algebraic. This is

because we can take ni := i! + i and property (4) will still hold.

Remark 1.3.7. If the sequence {n1, n2, . . . } covers every index where an is odd, then con-

dition (4) follows from condition (3). This is because we could let N be large enough such

that ni > Dni−1
�for all i > N . This case was previously considered by Garrabrant and the

first author.4

1.4 Proof of Theorem 1.1.1

The key idea in this proof will be to encode the existence of roots of an arbitrary Diophan-

tine equation f into statements about cogrowth in UT(m,Z). We proceed as follows. In

Lemma 1.4.1 we show that words of a particular structure can compute the value of f at

integers. Then, in Lemmas 1.4.3 and 1.4.4 we extend our matrices so that this computation

is true for a broader class of words.

Next, Lemmas 1.4.8 and 1.4.12 allows us to turn the question of Theorem 1.1.1 into a

statement about the existence of integer roots of an arbitrary Diophantine equation. An

explicit solution of Hilbert’s 10th problem completes the proof.

1.4.1 Polynomials via matrix products

We start with the following key lemma.

4Scott Garrabrant and Igor Pak, unpublished notes (2015).
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Lemma 1.4.1. Let f ∈ Z[x1, . . . , xk] and let D := deg f . Then there exists matrices

P,Q,A1, . . . , Ak ∈ UT(m,Z) for some m ≤ (D+ 1)
(
D+k
k

)
+ 2, such that

PAQA−1P−1AQ−1A−1 = Im + f(x1, . . . , xk)E1m

for all

A = Ax1
1 Ax2

2 · · ·A
xk
k and (x1, . . . , xk) ∈ Nk.

Proof. Denote x = (x1, . . . , xk) and recall the multi-index notation (1.1). Write f(x ) in the

binomial basis {
(
x
d

)
: d ∈ Nk} as follows:

f(x ) =
∑
|d |≤D

bd
(
x
d

)
for some bd ∈ Z, d ∈ Nk. (1.2)

Let p, q ≥ 1. Denote by Jq the q × q Jordan block with 1’s on and above the diagonal.

We have:

Jq =



1 1 0 · · · 0 0

0 1 1 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 1

0 0 0 · · · 0 1


and

(
Jq
)p

=



1
(
p
1

) (
p
2

)
· · ·

(
p

q−2

) (
p

q−1

)
0 1

(
p
1

)
· · ·

(
p

q−3

) (
p

q−2

)
0 0 1 · · ·

(
p

q−3

) (
p

q−4

)
...

...
...

. . .
...

...

0 0 0 · · · 1
(
p
1

)
0 0 0 · · · 0 1


. (1.3)

Now, for each d = (d1, . . . , dk) in the sum in (1.2), define matrices Bd ,i ∈ UT(|d |+1,Z)

as follows: 

Bd ,1 := Jd1+1 ⊕ Id2+ ...+dk

Bd ,2 := Id1 ⊕ Jd2+1 ⊕ Id3+ ...+dk

...

Bd ,k := Id1+ ...+dk−1
⊕ Jdk+1

(1.4)
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For example, if d = (2, 3, 0, 1) then

Bd ,1 =



1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


Bd ,2 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



Bd ,3 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


Bd ,4 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1


Note that each of the Bd ,i contains one nontrivial Jordan block, highlighted in red above.

In the case where di = 0, the Jordan block has size one. The block is located between indices

(d1 + . . .+ di−1 + 1) and (d1 + . . .+ di + 1). That means that the nontrivial block overlaps

the nontrivial blocks of Bd ,i−1 and Bd ,i+1 in exactly one place.

Let Bd = Bx1
d ,1 · · ·B

xk
d ,k. Then the top-right entry of B is given by

[
Bd

]
1,|d |+1

=
∑

(j1, ... ,jk+1) : j1=1, jk+1=|d |+1

[
Bx1

d ,1

]
j1,j2

[
Bx2

d ,2

]
j2,j3
· · ·
[
Bxk

d ,k

]
jk,jk+1

. (1.5)

We investigate which of the terms in the sum (1.5) survive. Since all the Bd ,i are upper

triangular we can only have a nonzero term if j1 ≤ j2 ≤ · · · ≤ jk+1. By the block structure

of the Bd ,i, the only way to have a nonzero term where ji < ji+1 is if ji and ji+1 satisfy

d1 + . . . + di−1 + 1 ≤ ji < ji+1 ≤ d1 + . . . + di + 1.
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Therefore, there is only one nonzero term in the sum (1.5), given by ji = d1+. . .+di−1+1,

for all i. This term is the product of the top-right entries of all the nontrivial Jordan blocks

in Bd ,1 to Bd ,k. By (1.3), this gives

[Bd ]1,|d |+1 =
[
Jx1
d1+1

]
1,d1+1

· · ·
[
Jxk
dk+1

]
1,dk+1

=
(

x1

d1+1−1

)
· · ·
(

xk

dk+1−1

)
=
(
x
d

)
. (1.6)

Now we need to arrange these parts to create f . For each i, define

Ai := I1 ⊕

[ ⊕
|d |≤D

Bd ,i

]
⊕ I1 .

Let m be the size of Ai . For each |d | ≤ D, let (αd , βd) be the coordinates of the top-right

entry of the block in Ai coming from Bd ,i. Then we can define

P := Im +
∑
|d |≤D

E1,αd
and Q := Im +

∑
|d |≤D

bdEβd ,m ,

where the bd are the coefficients defined in (1.2). The top-right corner of PAQ is

[PAQ]1,m =
∑

1≤j1,j2≤m

[P ]1j1 [A]j1j2 [Q]j2m =
∑
d1,d2

[A]αd1
βd2

bd2 .

But since the Ai’s were defined as block matrices, the only way for [A]αd1
,βd2

to be nonzero

is if d 1 = d 2. Thus, using (1.6) this becomes

[PAQ]1,m =
∑
d

[A]αd ,βd
bd =

∑
d

[Bd ]1,|d |+1 bd =
∑
d

bd

(
x

d

)
= f(x ). (1.7)

Now that we have a f(x ) in the top-right corner, we need to make all the entries between

this corner and the diagonal zero. Let M = PAQA−1. Then we investigate its entries [M ]ij.

Recall that

[M ]ij =
∑

i≤m1≤m2≤m3≤j

[P ]i,m1 [A]m1,m2 [Q]m2,m3 [A
−1]m3,j

and that the only above-diagonal nonzero entries of P are on the top row, of Q are in the

right column, and of A are in neither the top row or right column.

We have the following cases:
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◦ If i = j, then [M ]i,j = 1 because M ∈ UT(m,Z).

◦ If i > j, then [M ]i,j = 0, analogously.

◦ If 1 < i < j < m, then we are above the diagonal of but not along the top or right

edge of the matrix. Here the only terms in (1.4.1), such that [P ]i,m1 ̸= 0 will be those

where m1 = i. Likewise we must have m2 = m3, since m3 < m. Thus, we can ignore

P and Q in the product, and conclude [M ]ij = [AA−1]ij = 0.

◦ If 1 = i < j < m, then we are on the top row of the matrix but not in the corner.

Again we can ignore Q because m3 < m. So [M ]i,j = [PAA−1]ij = [P ]ij.

◦ If 1 = i < j = m, then we are in the top-right corner of the matrix. Here A−1

cannot contribute to the sum, since [A−1]m3,m is nonzero only when m3 = m. Thus,

[M ]1,m = [PAQ]1,m = f(x ) by (1.7).

To summarize, M is of the form

M =



1 [P ]1,2 [P ]1,3 [P ]1,4 · · · [P ]1,m−1 f(x )

0 1 0 0 · · · 0 ξ1(x )

0 0 1 0 · · · 0 ξ2(x )

0 0 0 1 · · · 0 ξ3(x )
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1


(1.8)

where the ξi(x ) denote some polynomials.

Note that P is nonzero only in the first row and zero in the top-right corner. Thus, the
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same holds for P−1. Therefore, we can right-multiply (1.8) by P−1 to get

MP−1 =



1 0 0 0 · · · f(x )

0 1 0 0 · · · ξ1(x )

0 0 1 0 · · · ξ2(x )

0 0 0 1 · · · ξ3(x )
...

...
...

...
. . .

...

0 0 0 0 · · · 1


. (1.9)

Similarly, P−1M must be equal to M except possibly in the first row. But P−1M =

AQA−1 is the product of three matrices whose first rows are trivial. Thus, P−1M must also

be trivial in the first row. We conclude:

P−1M =



1 0 0 0 · · · 0

0 1 0 0 · · · ξ1(x )

0 0 1 0 · · · ξ2(x )

0 0 0 1 · · · ξ3(x )
...

...
...

...
. . .

...

0 0 0 0 · · · 1


. (1.10)

Combining (1.9) and (1.10), we get

PAQA−1P−1AQ−1A−1 =
(
PAQA−1P−1

) (
AQ−1A−1

)−1

= MP−1
(
P−1M

)−1
= Im + f(x ),

as desired.

We now consider the size of m. There are exactly
(
D+k
k

)
possible multi-indices d with

|d | ≤ D. Each of these contributes at most (D+1) to the size of Ai , and we get an additional

1 from each I1. This gives m ≤ (D+ 1)
(
D+k
k

)
+ 2.

Corollary 1.4.2. A word of the form

PW1QW2P
−1W3Q

−1W4 where W1 = W−1
2 = W3 = W−1

4 = Ax1
1 · · ·A

xk
k

is a cogrowth word if and only if x = (x1, . . . , xk) is a root of f .
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1.4.2 Larger families of words

We now have the tools to evaluate Diophantine equations, but in order to be able to elimi-

nate extraneous words, we will need to extend the matrices defined in Lemma 1.4.1 to new

matrices. Therefore the next lemmas will reduce the problem to Corollary 1.4.2. Note that

we will continue referring to the new matrices as Ai, P , and Q in order to connect their roles

to those in Lemma 1.4.1.

First, we extend our matrices so that the four words W1, W2, W3, W4 do in fact need to

be inverses as in the statement of Lemma 1.4.1.

Lemma 1.4.3. Suppose f ∈ Z[x1, . . . , xk] has degree D := deg f . Then there exists matrices

P,Q, A1, . . . , Ak ∈ UT(m,Z) for some m ≤ 4(D+ 1)
(
D+k
k

)
+ 8, such that the conclusion of

Corollary 1.4.2 holds, and such that every word of the form

PW1QW2P
−1W3Q

−1W4 where Wi ∈ ⟨A±1
1 , . . . , A±k

k ⟩

is a cogrowth word only if W1 = W−1
2 = W3 = W−1

4 .

Proof. Let P ′, Q′, A′
1, . . . , A

′
k be the matrices produced by Lemma 1.4.1. Define

P :=


P ′ 0 0 0

0 Im 0 Im

0 0 Im 0

0 0 0 Im


, Q :=


Q′ 0 0 0

0 Im 0 0

0 0 Im Im

0 0 0 Im


, Ai :=


A′

i 0 0 0

0 Im 0 0

0 0 Im 0

0 0 0 A′
i


.

If W1 = A±1
i1
· · ·A±1

is
, then define

W ′
1 := (A′

i1
)±1 · · · (A′

is)
±1

and analogously for W ′
2,W

′
3,W

′
4. A computation then shows

PW1QW2P
−1W3Q

−1W4 =


V 0 0 0

0 Im 0 W ′
3W

′
4(Im −W ′

2W
′
1)

0 0 Im W ′
4(Im −W ′

2W
′
3)

0 0 0 W ′
1W

′
2W

′
3W

′
4
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where V = P ′W ′
1Q

′W ′
2(P

′)−1W ′
3(Q

′)−1W ′
4. The construction in Lemma 1.4.1 shows that

Corollary 1.4.2 holds.

Moreover, for this matrix to be the identity, we must have

W ′
3W

′
4(Im −W ′

2W
′
1) = W ′

4(Im −W ′
2W

′
3) = 0 and W ′

1W
′
2W

′
3W

′
4 = Im ,

which implies W ′
1 = (W ′

2)
−1 = W ′

3 = (W ′
4)

−1. This gives W1 = W−1
2 = W3 = W−1

4 as

required.

We now know that the Wi need to evaluate to the same matrix, but Lemma 1.4.1 is only

able to speak about subwords. So we must extend our matrices again, this time so that the

only possible cogrowth words are equivalent to subwords.

We do this by noticing that if we flip the Jordan block construction from Lemma 1.4.1

so the blocks go from bottom-right to top-left instead, then instead of evaluating monomials

the above-Jordan-block terms will be zero. That allows us to prove the following:

Lemma 1.4.4. Let f ∈ Z[x1, . . . , xk] with D = deg f ≥ 2. Then there exists matrices

P,Q,A1, . . . , Ak ∈ UT(m,Z) for some

m ≤ 4(D+ 1)
(
D+k
k

)
+ 8 + 1

2

(
D+k
k

)
(D+ 1)3 ,

such that the conclusion of Corollary 1.4.2 holds, and such that every word of the form

PW1QW2P
−1W3Q

−1W4 (1.11)

where Wi ∈ ⟨A±1
1 , . . . , A±k

k ⟩, is a cogrowth word only if W1 = W−1
2 = W3 = W−1

4 =

Ax1
1 · · ·A

xk
k for some integers x1, . . . , xk.

Proof. Let P ′, Q′, A′
1, . . . , A

′
k be the matrices produced by Lemma 1.4.1. We consider the

structure of matrices in ⟨(A′
1)

±1, . . . , (A′
k)

±⟩ more deeply. Each consists of a collection of

blocks defined as Bd ,i in (1.5). Fix any particular Bd . By construction, it is of size |d |+ 1.
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For any matrix X ∈ UT(L,Z), let φ(X) be the matrix obtained by reflecting X along

the main antidiagonal. Then Φ : X 7→ φ(X)−1 is an automorphism of UT(L,Z). Now,

Bd ,1, . . . , Bd ,k have their nontrivial blocks arranged from top left to bottom right; so Φ(Bd ,1), . . . ,Φ(Bd ,k)

have their nontrivial blocks arranged from bottom right to top left.

For example, if

Bd ,1 =



1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Bd ,2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

0 0 0 0 0 1


then

Φ(Bd ,1) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 -1 1

0 0 0 0 1 -1

0 0 0 0 0 1


Φ(Bd ,2) =



1 -1 1 -1 0 0

0 1 -1 1 0 0

0 0 1 -1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Sublemma 1.4.5. A matrix W ∈ ⟨B±1

d,1, . . . , B
±1
d,k⟩ is equal to Bx1

d,1 · · ·B
xk
d,k for some in-

tegers x1, . . . , xk if and only if Φ(W ) is zero outside of the nontrivial Jordan blocks of

Φ(Bd,1), . . . ,Φ(Bd,k).

Proof. The forward direction is immediate: because the nontrivial Jordan blocks of the

Φ(Bd ,i) are in bottom right to top left order, the matrix

Φ
(
Bx1

d ,1 · · ·B
xk
d ,k

)
= Φ(Bd ,1)

x1 · · · Φ(Bd ,k)
xk
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will not have any nonzero entries outside the nontrivial Jordan blocks of the matrices Φ(Bd ,i).

Conversely, suppose Φ(W ) is zero outside of the nontrivial Jordan blocks of Φ(Bd ,i).

Since W is in the subgroup generated by the Bd ,i, we can write

W = Bε1
d ,j1
· · ·Bεm

d ,jm
(1.12)

for some integer m, indices 1 ≤ jm ≤ k, and exponents εm = ±1. Let y1, . . . , yk be the net

number of Bd ,1, . . . , Bd ,k in expression (1.12). In other words, we have:

yi =
∑

s : js=i

εs .

By assumption, Φ(W ) agrees with Φ(Bd ,1)
y1 · · ·Φ(Bd ,k)

yk outside of the nontrivial Jordan

blocks. Fix some index α, β within the nontrivial Jordan block of Bd ,γ. Then (1.12) implies

that

Φ(W ) = Φ(Bd ,j1)
ε1 · · · Φ(Bd ,jm)

εm .

Note that the only terms that can contribute to the α, β index are those where js = γ. This

means

[Φ(W )]α,β = [Φ(Bd ,γ)
yγ ]α,β = [Φ(Bd ,1)

y1 · · ·Φ(Bd ,k)
yk ]α,β

Since this holds for any α, β we get

Φ(W ) = Φ(Bd ,1)
y1 · · ·Φ(Bd ,k)

yk = Φ(By1
d ,1 · · ·B

yk
d ,k) .

The result follows since Φ is a bijection.

The next sublemma will allow us to force particular entries in Φ(W ) to be zero.

Sublemma 1.4.6. Let V ∈ UT(q,Z) and let 1 < a ≤ b < q. Then

(
Iq + E1,a

)
V
(
Iq + Eb,L

)
V −1

(
Iq + E1,a

)−1
V
(
Iq + Eb,q

)−1
V −1 = Iq + [V ]a,bE1,q .

Proof. The left-hand side is equal to

(Iq + E1,a)V (Iq + Eb,q)V
−1(Iq − E1,a)V (Iq − Eb,q)V

−1
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Expanding this and using the fact that V and V −1 are upper triangular gives Iq+E1,aV Eb,qV
−1.

This equals the right-hand side.

To finish the proof of Lemma 1.4.3, we construct our matrices as follows. Let the ma-

trices P ′′, Q′′, A′′
1, . . . , A

′′
k be the matrices obtained in Lemma 1.4.3. For every Bd in the

construction of A′
i, and every (α, β) above the nontrivial Jordan blocks of Φ(Bd ,i), let

P := P ′′ ⊕
(
I|d |+3 + E1,α+1

)
Q := Q′′ ⊕

(
I|d |+3 + Eβ+1,|d |+3

)
Ai := A′′

i ⊕ I1 ⊕ Φ(Bd ,i)⊕ I1

for all 1 ≤ i ≤ k. There are at most
(
D+k
k

)
of the Bd ’s, and for each of them we append at

most 1
2
(D+ 1)2 new matrices of size at most D+ 1. Therefore these new matrices have size

m ≤ 4(D+ 1)

(
D+ k

k

)
+ 8 +

1

2

(
D+ k

k

)
(D+ 1)3,

as desired.

Suppose a word of the form (1.11) is cogrowth. Then by Lemma 1.4.3 we have W1 =

W−1
2 = W3 = W−1

4 . Therefore, by construction and Sublemma 1.4.6 all of the entries

of Φ(W1) outside of the nontrivial Jordan blocks are zero. Then, Sublemma 1.4.5 implies

that W1 = Ay1
1 · · ·A

yk
k for the yi defined in Sublemma 1.4.5. This completes the proof of

Lemma 1.4.3.

Corollary 1.4.7. For a fixed root x = (x1, . . . , xk) of f , the word

V = Ax1
1 ◦ · · · ◦ A

xk
k

is the unique shortest word that evaluates to Ax1
1 · · ·A

xk
k .

Proof. We only need to prove the case k ≥ 2. Suppose to the contrary, there is some other

word V ′ which also evaluates to Ax1
1 · · ·A

xk
k . Since the net number of Ai’s in V ′ needs to be

xi, it must be that V ′ is some nontrivial permutation of V .
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This means there exists some j1 < j2 , such that an A±1
j2

appears before an A±1
j1

in the

word Wi. But then the above-diagonal entry in the block corresponding to
(
j1
1

)(
j2
1

)
will be

nonzero, so this cannot be a cogrowth word.

1.4.3 The construction

We are now ready to construct our generating sets S and T as in Theorem 1.1.1. For a

fixed polynomial f ∈ Z[x], let P ′, Q′, A′
1, . . . , A

′
k ∈ UT(m,Z) be the matrices given by

Lemma 1.4.4. Construct new matrices Ai := A′
i ⊕ I3, for 1 ≤ i ≤ k, and let

P := P ′ ⊕


1 1 0

0 1 0

0 0 1

 , Q := Q′ ⊕


1 0 0

0 1 1

0 0 1

 , R := Im ⊕


1 0 −1

0 1 0

0 0 1

 .

Denote by Em = {Im ± Ei,i+1 : 1 ≤ i < m} the standard generating set of UT(m,Z).

Fix be a positive integer u to be determined later. Let

S := {A±1
1 , A±1

2 , . . . , A±1
k } ∪ u ·

{
P±1, Q±1

}
∪ u10 · Em+3 , and

T := S ∪ u5 ·
{
R±1

}
,

(1.13)

where by n ·X we denote n copies of the set X.

Our next lemma will exploit the modular condition in Theorem 1.1.1 to eliminate any

word that does not fit the pattern of Lemma 1.4.4.

Lemma 1.4.8. Let f ∈ Z[x1, . . . , xk], and define S and T as in (1.13). Let cn be the number

of cogrowth words of length n of the form

PV1QV2P
−1V3Q

−1V4 , where Vi are words in ⟨A±1
1 , . . . , A±k

k ⟩.

Then:

cogT (n) − cogS(n) ≡ 2n(n− 1)cn−1u
9 mod u10.
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Proof. First, note that we can ignore all words that contain any of the standard generators.

By construction, such words will appear a multiple of u10 times.

Second, note that the left-hand side counts the number of cogrowth words that are in

⟨T ⟩ but not in ⟨S⟩. This corresponds to words with at least one R±1. However, words with

two or more R±1 will be eliminated by the modulo condition.

Next, there is a bijection between words containing one R and those containing one R−1

given by reversing the order of the word and inverting all the elements. So let us look only

at words that contain just an R. This gives a factor of 2 on the right hand side.

In order to cancel out the −1 in R we can only use copies of P±1 and Q±1. But every

word with an R and at least five of these will also be eliminated since the total weight would

be divisible by u10. So the only possible words that remain have some cyclic permutation of

PQP−1Q−1, which gives the factor of u9.

Because any cyclic permutation of a cogrowth word is still cogrowth, we can take the

unique word that starts with P . This gives a factor of n on the right hand side.

Finally, note that R commutes with P,Q, and all the Ai. Since our word has exactly one

R, we can just ignore it in counting words by looking at words of length (n− 1). This gives

us one more factor of (n− 1) on the right-hand side. The result counts exactly cn−1.

The following two corollaries relate this lemma to whether or not the polynomial f has

integer roots.

Corollary 1.4.9. Let f ∈ Z[x1, . . . , xk] be a polynomial with no integer roots, Then

cogT (n) − cogS(n) ≡ 0 mod u10.

In a different direction, we have:

Corollary 1.4.10. Let f ∈ Z[x1, . . . , xk] be a polynomial with an integer root x ∈ Zk.

Suppose that |x| is even, and |x| is minimal among all integer roots of f . Let u = 16 and
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let S, T be defined by (1.13). Then:

cogT (4|x|+ 5) − cogS(4|x|+ 5) ̸≡ 0 mod u10.

Proof. By Lemma 1.4.8, we have:

cogT
(
4|x |+ 5

)
− cogS

(
4|x |+ 5

)
≡ 2

(
4|x |+ 5

)(
4|x |+ 4

)
c4 |x |+416

9 mod 1610.

Since |x | is minimal, the only way to have a cogrowth word in c4|x |+4 is to let Vi = Ax1
1 ◦· · ·◦A

xk
k

by Lemma 1.4.4 and Corollary 1.4.7. So c4|x |+4 = 1. Because |x | is even, the right hand side

has only at most 1 + 0 + 2 + 36 = 39 factors of 2. That means that it not not zero modulo

1610, as desired.

Remark 1.4.11. Unfortunately, not every polynomial has a root satisfying the conditions of

Corollary 1.4.10. For example, the polynomial f(x1, x2) = x2
1 − 13x2

2 − 1 has four solutions

with minimal ℓ1-norm, namely (±649,±180). This would imply that c3317 = 4, introducing

an extra factor of 2 to the right-hand side and making the two sides congruent.

To avoid the issue in the remark above, we introduce an auxiliary variable which will

separate out the ℓ1 norms of all integer roots.

Lemma 1.4.12. There exists a map Φ : Z[x1, . . . , xk] → Z[y1, . . . , yk+1], such that for all

g̃ = Φ(g) we have:

◦ polynomials g and g̃ have the same (possibly infinite) number of integer roots,

◦ x ∈ Zk+1 is an integer root of g̃ ⇒ |x| is even,

◦ x, y ∈ Zk+1 are integer roots of g̃ ⇒ |x| ≠ |y|,

◦ deg g̃ ≤ max{2 deg g, 4k + 12}.
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Proof. Let v = v(y) := 4(y21 + y22 + · · ·+ y2k + 1), and let

g̃(y1, . . . , yk+1) = Φ(g) := g(y1, . . . , yk)
2 +

(
−yk+1 + vk+3 +

k∑
i=1

yiv
i+1 +

k∑
i=1

yi

)2

.

Note that condition (1.4.12) is clearly satisfied.

In order for g̃ to have a root, we must have g(y1, . . . , yk) = 0 and

yk+1 = vk+3 +
k∑

i=1

yiv
i+1 +

k∑
i=1

yi .

This implies (1.4.12).

Next, suppose r = {y1, . . . , yk+1} is an integer root of g̃. Because v is even, we have:

|r | ≡ |y1| + . . . + |yk| + 0 + y1 + . . . + yk ≡ 0 mod 2,

which proves (1.4.12).

On the other hand, observe that

∣∣|r | − vk+3
∣∣ ≤ k∑

i=1

|yi| +

∣∣∣∣∣
k∑

i=1

yiv
i+1 +

k∑
i=1

yi

∣∣∣∣∣ ≤
k∑

i=1

|yi|
(
2 + vi+1

)
≤ (2 + vk+1)

k∑
i=1

|yi| ≤ (2 + vk+1)
v

4
≤ vk+3 − (v − 1)k+3 .

This implies that if g̃(x ) = g̃(y), then v(x ) = v(y).

Now suppose that x ,y ∈ Zk+1 are roots of g̃ such that |x | = |y |. From above, v(x ) =

v(y). Write Y := |y | − v(y)k+3 as a polynomial in y1, . . . , yk and observe that yi’s are

uniquely determined by the integrality. For example, y1 is the closest integer to Y/vk+1, etc.

The same argument for x shows that x = y , which implies (1.4.12). This finishes the proof

of the lemma.

We can now complete the proof of Theorem 1.1.1. Suppose an algorithm exists that

determines whether or not, for arbitrary generating sets S and T , we have

∃n ≥ 0 : cogS(n) ̸≡ cogT (n) mod pa. (1.14)
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Then we could use this algorithm to determine whether or not a Diophantine equation

g(x1, . . . , xk) has an integer root as follows. First construct g̃ as in Lemma 1.4.12. Then

construct S and T with f = g̃ and u = 16 as in Lemma 1.4.4. By Corollaries 1.4.9 and 1.4.10,

polynomial g̃, and thus f , has a root if and only if (1.14) holds with p = 2 and a = 40, so

pa = u10.

Finally, Jones [Jon] shows that Diophantine problems over N are undecidable for poly-

nomials of degree at most 96 in 21 variables. By a standard reduction (see e.g. [Gas,

Thm 3.3]), the Diophantine problem over Z is undecidable for deg g = 192 and k = 63.

Then D = deg g̃ = 384, which by Lemma 1.4.4 gives the desired bound m ≤ 9.6 · 1085. This

completes the proof of Theorem 1.1.1.

Remark 1.4.13. In fact, Jones [Jon] (see also [Gas]), gives several pairs (degree, number

of variables) which give rise to a minimal Diophantine equation. Of these, we chose the one

which gives the smallest bound on n.

1.5 Non-D-algebraic series

The previous sections gave us information about the parity of cogrowth sequences. We first

prove Lemma 1.3.6 where the parity information is enough to conclude that a sequence is

not D-algebraic. We then deduce Theorem 1.3.5.

1.5.1 Proof of Lemma 1.3.6

Let Λ(t) =
∑

λnt
n, and suppose that Λ satisfies an algebraic differential equation. Then by

definition there exist positive integers C and D together with a finite family of polynomials

{Πc,d}0≤c≤C,0≤d≤D, not all zero, such that for all n∑
c,d

∑
i1+···+id=n−c

Πc,d(i1, . . . , id)λi1 · · · λid = 0.
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Note that this sum has repeated terms, so e.g. λ3λ7 and λ7λ3 are counted separately.

We recast this as a sum over partitions:∑
c,d

∑
ν⊢(n−c) : |ν|=d

Γν,n λ1 · · ·λd = 0 for all n, (1.15)

where Γν,n are sums of the corresponding Πc,d.

Denote by v2(x) the largest power of 2 dividing x. Take some µ such that v2(Γµ, n) is

minimized. This is always possible because not all Γν are zero, since the ADE is trivial

otherwise. If there are ties, then we pick the one where c is minimal.

Let V = v2(Γµ, n), and let ℓ = ℓ(µ). By the assumption of our lemma, there exist distinct

indices nα1 , . . . , nαℓ
, such that nαi

≡ µi modulo 2V+1. Furthermore, we can assume that all

of these indices are greater than N(C,D) as defined in condition (4).

We claim that this contradicts (1.15). Indeed, consider the equality modulo 2V+1. Letting

ν = {nα1 , . . . , nαℓ
}, by the assumption we get that V = v2(Γν , n). Since all λnαi

are odd,

this particular term will have v2 = V .

Any term with lower c will have v2(Γ, n) > V , so we can ignore those terms in (1.15).

On the other hand, any other term besides ν will have v2(Γ, n) ≥ V , and by condition (4)

at least one of the λi is even, meaning such terms will also have v2(Γ, n) > V .

Thus the left-hand side of (1.15) has exactly one term which is not congruent to zero

modulo 2V+1, a contradiction. Hence our sequence cannot be D-algebraic.

1.5.2 Proof of Theorem 1.3.5

Suppose we have a polynomial f satisfying the conditions prescribed in Conjecture 1.3.4.

Construct A1, . . . , Ak and P,Q,R as in the proof of Theorem 1.1.1. Suppose for the sake of

contradiction that cogS(n) and cogT (n) are both D-algebraic.

Now, let W be the set of cogrowth words of the form

PW1QW2P
−1W3Q

−1W4 ,
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where Wi are words in {A±1
1 , . . . , A±1

k }. Define ωn to be the number of words in W of

length n.

Lemma 1.4.4 shows that the evaluations of W1 and W3 are the same, and are equal to

the inverse of the evaluations of W2 and W4. Also, there must be a root x = (x1, . . . , xk)

of f , such that the net number of Ai’s in W1 is equal to xi, for all i ∈ [k]. The same must

be true (up to minus sign) for W2,W3,W4.

We now proceed to make one more modification of our matrices. We expand P and Q

by adding k copies of a 5× 5 matrix I5 + E13 and I5 + E23 + E45, respectively:

P ← P ⊕k



1 0 1 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


and Q ← Q⊕k



1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1


Then, for each j, create two versions of Aj. One will be A⊕ I5k, called the neutral version.

The other will be

Aj ⊕ I5(j−1) ⊕



1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1


⊕ I5(k−j) ,

called the positively charged version. Symmetrically, there will also be a neutral and nega-

tively charged version of A−1
i .

We have added a 5k × 5k sub-block to each of the matrices in our generating set. Call

this sub-block the new parts of the matrix. Also let the net charge of a word be the number

of positively charged Ai’s minus the number of negatively charged Ai’s.

Let W ′ be the set of cogrowth words of the form

PW1QW2P
−1W3Q

−1W4 ,
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where Wi are words in {A±1
1 , . . . , A±1

k } together with their charged versions.

Lemma 1.5.1. A word in W ′ will be cogrowth if and only if it corresponds to a word in W

in which W1 through W4 all have net charges of 0.

Proof. Suppose that the words W1 through W4 have charges c1 through c4. Then the new

part of Wi is 

1 0 0 0 0

0 1 0 0 0

0 0 1 ci 0

0 0 0 1 0

0 0 0 0 1


.

This means that the new part of the whole word can be computed to be

1 0 0 c1 + c2 c1 − c2 − c3

0 1 0 c2 + c3 −c2 − c3

0 0 1 c1 + c2 + c3 + c4 −c2 − c3

0 0 0 1 0

0 0 0 0 1


.

This gives a cogrowth word if and only if c1 = c2 = c3 = c4 = 0, as desired.

Denote by γn be the number of charged words which are cogrowth words, so we have

γn ≥ ωn. One can think of this as giving a weight to each of the words in W counting how

many ways we can assign charges so that each of the Wi has net charge zero. Since we can

always neutrally charge all the Ai’s every word has weight at least 1. If this word is the

minimal word for some root, then that is the only choice; otherwise there will be many.

Let us assign charges to the Ai’s in W1. Without loss of generality we can assume that

xi ≥ 0. Since there are v + xi instances of Ai and v instances of A−1
i , there are

v∑
u=0

(
v + xi

u

)(
v

u

)
=

(
2v + xi

v

)
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ways of doing this. We charge u each of the positive and negative ones. It can be shown

(see e.g. in [Sta1, Exc. 1.6]), that
(
2v+xi

v

)
is odd only if there exists some positive integer d

such that

2d − xi ≤ v ≤ 2d. (1.16)

This implies that for a fixed xi, there will be an even number of ways of assigning charge

for a set of v’s having density 1. In particular, for there to be an odd weight on a word, we

need (1.16) to hold for all W ’s and x’s. That implies

|n− 4− e| ≤ 4|x |, (1.17)

where e is the sum of at most 4k powers of 2. Note that we also have n− 4 ≥ 4|x |+ 4.

Define the sequence

λn =
1

239
(
cogT (8n+ 5) − cogS(8n+ 5)

)
.

Then by Lemma 1.4.8, {λn} is a sequence of integers which is congruent to γ2n modulo 2. By

assumption, the GF for {λn} is D-algebraic. We claim that this contradicts Lemma 1.3.6.

Indeed, let ni = |ρi|/2. Conditions (1), (2) and (3) of Lemma 1.3.6 follow from the

assumptions of Theorem 1.3.5 and Corollary 1.4.10. Therefore {λn} cannot be D-algebraic.

And condition (4) of Lemma 1.3.6 follows from the above computation plus assumption (4) of

Conjecture 1.3.4. As subsequences of D-algebraic sequences along arithmetic progressions are

also D-algebraic, we can conclude that at least one of cogS and cogT is not D-algebraic.

1.6 Final remarks and open problems

1.6.1 Grappling with undecidability

To further understand the meaning of our Main Theorem 1.1.1, we state the following corol-

lary:
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Corollary 1.6.1. For some integer m ≤ 9.6 · 1085, there are symmetric generating sets S

and T of the unitriangular group UT(m,Z), such that the following problem is independent

of ZFC 5 :

∀n ∈ N : cogS(n) ≡ cogT (n) mod 240 .

The corollary follows from a standard diagonalization argument (see e.g. [Poo2, p. 212]).

Here is another corollary which is even easier, but perhaps more suggestive.

For a matrix M = (mij), denote ϕ(M) :=
∑

ij |mij| the total sum of absolute values of

the entries. Similarly, denote by ϕ(S) :=
∑

M∈S ϕ(M) the size of S. The following corollary

follows from basic results on computability:

Corollary 1.6.2. For some integer m ≤ 9.6 · 1085, there are symmetric generating set S

and T of the unitriangular group UT(m,Z), such that

∃n ∈ N : cogS(n) ̸≡ cogT (n) mod 240 ,

but the first time the inequality holds is for n > Tow(Tow(Tow(ϕ))),6 where ϕ := ϕ(S) +

ϕ(T ).

Here Tow(k) is the tower of 2’s of length k. While a single tower is unusual but does

occur for natural combinatorial problems, see e.g. [Gow, HNP], the iterated towers get us

close to the edge of human imagination.

In the context of cogrowth sequences, we can only think of [Moo] which proves a single

tower lower bound on the size of the Følner sets for the Thompson’s group F . This does not

refute the conjecture that F is nonamenable (cf. [Sap, §5.4]), but suggests that the proof

would be rather involved. We refer to a curious numerical investigation of the cogrowth

sequence [PG] (see also [HHR]), strongly suggesting nonamenability.

5We chose ZFC to make the statement more accessible. The proof naturally extends to any system of
axioms.

6We stopped at three towers for clarity. We could just as well have written Tow(ϕ) of towers, for example.
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1.6.2 Unitriangular group

Jennings famously proved in [Jen] (see also [GW]), that every torsion-free nilpotent group

is a subgroup of the unitriangular group UT(m,Z) for some m. This explains why we chose

to work with the unitriangular group towards Kontsevich’s question for nilpotent groups. In

fact, this can be stated formally: if the analogue of Theorem 1.1.1 holds for some nilpotent

group and its families of generating sets, then the “using multiple copies of extra generators”

trick used in §1.4.3 one can still obtain the first part of Theorem 1.1.1.

1.6.3 Heisenberg group

For the Heisenberg group H3 = UT(3,Z) with natural generators, the first 71 terms were

computed by Pantone, see [OEIS, A307468]. His analysis suggests that there are no lower

order algebraic differential equation (ADE) for the cogrowth series. We conjecture that this

cogrowth series is not D-algebraic. Thus, in particular, it is non-D-finite and not a diagonal.

Continuing the discussion of Stoll’s example in §1.1.2, there is a deeper reason why H3

has simpler structure than the higher Heisenberg group H5 ⊂ UT(4,Z), see [NY]. In fact,

from metric geometry point of view, group H5 is the “most distorted” relative to the abelian

group, see [Naor]. Additionally, every equation is decidable in H3 [DLS, §2.2], and there

are relatively few distinct words [GL]. Thus, if one is looking for a conceptual proof of

non-D-finiteness in a smaller example, perhaps H5 or UT(4,Z) is a better place to start

than H3.

1.6.4 Dependence on the generators

A deep problem for cogrowth series is whether their properties depend on the generating

set. For D-finiteness we have a partial answer: they do not for free groups and amenable

groups of superpolynomial growth (see §1.1.2). We conjecture that they do not for virtually

nilpotent group as well. We are at loss what happens to general nonamenable groups, but
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that’s where we would look for counterexamples.

1.6.5 Abelian groups

Kuksov’s Theorem 1.3.2 holds for general abelian groups. We found an alternative proof

using binomial sums, which implies a stronger statement: that the cogrowth series is always a

diagonal of an N-rational function, see [GP1]. It would be interesting to extend Theorem 1.3.2

to other tame classes of group. We conjecture that the cogrowth series for a virtually abelian

group is always a diagonal of a rational function. Thus, in particular, it is D-finite.

1.6.6 Christol’s conjecture

There is a healthy debate in the literature about the validity of Christol’s Conjecture 1.3.1.

A large number of potential counterexamples were suggested by Christol himself and his

coauthors [B+, Chr2]. A few of these were recently refuted, i.e. shown to be diagonals of

rational functions [AKM, BY]. It would be most exciting if there is an uncomputability

result analogous to Theorem 1.1.3 in this setting.

1.6.7 Explicit construction

The construction of generating sets in Corollary 1.6.1 can be made explicit if one uses an

explicit construction of a Diophantine equation whose solution is independent of ZFC. This

equation, in principle, can be obtained from an explicit construction of a Turing machine

whose halting is independent of ZFC, see [YA] and follow the approach in [CM]. We would

be curious to see the resulting numerical bounds on the size of the resulting generating sets.
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Part II

Quivers
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CHAPTER 2

Complexity of quiver mutation equivalence

2.1 Introduction

Quivers and their mutations (defined in Section 2.2) were introduced by Fomin and Zelevin-

sky in [FZ1] and [FZ2] in the context of cluster algebras. They are widely used in algebraic

combinatorics (see [Kel10] for a survey). However, many combinatorial questions about these

objects remain unresolved.

The question of whether a given quiver Q is equivalent to only finitely many other quivers

was addressed in [FST], where a list of such quivers is given. Also, Fomin and Neville show

in [FN] that there are long cycles in the graph of quivers. Recently, Fomin asked in [Fom22]

for algorithmic solutions to the following questions:

1. Given quivers Q1 and Q2, determine whether Q1 and Q2 are mutation equivalent.

2. Given a quiver Q and a nonnegative integer k, determine whether there exists a quiver

Q0 ∈ [Q] such that Q0 has two vertices with exactly k arrows between them.

However, Fomin also proposed that these problems may be computationally difficult or

even undecidable:

“We don’t have any algorithm that would detect if two quivers are mutation equivalent or

not ... of course it would be absurd if this were algorithmically undecidable - there must be

an algorithm - well, who knows? Maybe not.”

–Sergei Fomin, [Fom22], May 16, 2022
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Formally, Fomin’s problem asks whether these questions are decidable for general quivers.

We approach the problem from both ends. First, we present a couple of NP-hardness results

about the second of Fomin’s questions. Past results such as [BFZ] have shown that certain

determinants are preserved by quiver mutation. Since determinants can be computed in

polynomial time, however, these results show that it is unlikely that a determinantal formula

can capture everything that is going on in a quiver. Next, we will show that quivers with

only two mutable vertices can only have a very limited set of equivalent quivers, and derive

asymptotics of the quivers in such mutation classes.

2.1.1 Hardness results

We begin by stating our main results. Both concern complexity of questionsrelated to quiver

mutation equivalence, specifically Fomin’s second question.

Theorem 2.1.1 (NP-hardness). Let Q be a quiver, and let k > 1 be an integer. The following

problem is NP-hard: Determine whether there exists a quiver Q0 which is mutation equivalent

to Q such that Q0 contains two vertices with exactly k arrows between them.

In the context of quivers, it is natural to be interested in strong NP-hardness. In ordinary

NP-hardness, the inputs to the problem are assumed to be in binary. Specifically, when

there are k arrows between two vertices in a quiver, this is assumed to take log2k bits of

input. However, the arrows in a quiver may each carry algebraic information and thus have

independent meaning. When inputs to a decision problem are given in unary instead of

binary, then the corresponding notion is strong NP-hardness. Problems such as Knapsack

or Subset Sum do not meet this stronger criterion. See [GJ] for background on this topic.

Let an arrow in a quiver be icebound if it goes between two frozen vertices.

Theorem 2.1.2 (Strong NP-hardness). Let Q be a quiver. The following problem is strongly

NP-hard: Determine whether there exists a sequence of mutations which takes Q to a quiver

with no icebound arrows.
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See Section 2.4.3 for implications of these results.

2.1.1.1 Non-hardness result

Let us limit the number of vertices at which we are allowed to mutate the quiver. In this case,

the set of mutation-equivalent quivers becomes quite limited. If there is only one mutable

vertex, then, since mutation is an involution, there can only be two quivers in a mutation

class.

Our theorem describes the mutation classes of quivers with exactly two mutable ver-

tices. Again,since mutations are involutions, the only way to get new quivers is to alternate

mutating at the two vertices.

Theorem 2.1.3. Let Q be a quiver with exactly two mutable vertices called C and D. Define

α to be the number of arrows between C and D. Then:

If α = 0, we have
∣∣[Q]

∣∣ ≤ 4.

If α = 1, we have
∣∣[Q]

∣∣ ≤ 10.

If α = 2, then in any nontrivial case the number of arrows in (µDµC)
n(Q) grows

linearly.

If α ≥ 3, then in any nontrivial case the number of arrows in (µDµC)
n(Q) grows

exponentially.

Furthermore, if α ≥ 2, let δI,J(n) be the number of arrows between I and J in (µDµC)
n(Q).

For any vertex A ̸= C,D we have:

lim
n→∞

δA,C(n)

δA,D(n)
=

1

2

(
α +
√
α2 − 4

)
See 2.4.6 for possible extensions of this result.
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2.1.2 Structure of the chapter

We will proceed as follows. In Section 2.2 we begin with notation,definitions, and examples.

Next we prove our theorem in Section 2.3. We conclude with final remarks in Section 2.4.

2.2 Notation, definitions, and examples

2.2.1 Basic definitions

For positive integers n, define [n] to be the set {1, 2, . . . , n}. Also, let N be the set {0, 1, 2, . . . }.

2.2.2 Quivers

A quiver is a directed multigraph with no loops or 2-cycles, the edges of which are called

arrows. We will indicate multiple arrows between vertices by labeling edges with numbers.

For example,the following graph is a quiver on five vertices with eight arrows:

A B C

D E

2

3

2.2.3 Quiver mutation

In a quiver, we assign a subset of the vertices to be mutable; the remaining vertices are frozen.

While Fomin and Zelevinsky’s original definition ignored any arrows between frozen vertices,

we will follow [Pre20] and allow them. To each mutable vertex in the quiver we associate

anoperation called mutation. For a vertex X, mutation at X, denoted by µX , proceeds in

the following three steps:

1. for every two step path Y → X → Z, add an arrow from Y to Z,

2. reverse the direction of every arrow incident to X.
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3. remove 2-cycles one by one.

For example, applying the mutation µB will turn the quiver on the left into the quiver

on the right and vice versa in the picture below:

A B C A B C

D E D E

2

3
5

2

3
3

It is easily seen that every mutation is an involution. That is, µX(µX(Q)) = Q for

every quiver Q with vertex X. It is also easy to see that mutations at nonadjacent vertices

commute. Two quivers aresaid to be mutation equivalent if one can be obtained from the

other by a finite sequence of mutations.Mutation equivalence is an equivalence relation, so

we can define the mutation class of a quiver Q, denoted [Q], to be the equivalence class of

Q under this relation.

2.3 Proofs

2.3.1 Proof of Theorem 2.1.1

We reduce the problem to Subset Sum, which is defined as follows:

Subset Sum

Input: X ⊂ N a finite set, and k ∈ N.

Decide: ∃A ⊆ X such that
∑

a∈A a = k?

This problem is is known to be NP-hard (see e.g. [GJ, §A3.2]). Let X = {x1, . . . , xn} be

a set of positive integers, and let k > 1 be another integer. Let Q be the following quiver:
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A

C1 C2 C3 · · · Cn

B

x1

x2
x3

xn

1 1
1

1

For each i ∈ [n], let µi be µCi
. Suppose we apply the sequence of mutations µ :=

µi1 · · ·µik . Define Y ⊆ [n] by

Y = {j ∈ [n] : µCj
is used an odd number of times}

Then, for each j ∈ [n] let

εj =


1 if j /∈ Y

−1 if j ∈ Y

An easy induction shows that µ(Q) is given by

A

C1 C2 C3 · · · Cn where y =
∑

j∈Y xj

B

ε1x1

ε2x2
ε3x3

εnxn

ε1 ε2
ε3

εn

y

That means that if k /∈ {0, 1}∪X, the only way for µ(Q) to contain an arrow with weight

k is for k to be the weight of the arrow between B and A. That means that k is present in

some quiver equivalent to Q if and only if k is a subset-sum of X. The result follows from

NP-hardness of Subset Sum.
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2.3.2 Proof of theorem 2.1.2

We use the following formulation of the 3-partition problem:

3-partition

Input: n ≥ 3 and X ⊆
(
[n]
3

)
.

Decide: ∃A ⊆ X such that every i ∈ [n] is contained in exactly one A ∈ A ?

That is, given a positive integer n and a subset X ⊆
(
[n]
3

)
, does there exist a partition

of [n] into elements of X? This is strongly NP-hard (see e.g. [GJ, §A3.1]). Without loss of

generality, we may assume that each element of [n] is in at least one of the elements of X.

Given n and X, we construct a quiver with vertices:

A1, . . . , An, C︸ ︷︷ ︸
frozen

, {BX}X∈X

Take the following edges:

One edge from Ai to BX whenever i ∈ X.

One edge from BX to C for each X.

One edge from C to Ai for each i.

The resulting quiver has this shape:

A

B

C

Here A and B represent the sets of vertices of the form Ai and BX , respectively. There

is only one vertex labeled C. The solid arrows represent one arrow between every pair of
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vertices from the respective sets. The squiggly arrow between A and B represents arrows

between an Ai and a BX if and only if i ∈ X. If a partition P ⊂ X od [n] exists, we can apply

the mutations µBP
: P ∈ P , which will eliminate all icebound edges. More generally, note

that all mutations commute. Moreover, they are all involutions. So we need only consider

the effect of using mutations at most once. In that case, we eliminate the icebound edges if

and only if the mutations we use correspond to a partition of [n]. We have therefore reduced

the problem to 3-partition. Because 3-partition is strong NP-hard, the result follows.

2.3.3 Proof of theorem 2.1.3

First, we note that it suffices to prove the case where Q has exactly four vertices. This is

because, for any subset Q′ ⊂ V (Q) of size 4 containing both C and D, the action of µC and

µD commutes with restriction to Q′.

Let the other two vertices in Q′ be A and B. It also suffices to consider the case where

A and B start with no arrows between them. If C and D haveno arrows between them to

start, then the statement is trivial. If C and D have one arrow between them, then it is an

easy computation to check that (µDµC)
10(Q) = Q.

So assume there are α ≥ 2 arrows from C to D. One possible case consists of arrows

from A to C and from D to B Then we can write down the first few quivers that we get:
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A B

C D

A B

C D

A B

C D

A B

C D

βα

β

γ

α

βαγ

βα2−β γ

α

βα

βαγ

βα3−2βα

γβα2−β

α

βαγ

∗∗
αγ

α

∗
γ

where ∗ = βα3 − 2βα and ∗∗ = βα4 − 2βα2 − βα3 + β.

Note that these are both positive since α ≥ 2.Consider the quivers Q1(x, y, z, w) and

Q2(p, q, r, s) defined below:

A B

C D

βαγ

x
z

α

y

w
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A B

C D

βαγ

q

sp
r

α

We claim that all future quivers will be of one of these two forms and thus βαγ is the only

thing that appears on top. We can compute that

µC (Q1(x, y, z, w)) = Q2(x, αx− y, z, αz − w)

so long as αx > y and αz > w. Next we apply µD to find

µD (µC (Q1(x, y, z, w))) = Q1 (α(αx− y)− x, αx− y, α(αz − w)− z, αz − w)

:= Q1(x
′, y′, z′, w′),

this time assuming α(αx− y) > x and α(αz−w) > w. This is a stronger condition than the

previous. Note that our conditions are equivalent to α
α2−1

< min
(

x
y
, z
w

)
which is satisfied by

our original picture. However, we have computed

x′

y′
=

α(αx− y)− x

αx− y
= α− x/y

α(x/y)− 1

So the problem reduces to iteratively applying the function

f(t) = α− t

αt− 1

and it is easy to see that this converges to a limit of

x

y
= t =

1

2

(
α +
√
α2 − 4

)
A similar picture holds for the other three starting positions.
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2.4 Final remarks

2.4.1 Undecidability

The paper [FN] does show the existence of small quivers which are nonetheless polynomially

far apart with respect to mutation. Of course, undecidability is far stronger. Suppose, for

example, that it is undecidable whether or not two quivers are mutation equivalent. Then,

there would exist quivers Q1 and Q2 with a1 and a2 arrows, respectively, such that the

shortest sequence of mutations taking one to the other has length

ℓ ≥ Tow(Tow(TowTow(Tow(a1 + a2 + 47)))))

where Tow(k) is a tower of 2s of length k. Put fancifully, this means there is no limit as to

how far into the sky one has to go in order to show that two quivers are mutation equivalent.

Note that Theorem 2.1.3 shows that more than two mutable vertices are needed for this to

happen.

2.4.2 Knots and Plabic Graphs

Deep connections exist between quiver mutation equivalence and knot theory including via

plabic graphs (see e.g., [BS], [GL], [FPST], or [STWZ]). For knots and links, upper bounds

exist for the number of Reidemeister moves needed to show equivalence. Here is the best

known bound due to [CL]. Suppose D1 and D2 are diagrams of the same link or knot.

Let their crossing numbers be c1 and c2, respectively. Then there exists a sequence of

Reidemeister moves taking D1 to D2 of length at most

Tow(C)(c1+c2) where C =
(
1010

6
)(c1+c2)

Again, Tow(k) is a tower of 2s of length k. It may well be the case that such a bound

exists for mutation equivalence of quivers as well.
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2.4.3 Quiver Invariants

Fix a quiver Q and some k ∈ N. Fomin’s question in the introduction asks for an algorithm

to determine whether there exists a quiver Q′ ∈ [Q] such that two vertices in Q′ have exactly

k arrows between them. One hope is that determinantal invariants would be able to answer

these questions. Our results suggest that one should investigate the quivers used in the

construction of Theorems 2.1.1 and 2.1.2.

2.4.4 Mutable and Immutable Vertices

Frozen vertices and arrows between them are essential for the proofs of Theorems 2.1.1 and

2.1.2. It would be interesting to see whether the number of frozen vertices can be reduced.

2.4.5 Other Properties of Quivers

There are many other questions about quivers for which an algorithmic test would be of

interest. For instance, one could ask whether a quiver is mutation acyclic, that is, mutation

equivalent to an acylic quiver. Much work remains to be done in this area.

2.4.6 Quiver gadgets

Embedding difficult problems into quiver mutation equivalence requires the construction

of quivers whose mutations can be controlled. Many questions even about simple quivers

remain unanswered. In particular, one method would be to embed Hilbert’s tenth problem

or the post-correspondence problem into quivers (see e.g., [PS1]). We are still far away from

this.

To illustrate, we give a natural possible generalization of Theorem 2.1.3. LetQ be a quiver

of the following form: A C1 . . . Ck B
x0 x1 xk−1 xk Then we conjecture

that for all Q′ which is mutation equivalent to Q, the number of arrows between A and B is
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always 0 or x0x1 · · ·xk. The cases k = 0 and k = 1 are trivial, and the case k = 2 is proven

in Theorem 2.1.3. However, the general case is open.
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Part III

Posets and parity

52



CHAPTER 3

Complexity of sign imbalance, parity of linear

extensions, and height 2 posets

3.1 Introduction

Let P be a poset on n elements, and fix some labeling of P with labels {1, . . . , n}. Then the

sign imbalance (defined in section 3.2.1) is a natural statistic counting the difference between

the number of odd and even linear extensions of P .

Sign imbalance was introduced by Ruskey in [Rus88] in the context of Gray codes. Define

a graph G(P ) with vertices corresponding to linear extensions of P and connect pairs of

vertices which differ by a transposition. Then it is an easy observation that if G(P ) has a

Hamiltonian path, then the sign imbalance of P must be at most 1. Furthermore, G(P )

is always connected (see §3.5.2). The converse was conjectured by Ruskey in [Rus88]. It

remains open. Only a small class of special cases have been shown; see [Rus03, §5] for a

reference or [Müt23, §5.5] for a more recent overview. Further information can be found in

[Sta05] or [Knu11]. Sign imbalance has also been applied to real algebraic geometry [SS06]

(see §3.5.2).

Few general results exist for computing the sign imbalance of arbitrary posets. If P is

a poset where every nonminimal element is greater than at least two other elements, then

P is sign-balanced; switching the labels 1 and 2 provides a bijection between odd and even

permutations [Rus88]. Suppose that P is a poset on n elements and that for every maximal

chain C, the length of C is congruent to n modulo 2. Stanley observed in [Sta05] that the
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promotion operator provides a sign-reversing involution and soPmust be sign-balanced.

Ruskey conjectured that a product of chain posets Cm×Cn withm,n > 1 is sign-balanced

if and only if m ≡ n modulo 2 and showed the case where m,n are both even [Rus92]. This

conjecture was proven by White [Whi01], who gave a formula for the case m ̸≡ n. Some

other results for specific posets exist (e.g. [Ber18]).

We note that sign imbalance naturally correspond to counting domino tableaux (see

Lemma 3.3.1). For posets arising from Young diagrams, these are the special case of rim

hook tableaux where all rim hooks have size 2 with labels that must be increasing along rows

and columns.

One problem is to compute the sign imbalance of a poset:

Sign Imbalance

Input: A poset P .

Output: The sign imbalance si(P ).

Stachowiak gives a complexity result (cf. 3.5.3):

Theorem 3.1.1 (Theorem 1 of [Sta97a]). Sign Imbalance is #P-hard. This holds even

if we consider only posets with height 2.

The proof gives a parsimonious reduction from the sign imbalance of height 2 posets to

counting linear extensions. This corresponds to one direction of Lemma 1.4.1. Since counting

linear extensions was shown to be #P-hard by Brightwell and Winkler [BW91], this shows

that Sign Imbalance is #P-hard.

By a theorem of Dittmer and Pak [DP20], counting linear extensions is still #P-hard

even in the restricted case of height 2 posets. We prove a complementary result: determining

whether a height 2 poset has at least a given sign imbalance is decidable in polynomial time.
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H2SB

Input: A poset P of height 2 and an integer k.

Decide: Is the sign imbalance of P at least k?

Theorem 3.1.2. H2SB is in P. In the specific case k = 1 we obtain that determining

whether a height 2 poset is sign balanced is in P.

Note that the polynomial bound above implicitly depends on k.

Recently, Kravitz and Sah showed in [KS21] an upper bound of O(log a log log a) for the

minimal number of elements in a poset with a linear extensions. Lemma 1.4.1 then allows

us to obtain the following corollary:

Corollary 3.1.3. For every positive integer a, there exists a height 2 poset P with O(log a log log a)

elements such that si(P ) = a.

We contrast Corollary 3.1.3 with the following conjecture of Chan and Pak:

Conjecture 3.1.4 (Conjecture 5.17 in [CP23]). For every sufficiently large integer m there

exists a height 2 poset P such that LE(P ) = m.

Note that without the “height 2” condition, Conjecture 3.1.4 would be trivial, as Cm−1+

C1 has m linear extensions. Furthermore, since a height 2 poset on n elements must have

at least (n/2)!2 linear extensions, a positive resolution of Conjecture 3.1.4 would imply a

logarithmic bound similar to that of Conjecture 3.1.3 or [KS21].

We note that the number of linear extensions of height 2 posets is not equally distributed

among odd and even numbers. Let f(n) be the number of height 2 posets on n elements

which have an odd number of linear extensions.

Given a poset P = (X,≺), we define

re(P ) := #{i, j ∈ X : i ≺ j}

cr(P ) := #{i, j ∈ X : i covers j}
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Equivalently, re(P ) is the number of edges in the comparability graph and cr(P ) is the

number of edges in the Hasse diagram of P . Also, for any positive integer k we let Ok be

the set of posets on k elements with an odd number of linear extensions.

Theorem 3.1.5. For every n ≥ 1 we have

f(2n+ 1) = f(2n) =
∑
P∈On

2re(P )−cr(P )

and

2(
n−1
2 ) ≤ f(2n) ≤ 2(

n
2)

See §3.5.4 for an example when n = 3. Note that the bounds for f imply that nearly all

posets of height 2 have an even number of linear extensions. A similar result holds for all

primes:

Theorem 3.1.6. Let q be prime. Let fq(m) be the number of height 2 posets P with m

vertices such that q ∤ e(P ). Then

fq(m) ≤ 2
q−1
4q

m2+O(m)

For comparison, note that there are 2
1
4
m2+O(m) total height 2 posets on m vertices. In

the case q = 2, Theorems 3.1.5 and 3.1.6 agree on an asymptotic 2
1
8
m2+O(m).

3.2 Definitions and Examples

We use the notation [n] := {1, 2, ..., n}. Also, Cn and An will denote chain posets and

antichain posets on n elements, respectively. A lower order ideal of a poset P = (X,≺) is a

subset Y ⊂ X such that y ∈ Y, x ≺ y ⇒ x ∈ Y .

3.2.1 Posets and linear extensions

We will assume familiarity with basic notions of posets (see e.g. [Sta97b, §3] or surveys

[BW00, Tro95]). Suppose P is a poset (X,≺), where X has n elements. Then a linear
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Figure 3.2.1: A poset with 61 linear extensions

extension of P is a bijection ℓ : X → [n] such that ℓ(x1) < ℓ(x2) whenever x1 ≺ x2. We

describe the linear extension as assigning the labels in [n] to the elements of P . We denote

the number of linear extensions of P by e(P ) and the set of linear extensions by LE(P ).

Fix an arbitrary bijection f : X → n. Then every linear extension corresponds to either

an odd or an even permutation. We define the sign imbalance as

si(P ) :=

∣∣∣∣∣∣
∑

ℓ∈LE(P )

sgn(ℓ)

∣∣∣∣∣∣ (3.1)

It is easy to show that si(P ) is independent of the choice of f . Thus we will suppress the

dependence on f . A poset P for which si(P ) = 0 is called sign-balanced. For example, the

poset in Figure 3.2.1 has e(P ) = 61 and si(P ) = 1.

We note that e(P ) ≡ si(P ) mod 2 for all posets P . Furthemore, we denote by P ⊕ Q

the ordinal sum (linear sum) of the posets and by P +Q the disjoint union (parallel sum).

Also, a poset is disconnected if its Hasse diagram is disconnected.

3.2.2 Domino tableaux and quotients

Given a poset P = (X,≺) with n elements, a domino tableau M is a set partition of X such

that:

1. Every part is a chain of length 2 except for possibly one chain of length 1.

2. If there is a chain of length 1, then it is a maximal element.
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Figure 3.2.2: A pair of posets illustrating domino tableaux

3. There exists an ordering X1, . . . , Xk of the parts of M such that for all 1 ≤ j ≤ k, the

set Xi ∪ · · · ∪Xj is a lower order ideal.

Condition (1) is equivalent to saying that M is a perfect matching in the Hasse diagram

plus possibly one extra vertex. We say that a linear extension ℓ of P is adapted to M when i

and i+1 are assigned to same part of X for all odd i < n. (If n is odd, then the label n will

be assigned to the singleton vertex). Condition (3) implies that there is a linear extension

f ∈ LE(P ) adapted to M . This can be constructed by assigning 1 and 2 to X1, then 3 and

4 to X2, and so on. We denote by DT (P ) the set of all domino tableaux of P .

For example, consider the pair of posets in Figure 3.2.2. The left poset has a highlighted

domino tableau with an adapted linear extension. The right poset does not admit a domino

tableau even though the Hasse diagram does have a perfect matching. Indeed, suppose we

match a with d and b with e. We cannot put (a, d) before (b, e) because b ≺ d. And we

cannot put (b, e) before (a, d) because a ≺ e.

It is not hard to show that any two linear extensions adapted to the same domino tableau

must have the same sign. Therefore, we define the sign of a domino tableau to be the sign

of the linear extensions which are adapted to it.

Given a poset P with a domino tableau M , we can construct the quotient poset P/M as

follows. The vertices of P/M are the elements of M . The comparisons of P/M are generated

by relations of the form
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X1 ⪯ X2 in P/M ⇐⇒ x1 ⪯ x2 in P for some x1 ∈ X1, x2 ∈ X2

Condition (3) implies that this defines a valid poset structure for P/M . As an example,

the left poset in the diagram above has P/M isomorphic to C2 + C1.

3.3 Lemmas

The following lemma is based on a standard involution (see for instance [Rus92, Lem. 3],

[Sta97a, Thm. 1], [Whi01, §5], and [Sta05, Corr. 4.2].

Lemma 3.3.1. Let P be a poset. Then

si(P ) =

∣∣∣∣∣∣
∑

M∈DT (P )

sgn(M)e(P/M)

∣∣∣∣∣∣ (3.2)

Proof. We construct an involution Φ on LE(P ) where P = (X,≺). Suppose P has n vertices

and consider a linear extension ℓ of P . Define the set S to be the set of all odd integers

i ∈ [n− 1] such that ℓ assigns i and i+ 1 to incomparable elements of P .

If S is the empty set, then we let Φ(ℓ) = ℓ. Otherwise, let j be the smallest element of S.

Then construct Φ(ℓ) by switching the labels j and j + 1. By assumption, this is still a valid

linear extension. Moreover, it has opposite sign to ℓ. Therefore the terms corresponding to

ℓ and Φ(ℓ) will cancel out in the sum (3.1).

We give an example of Φ in 3.3. Since 3 is the smallest odd number not comparable to

its successor, it gets switched with 4.

We are left only with fixed points of Φ. Suppose ℓ is a fixed point. Then ℓ is adapted to a

unique domino tableauM formed by partitioningX into {ℓ−1(1), ℓ−1(2)}, {ℓ−1(3), ℓ−1(4)}, . . . .

This tableau will by definition have sgn(M) = sgn(ℓ). We can define a linear extension ℓ′ on
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Figure 3.3.1: The involution Φ.
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Figure 3.3.2: The quotienting operation.

P/M by assigning the label i to the subset containing 2i − 1. This is illustrated in Figure

3.3.

This constitutes a bijection between linear extensions of P which are adapted to M and

LE(P/M). Since every linear extension adapted to a domino tableau is also a fixed point of

Φ, we obtain the formula (3.2).

We give an example of Lemma 3.3.1. Consider the poset P at the top of Figure 3.3. It has

two perfect matchings Y1, Y2, Y3, Y4 and Z1, Z2, Z3, Z4, both of which are domino tableaux,

illustrated in at the bottom of the figure.

The two quotient posets (let us call them Y and Z) are not isomorphic. The red quotient

Y has e(P/M) = 4, and the blue quotient Z has e(P/M) = 2. Since the two tableaux have

opposite signs, we get si(P ) = |4− 2| = 2.

If P has very few domino tableaux, then we can reduce the problem of finding the sign

imbalance of P to smaller posets:

Corollary 3.3.2. If P is a poset that does not admit a domino tableau, then P is sign-

balanced. If P is a poset with a unique domino tableau M , then si(P ) = e(P/M).
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Figure 3.3.3: An example of Lemma 3.3.1

Our goal is to flip Lemma 3.3.1 by building a poset where we control e(P/M). To that

end, we will define an operation on posets.

Let P = (X,≺) be a poset. Call R good if it is a subset of X2 with the following

properties:

1. (x, x) ∈ R for all x ∈ X,

2. (x, y) ∈ R for all x, y ∈ X such that y covers x in P ,

3. If (x, y) ∈ R then x ⪯ y in P .

In other words, R consists of the diagonal of X, all covering relations of P , and some

subset of the non-covering relations of P . Then we define the poset A(P,R) as follows. The

vertices consist of pairs of the form (x, i) for x ∈ X, i ∈ {0, 1}. And our relations are given
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by

(x, i) ≺ (y, j) if i = 0, j = 1, and (x, y) ∈ R.

We claim that this allows us to control the sign imbalance of height 2 posets. We note

that the first part of this lemma was proved (in the case where R is maximal) by Stachowiak

in [Sta97a], who used it to show that counting the sign imbalance of a poset is #P-hard. See

§3.5.4 for examples of this construction.

Lemma 3.3.3 (Main lemma). Let P be a poset. Then for any good R defined as above,

A(P,R) is a poset with height 2 and

si(A(P,R)) = e(P ).

Conversely, suppose Q is a poset with height 2 that is not sign-balanced. Then if Q has even

number of vertices, there exists a poset P and a good set R such that

Q = A(P,R)

And if Q has an odd number of vertices, then there exists a poset P and a good set R such

that

Q = A(P,R) + C1.

Proof. For the first part, note that by construction the Hasse diagram of A(P,R) has only

one perfect matching, namely M = {((x, 0), (x, 1)) : x ∈ X}. This is also a domino tableau.

Since R contains all the covering relations of P , we know A(P,R)/M = P . The result

follows from Corollary 3.3.2.

For the other direction, suppose Q is a poset with height 2 which is not sign-balanced.

By Corollary 3.3.2, Q must have at least one domino tableau M . Suppose that Q has an

even number of vertices. We claim that the Hasse diagram of Q must in fact have only one

perfect matching. Suppose for contradiction that it had another perfect matching N . Then

M ∪ N must contain at least one cycle of length > 2. As Q was assumed to have height
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2, this cycle can only correspond to a subposet of Q which is isomorphic to a crown poset.

That is, we have elements x1, . . . , x2k in Q such that

x1 ≺M x2 ≻N x3 ≺M x4 ≻N · · ·x1 ≺M x2k ≻N x1

But this contradicts M being a domino tableau, since we now have a loop in Q/M .

Therefore M is the unique perfect matching. By construction, every pair of M has a bottom

element and a top element.

Now let P = Q/M , and define R ⊂M2 by

(M1,M2) ∈ R ⇐⇒ x ≺ y for some x ∈M1, y ∈M2,

It is easy to see that Q = A(P,R).

Suppose now that Q has an odd number of vertices. If Q has no isolated vertices, then

without loss of generality it has more minimal than maximal elements. But then Q cannot

have a domino tableau. So Q must be sign-balanced. (Note that flipping a poset vertically

does not affect whether it is sign-balanced). If it has two or more isolated vertices, it also

cannot have a domino tableau. So for Q to not be sign-balanced, it must have exactly one

isolated vertex v. This vertex must be the singleton in the domino tableau, which means

Q−v is a height 2 poset which is not sign-balanced. Now we just apply the previous case.

3.4 Proofs

3.4.1 Proof of Theorem 3.1.5

First, suppose P is a height 2 poset with an odd number of linear extensions and 2n + 1

vertices. Clearly P cannot be sign-balanced. Therefore Lemma 3.3.3 implies that P consists

of an isolated vertex and a subposet of 2n vertices which also has an odd number of linear

extensions. This implies that f(n + 1) = f(2n). Therefore, we will assume that our posets
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have an even number of vertices.

Consider the map A from Lemma 3.3.3. It is easy to see that A is injective. Take the

chain poset Cn; this clearly has an odd number of linear extensions. Then there are exactly

2(
n−1
2 ) possible good sets R. Thus the set

{A(Cn, R) : R good}

establishes our lower bound.

For the upper bound, consider the poset Πn with vertex set [n]× {0, 1} and relations

(a1, b1) ≺ (a2, b2) if a1 ≤ a2 and b1 ≤ b2

Let D be the set of subposets of Πn such that (a, 0) ≺ (a, 1) for all a ∈ [n]. It is clear that

the image of A is equal to D and that |D| = 2(
n
2). Since any poset with an odd number

of linear extensions is not sign-balanced, the lower bound follows. (Note that some posets

in the image of A have an even number of linear extensions, so we do not have equality

here).

3.4.2 Proof of Theorem 3.1.6

Note that it suffices to consider the case where q is prime. We prove a somewhat broader

version of 3.3.3. The proof essentially follows that of 3.1.5. Let P be a height 2 poset on

m elements such that q ∤ e(P ). Fix ℓ to be a linear extension of P . Consider the subposets

P1, P2, . . . , P⌊m/q⌋ defined by

P1 := the induced subposet on elements labeled 1, 2, . . . , q

P2 := the induced subposet on elements labeled q + 1, q + 2, . . . , 2q

· · ·
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Note that there may be up to q− 1 elements which are not contained in a subposet. Call

ℓ adapted if none of these subposets are disconnected. (In the case q = 2, this means that ℓ

is adapted to a domino tableau in the sense of Lemma 3.3.3).

Lemma 3.4.1. If q ∤ e(P ) then P has a linear extension which is adapted.

Proof. We show that the number of linear extensions which are not adapted is a multiple of

q. The following is an equivalence relation on linear extensions which are not adapted.

Given a linear extension ℓ which is not adapted, let i be minimal such that Pi is discon-

nected. Let ℓ ≡ ℓ′ if ℓ and ℓ′ are equal when restricted to P Pi. It is easy to see that this is

an equivalence relation, and the size of an equivalence class is e(Pi).

Pi is disconnected and has q elements. Therefore there exist nonempty posets Q1, Q2

such that Pi = Q1 +Q2. But since

e(Pi) =

(
q

|Q1|

)
e(Qi)e(Q2)

we have q|e(Pi). This follows because q is prime. That means that the set of linear extensions

which are not adapted has been partitioned into equivalence classes of sets each of which has

size a multiple of q.

So we can fix an adapted linear extension ℓ and corresponding subposets P1, P2, . . . , P⌊m/q⌋

By construction, the edges from Pi to Pj where i < j can only be between a bottom vertex

of Pi and a top vertex of Pj. The notion of bottom and top vertex are well-defined because

Pi and Pj are connected. Each subposet can have only at most q− 1 elements on the top or

bottom. A simple perturbation argument shows that the greatest number of external edges

is possible when the first half of the subposets are of the form Aq−1⊕A1 and the second half

are of the form A1 ⊕ Aq−1. (For simplicity we will assume ⌊m/q⌋ is even; extending to the

case where ⌊m/q⌋is odd is trivial.) In this case there are at most

(
1

2

⌊
m

q

⌋)2

· (q − 1)2 +

(
1

2

⌊
m

q

⌋)2

· (q − 1) +O(m)
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possible external edges. (The first term counts edges which go between the first and

second halves, and the second counts edges which remain within one half or the other). Let

cq be the number of connected height 2 posets with q elements. Then we can construct P

as follows: first, we pick each of the ⌊m/q⌋ subposets. Then we add external edges between

the subposets; the above discussion gives a bound on the number of ways to do this. Lastly,

each of the m − ⌊m/q⌋ remaining vertices can be greater than or incomparable to all the

previous vertices. This gives an upper bound of

c⌊m/q⌋
q 2(

1
2⌊mq ⌋)

2
·(q)(q−1)+O(m) · 2(m−⌊m/q⌋) = 2

q−1
4q

m2+O(m)

possible posets, as required. This completes the proof of Theorem 3.1.6.

3.5 Final remarks

3.5.1 Completeness of the number of linear extensions of height 2 posets

Our results do not contradict Conjecture 3.1.4, but can be used to construct numbers which

are not the number of linear extensions of any height 2 poset. We begin by giving a loose

bound on the possible odd numbers of linear extensions of a height 2 poset:

Proposition 3.5.1. Let P be a height 2 poset on 2n vertices with an odd number of linear

extensions. Then

(n!)2 ≤ e(P ) ≤ (n!)(2n− 1)!!

Proof. By Lemma 3.3.3, any such poset must satisfy
n⋃

i=1

C2 ⊆ P ⊆ An ⊕ An

Letting n = 9 we see that any height 2 poset on ≤ 18 elements for which e(P ) is odd

has at most 9! · 17!! = 125046361440004 linear extensions. But letting n = 10 we see that
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any height 2 poset on 20 vertices for which e(P ) is odd has at least 10!2 = 13168189440000

linear extensions. Also by Lemma 3.3.3, any height 2 poset P on 19 elements with an odd

number of linear extensions has an isolated vertex, and so 19 | e(P ). Combining these facts

we obtain that there is no height 2 poset with 10!2 − 1 = 13168189439999 linear extensions.

See the footnote of §6.4 in [CP23].

3.5.2 Geometric definition of Ruskey’s conjecture

Given a poset P with elements labeled by [n], the order polytope O(P ) is the subset of [0, 1]n

given by

xi ≤ xj whenever i ≺ j in P

Its canonical triangulation is given by cutting O(P ) with the hyperplanes of the form

xi = xj for i, j ∈ [n]. Note that each simplex corresponds to a linear extension of P . Since

this is a triangulation obtained by cutting with hyperplanes, it must be bipartite. [SS06]

observed that the two parts correspond exactly to the odd and ever permutations in the

definition of sign imbalance, and so a poset is sign-balanced if and only if both parts are the

same size.

We note that this provides an immediate proof that the graph G(P ) is connected. Any

two face-adjacent simplicies in the canonical triangulation of O(P ) correspond to linear

extensions which differ by an adjacent transposition. Since triangulations must be face-

connected, G(P ) is connected.

Soprunova and Sottile [SS06] considered toric varieties associated to order polytopes. In

this case, sign imbalance provides a lower bound for the number of real solutions of a Wronski

polynomial system.
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Figure 3.5.1: All height 2 posets on 6 vertices with an odd number of linear extensions.

3.5.3 GapP and #P

It is easy to see that sign imbalance is the absolute difference between two #P functions,

one counting even linear extensions and the other counting odd linear extensions. However,

this does not imply (as claimed in [Sta97a]) that sign imbalance is in #P. The closure of #P

under subtraction is called GapP and was defined independently in [FFK94] and [Gup95]

building on [OH93]. Therefore, the following conjecture remains open:

Conjecture 3.5.2. Sign Imbalance is not in #P.

Many natural combinatorial differences are not in #P; see [IP22] for a survey.

3.5.4 An example of Theorem 3.1.5

Consider the case n = 3. There are two posets on 3 elements with an odd number of linear

extensions, namely C2 + C1 and C3. The former poset has re(C2 + C1) = cr(C2 + C2) = 1,

and the latter has re(C3) = 2 and cr(C3) = 1. So there are 21−1 + 22−1 = 3 height 2 posets

on 6 elements with an odd number of linear extension, illustrated in Figure 3.5.4

These posets were obtained by applying the map A in Lemma 3.3.3. The left poset has

P = C1 + C2, and the other two have P = C3 for different choices of R. They have 75, 61,

and 57 linear extensions respectively.

3.5.5 Euler numbers and posets for which many primes do not divide e(P ).

The Euler numbers En [OEIS, A000111] count the number of linear extensions of a zizag poset

Zn and have exponential generating function secx + tanx. Using these, we can construct
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posets whose number of linear extensions avoids divisibility by many primes. Theorem 3.1.6

shows that for all q the number of posets with q ∤ e(P ) is small. Here we give an example of

an infinite set of posets which satisfy many such conditions.

Proposition 3.5.3. Let Q be a finite set of primes. Then there exists an infinite sequence

of posets P1, P2, . . . , such that

e(Pi) ≡ 1 mod q for all q ∈ Q, i ≥ 1

Proof. We show that for any prime q and integer n > q,

En ≡ EqEn−(q−1) mod q (3.3)

Indeed, consider the set of ℓ ∈ LE(Zn) such that 1, 2, . . . , q are not in a contiguous block.

For each of these linear extensions, we can permute the labels 1, 2, . . . , q in some number of

ways that is divisible by q. (This is essentially the same as the proof of Lemma 3.4.1). So,

mod q, we can ignore these. But if 1, . . . , q are in a contiguous block, then we can collapse

the entire block into a single element; this leaves Zn−(q−1). This shows 3.3.

Since Eq ≡ ±1 mod q [OEIS, A000111] and E1 = 1 we need only pick n such that n ≡ 1

mod (q − 1) for all q ∈ Q.

As a side note, we show that 3 ∤ En for all n ≥ 1. Indeed, one can verify that 3 ∤ En

for all 1 ≤ n ≤ 3, and by 3.3 the result follows. Similarly, computer calculations show that

p ∤ En for all n for

p = 3, 7, 11, 23, 83, 107, 163, 167, 179, 191, 199, 211, 227, 239, 367, 383, 443, 479, 487, 503, 599, . . .

It is not clear if there are infinitely many such primes.
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CHAPTER 4

Area generating functions

4.1 Introduction

Let λ be an integer partition1. Then we can define the area generating function fλ(q) as:

fλ(q) =
∑
µ⊆λ

q|µ|

Note that this generalizes other well-known q-series. Specifically, when λ is a partition

corresponding to an a-by-b rectangle, then fλ(q) =
(
a+b
a

)
q
. And when λ is the staircase

partition (n n− 1 . . . 2 1), then fλ(q) = Cn+1(q), where C a q-Catalan number in the sense

of Carlitz and Riordan [CR64].

In this chapter we analyze area generating functions of partitions. We give a combina-

torial interpretation of fλ(−1) in Section 4.4. We also give a simple criterion to determine

when fλ(−1) is zero. Lastly, we use our results to show a weak form of Ruskey’s conjecture.

Clearly, partitions contained in λ are equivalent to up-right walks in the Young diagram

of λ. We will use these notions interchangeably.

1Throughtout this chapter, the unqualified term partition will refer to integer partitions.
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(0, 9)

(1, 6)

(3, 5)

(4, 2)

(8, 0)

Figure 4.2.1: Interior corners of a partition

4.2 Definitions

4.2.1 Partitions and generating functions

We assume familiarity with the basic notions of Young diagrams and partitions. Let λ =

(λ1, . . . λk) be a partition with λ1 ≥ · · · ≥ λk. Then an interior corner of λ is a pair of

integers (i, j) such that λi+1 = j and λi > j, where we adopt the convention that λ0 = ∞

and λk+1 = 0. See Figure 4.2.1 for an example of a partition and its five interior corners.

Note that by convention the empty partition has a unique interior corner at (0, 0).

Next, we define properties of polynomials. Let f(x) = a0 + a1x+ · · ·+ akx
k ∈ N[x] be a

polynomial. Then f is unimodal if for some integer ℓ ≤ k we have

a0 ≤ a1 ≤ · · · ≤ aℓ−1 ≤ aℓ ≥ aℓ+1 ≥ · · · ≥ ak−1 ≥ ak.

71



We say f is sign-balanced if f(−1) = 0. And we define f to be 2-decomposable if

f(x)

x+ 1
∈ N[x]

where N = {0, 1, 2, . . . }. We extend each of these definitions to ordered finite lists of integers.

Trivially, every 2-decomposable polynomial is also sign-balanced, but the converse is

not true (1 + x3 is a counterexample). It is easily seen that every unimodal sign-balanced

polynomial is also 2-decomposable.

We note that partition generating functions are not always unimodal. Stanton [Sta87]

discovered the example µ = (8 8 4 4), which has area generating function

fµ(q) = 1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 9q6 + 11q7 + 15q8+

+ 17q9 + 21q10 + 23q11 + 27q12 + 28q13 + 31q14 + 30q15 + 31q16 +

+ 27q17 + 24q18 + 18q19 + 14q20 + 8q21 + 5q22 + 2q23 + q24

where the boxed section indicates the place at which unimodality fails. In fact, µ and

its conjugate µ′ are the smallest examples of partitions with nonunimodal area generating

functions. We note that unimodality does hold for rectangular partitions; this is a classic

and nontrivial result first proved by Sylvester [Syl78]. Later proofs and extensions were given

by O’Hara [OHa90], Proctor [Pro82], and Pak and Panova [PP].

For each partition λ we construct a poset P (λ) = (X,≺) as follows. The elements of

X are given by partitions µ ⊆ λ, ordered by containment. Then it is clear that P (λ) is a

graded poset and that fλ is its rank generating function. Let G(λ) be the Hasse diagram

of P (λ). Ruskey’s conjecture [Rus88] implies that if fλ is sign-balanced, then G(λ) has a

Hamiltonian path. We will prove a weaker version of this in Theorem 4.3.4.

4.2.2 Modified Young diagrams and tiled walks

In order to simplify the statements of our theorems, we modify Young diagrams as follows.

Let λ = (λ1, . . . , λk) be a partition with Young diagram Y . Then, if λ1 is odd we add a
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Figure 4.2.2: Modification of a Young diagram

interior corner

Tile I Tile II Tile III

Figure 4.2.3: The three allowable tiles in a tiled walk

single horizontal segment to the top right of Y . And, if k is odd we add a single vertical

segment to the bottom left of Y . This is illustrated in Figure 4.2.2.

Consider a partition λ with a modified Young diagram Y . An up-right walk through λ is

a walk from the bottom left corner of Y to the top right corner of Y which only moves up and

right. An up-right walk in Y is tiled if it can be partitioned into the three tiles illustrated

in Figure 4.2.2. Note that Tile III requires the indicated point to be an interior corner of Y .

Every modified Young diagram has at least one tiled walk consisting of a number of Tile Is

followed by a number of Tile IIs.

Suppose Tk, Tk+1, . . . , Tℓ are sequence of consecutive tiles in a walk W in a modified

Young diagram Y such that ℓ > k. We call such an interval flippable if either of the two
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following conditions holds:

1. Tk and Tℓ are both instances of Tile III, and there are no other instances of Tile III

between Tk and Tℓ.

2. Tk is an instance of Tile I and Tℓ is an instance of Tile II such that the middle points

of both tiles are interior corners of Y . Furthermore, W does not touch the border of

Y between tiles Tk and Tℓ.

An up-right walk in a modified Young diagram is bad if it does not contain a flippable

interval. And an up-right walk is good if it is not bad. Note that a walk that uses Tile III at

least twice must be good. See Observation 4.4.1

4.3 Results

Our main result is a combinatorial interpretation for fλ(−1), proved by a sign-reversing

partial involution on the up-right walks in W .

Theorem 4.3.1. Let λ be a partition. Then fλ(−1) is equal to the number of bad walks in

the modified Young diagram of λ.

We note the following immediate corollary which is not inherently obvious.

Corollary 4.3.2. Let λ be a partition. Then fλ(−1) ≥ 0.

Our result also allows us to give the following simple criterion for whether fλ is sign-

balanced.

Theorem 4.3.3. Let λ be a partition. Then fλ(−1) = 0 (that is, fλ is sign-balanced) if and

only if every interior corner of λ has at least one odd coordinate.

In fact, by modifying the involution we obtain a weak form of Ruskey’s conjecture in this

special case.
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Theorem 4.3.4. Let λ be a partition with fλ(−1) = 0 (that is, fλ is sign-balanced). Then

G(λ) has a perfect matching.

Again we get an immediate corollary:

Theorem 4.3.5. Let λ be a partition with fλ(−1) = 0 (that is, fλ is sign-balanced). Then

fλ is 2-defomposable.

4.4 Positivity

4.4.1 Proof of Theorem 4.3.1

First, we point out that we need only consider tiled walks. Indeed, suppose a walk W is not

tiled. Then there exists some even positive integer i such that steps i− 1 and i are different

(either up then right or right then up). If so, then we can simply flip the order of these

two steps, changing the area above the path by 1. This is a sign-reversing operation similar

to the operation in 3.3.1. (Note that we need to exclude cases where this would lead to us

escaping the partition; this corresponds to Tile III).

Fix a partition λ. Let WY be the set of all up-right tiled walks through the modified

Young diagram Y of λ. Next, let GY ⊆ WY be the set of good up-right walks in Y . Our

goal will be to provide a sign-reversing involution on GY .

If W is a walk, then let n3(W ) be the number of instances of tile III in W . We begin

with the following easy observation:

Observation 4.4.1. n3(W ) is always even.

This follows from the fact that a modified Young diagram has an even number of up and

right steps to take. Given a walk W we denote by |W | the area above and to the left of it,

which corresponds to the size of the corresponding partition. Our next lemma relates the

parity of W with the types of tiles it contains.
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Lemma 4.4.1. For any walk W , we have (−1)|W | = (−1)n3(W )/2.

Note that this is well-defined by Observation 4.4.1.

Proof. We proceed by induction on n3(W ). If the walk W contains no instances of Tile III,

then the corresponding partition has only even parts; thus |W | is clearly even.

So we may assume n3(W ) ≥ 2. Let T and U be the last two tiles of type III in W . Then

the area above W can be split into seven regions plus an extra unit square as in Figure 4.4.1.

But regions A3 and A6 both have even area by the base case of our induction. Regions

A1, A2, A4, and A5 are rectangles with at least one even dimension, so they all have even

area as well. And A7 is the area above a walk with two fewer instances of Tile III, so by the

inductive hypothesis

(−1)|W | = (−1) · (−1)(n3(W )−2)/2

as required.

Now we can define our involution Φ. Fix a good walk W . Let Tk, . . . , Tℓ be the lex-

icographically smallest flippable interval in W . Then, if Tk and Tℓ are Tile I and Tile II

respectively, we replace them both with Tile III, ‘pushing’ the portion of the walk between

them up and left. Likewise, if they are both Tile III, we replace them with Tile I and Tile

II respectively, ‘pushing’ the portion of the walk between them down and left.

It is easy to see that the conditions on flippable intervals ensure that Φ is a valid function

from GY to GY . Since Φ changes the number of Tile IIIs in a walk by 2, Lemma 4.4.1 ensures

that Φ is sign-reversing. It is also straightforward to show that Φ is an involution. Therefore

all good walks cancel out in the computation of fλ(−1).

Lastly, we note that all bad walks have no instances of Tile III. If a walk has at least one

Tile III, then by Observation 4.4.1 it must have at least two. Therefore, the interval of the
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Figure 4.4.1: The inductive step of the proof of Lemma 4.4.1
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Figure 4.4.2: The flipping operation
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walk between the last two copies of Tile III (inclusive) would have to be a flippable interval.

By 4.4.1 this means that all bad walks have a positive sign.

Therefore fλ(−1) is equal to the number of bad walks and we are done.

4.4.2 Proof of Theorem 4.3.3

This follows from our characterization of bad walks in the proof of Theorem 4.3.1. A bad

walk can only have tiles of Types I and II.

Suppose a partition λ has at least one odd coordinate in every interior corner. Then,

by definition, λ has an odd number of parts and the largest part has odd size. So in

constructing the modified Young diagram Y we must have added both an extra vertical and

an extra horizontal segment.

Fix an up-right walk W in WY . By parity, if W touches an interior corner of Y then

it can only be in the middle of the tile. However, the added segments mean that W must

begin with a Tile I (with an interior corner in the middle) and end with a Tile II (with an

interior corner in the middle).

If this is not a flippable walk, then W must touch the border of Y at least once in between

these. However, that must mean that it touches an interior corner. Depending on whether

this is at a Type I or a Type II tile, we have a smaller version of the problem either after or

before this interior corner. A simple induction concludes the proof.

For the other direction, suppose there is an interior corner with both coordinates even.

Then it is easy to construct a walk of Tiles I and II that touches the border of Y exactly

at this corner (and perhaps at the very beginning and end). Such a walk cannot have a

flippable interval.

78



4.5 2-decomposability

4.5.1 Proof of Theorem 4.3.4

. Fix a parition λ with no bad walks. Again, let WY be the set of all up-right walks and

G(λ) the corresponding graph. The operation at the beginning of the proof of Theorem 4.3.1

produces a matching M on all non-tiled walks. Let Φ be the main involution of Theorem

4.3.1.

Let W be a tiled walk. Since W is good, it has a lexicographically smallest flippable

interval I. Without loss of generality, the first tile in this interval is of type III (so we flip

up to get Φ(W )). Now, it is possible that W and Φ(W ) are adjacent in G(λ), in which case

we add that edge to M . This happens if |Φ(W )| − |W | = 1.

Otherwise, we will construct a path from W to Φ(W ) in G(λ) such that every other edge

belongs to M . Using this, we can extend M by the Hungarian method to cover all of G(λ).

Define I to begin and end at the interior corners of λ. A step in G(λ) corresponds to

pushing the walk up by one square. Our process will proceed as follows: first, go right to

left along I, pushing the walk up by one every time it is possible. (This will happen at

every horizontal edge). Then, go right to left, pushing up each time it is possible. (This will

happen at every vertical step). It is easy to see that every other step is along M and that

no two of these paths will intersect. Therefore, there is a perfect matching in G(λ).

4.6 Examples

We illustrate Theorem 4.3.1 with an evaluation of fλ(−1) for some classic examples of par-

tition families.

Example 4.6.1. The q-binomial coefficient is an area generating function for a rectangular
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partition. If λ is an a by b rectangle we get

fλ(−1) =

[(
a

b

)
q

]
q=−1

=



0 if a, b odd(
(a+b−1)/2
(a−1)/2

)
if a odd, b even.(

(a+b−1)/2
a/2

)
if a even, b odd.(

(a+b)/2
a/2

)
if a, b even

Proof. By Theorem 4.3.1 we need only consider tiled walks with only tiles I and II.

If a and b are both odd, then the modified Young diagram has both extra vertical and

horizontal segments. Any walk would have to use Tile I to start and Tile II to end and thus

could not touch the border in between. Thus such walks are automatically good.

Conversely, if one of a or b is even then all such walks are bad; there is no way to construct

a flippable interval. So we are counting all walks with even runs.

We can also compute the case of the q-Catalan numbers as follows:

Example 4.6.2. The q-Catalan number is an area generating function for a staircase par-

tition. If λ is the partition (n− 1 n− 2 · · · 1) for some n ≥ 1 then we get

fλ(−1) = Cn(−1) =


0 if n even

c(n−1)/2 if n odd

where ck is the kth Catalan number.

Proof. If n is even then Theorem 4.3.3 ensures that fλ(−1) = 0. But if n is odd then it is

easy to see that every path consisting of only Tiles I and II is bad. These paths correspond

exactly to up-right walks in a smaller staircase partition.
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classes of skew-symmetric 3Ö3-matrices, Comm. Algebra 36 (2008), no. 4, pp. 1209-
1220.

[BD] Cyril Banderier and Michael Drmota, Formulae and asymptotics for coefficients of
algebraic functions, Combin. Probab. Comput. 24 (2015), 1–53.

[BMPS] Yuliy Baryshnikov, Stephen Melczer, Robin Pemantle and Armin Straub, Diagonal
asymptotics for symmetric rational functions via ACSV, in LIPIcs. Leibniz Int.
Proc. Inform. 110, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, Art.
No. 12, 15 pp.
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