
SATURATION PROPERTY FAILS FOR SCHUBERT COEFFICIENTS

IGOR PAK⋆ AND COLLEEN ROBICHAUX⋆

Abstract. The saturation property for Littlewood–Richardson coefficients was established by
Knutson and Tao in 1999. In 2004, Kirillov conjectured that the saturation property extends
to Schubert coefficients. We disprove this conjecture in a strong form, by showing that it fails for
a large family of instances. We also refute the saturation property for Schubert coefficients under
bit scaling and discuss computational complexity implications.

1. Introduction

1.1. Saturation property. The saturation conjecture (now saturation theorem) was proven by
Knutson and Tao [KT99] and is one of the most celebrated results in Algebraic Combinatorics.
Despite its apparent simplicity, it became the last piece of the puzzle resolving Horn’s problem,
which describes possible spectra of three Hermitian matrices satisfying the equation A+B = C. See
e.g. [Buch00, Ful00] for overviews of different aspects of this remarkable story and [BVW17, Kum14]
for some later developments.

The saturation theorem states that for all partitions λ, µ, ν with |λ| = |µ|+ |ν|, we have:

(1.1) cλµν > 0 ⇐⇒ cNλ
Nµ,Nν > 0 for any N ≥ 1,

where cλµν denote the Littlewood–Richardson (LR) coefficients, see e.g. [Mac95, §1.9]. We refer to
(1.1) as the saturation property. Note that ⇒ is the easy direction, which follows directly from
several combinatorial interpretations of LR coefficients. These include interpretations in terms of
the number of lattice tableaux, see e.g. [Sta99, §A1.3], or in terms ofGelfand–Tsetlin patterns, see e.g.
[Zel99]. On the other hand, the direction ⇐ is quite difficult and involves technical combinatorial
[KT99], algebraic [DW00, KM08], or algebro-geometric arguments [Bel06].

The LR coefficients play a central role in Algebraic Combinatorics and related areas, so in the
aftermath of the saturation theorem, a number of generalizations of (1.1) have been proposed, see
e.g. a large collection in [Kir04]. Unfortunately, in the quarter century since the original paper, very
few saturation type properties have been established, all of them remarkable. These include the
quantum version by Belkale [Bel08, §4.1], the general reductive group version by Kapovich–Millson
[KM08] (see also [BK10]), and the equivariant version by Anderson–Richmond–Yong [ARY13] (see
also [ARY19]). Most recently, an unexpected Möbius strip version by Min [Min24] resolved the
Gao–Orelowitz–Yong saturation conjecture for the Newell–Littlewood numbers [GOY21].

Among positive results, let us also mention Fulton’s conjecture resolved by Knutson, Tao, and
Woodward [KTW04], which can be viewed as a variation on (1.1) :

(1.2) cλµν = 1 ⇐⇒ cNλ
Nµ,Nν = 1 for any N ≥ 1.

Here the direction ⇐ follows easily from the saturation property, while the direction ⇒ requires
further work. This uniqueness property was also generalized in several ways, notably in [BKR12].

In the negative direction, there is a large number of counterexamples to the saturation property
for various extensions of LR coefficients that are scattered across the literature. For example, it
was shown by Èlashvili [Èla92] that the saturation fails for root system B (explaining the factor
of 2 in [BK10, KM08]), see also [Zel99, p. 340] and [DM06, §4.2]. Similarly, Buch observed that the
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saturation property easily fails for the K-theoretic generalization [Buch02, p. 71]. Most recently,
Yadav, Yong and the second author noted that the saturation fails for Schur P -polynomials [RYY22,
Remark 7.7]; see also [CR23, §7.4] for a larger example in the geometric context.

For Kronecker coefficients, which famously generalize the LR coefficients, the saturation property
fails already for the two row partitions, see e.g. [Ros01, Ex. 2]. Because of their crucial role in Geo-
metric Complexity Theory (GCT), Mulmuley stated a weak version of the property [Mul09, §1.6].
Soon after, Briand, Orellana and Rosas [BOR09], disproved Mulmuley’s weak version. Curiously,
a version of the uniqueness property (1.2) continues to hold for Kronecker coefficients, see [SS16]
and references therein.

Finally, for reduced Kronecker coefficients, the saturation property was conjectured independently
by Kirillov [Kir04, Conj. 2.33] and Klyachko [Kly04, Conj. 6.2.4]. These constants occupy an
intermediate place between LR and Kronecker coefficients, as they generalize the former and are a
special case of the latter. Only recently, Panova and the first author constructed a large family of
counterexamples in this case [PP20]; see also §5.2 for the computational complexity context.

1.2. Schubert saturation. Schubert coefficients {cwu,v : u, v, w ∈ S∞} can be defined as structure
constants for Schubert polynomials:

(1.3) Su · Sv =
∑

w∈S∞

cwu,v Sw .

Here S∞ consists of permutations with all but finitely many fixed points, and Su ∈ N[x1, x2, . . .].
It is known that cwu,v are nonnegative integers, as they count certain intersection numbers. These

coefficients play a major role in Schubert calculus, a rapidly developing area of algebraic geometry,
motivated in part by rich connections with representation theory and algebraic combinatorics, see
e.g. [AF24, Knu22].

We note that Grassmannian permutations w (permutations with at most one descent) correspond
to integer partitions λ = λ(w). Famously, the corresponding Schubert polynomials are symmetric
and coincide with Schur polynomials: Sw = sλ(w). Thus, Schubert coefficients can be viewed as
advanced generalizations of LR coefficients, see e.g. [Man01, §2.6.4].

It is then natural to ask if Schubert coefficients also satisfy a saturation property extending (1.1).
In [Kir04], Kirillov formulated this as a conjecture (see below), which remained open until now.
Motivated by GCT and with complexity applications as a motivation (cf. §5.1), Mulmuley also
speculated that saturation might hold in this case [Mul09, §3.7].

For a permutation w ∈ Sn , the Lehmer code, also called the inversion index, is defined as

code(w) := (c1, . . . , cn) ∈ Nn, where ci := |{j : j > i, w(j) < i}|.

Clearly, c1 + . . .+ cn = ℓ(w) is the number of inversions. We can now define the operation of code
scaling as follows:

N ∗ w := code−1(Nc1, Nc2, . . . , Ncn, 0, . . . , 0) ∈ SNn .

It is easy to see that the code of a Grassmannian permutation w is a partition λ(w) written in
reverse, so this code scaling corresponds to the usual multiplication of partitions by a constant N .
Therefore, the following conjecture is a natural generalization of the saturation theorem:

Conjecture 1.1 (Kirillov [Kir04, Conj. 6.28]). For every u, v, w ∈ Sn , we have:

(1.4) cwu,v > 0 ⇐⇒ cN∗w
N∗u,N∗v > 0 for any N ≥ 1.

We disprove Kirillov’s conjecture in a strong form, by constructing a large family of triples of
permutations for which the saturation property fails:
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Theorem 1.2. Let u ∈ Sn and let j − i ≥ 2, such that:

u ⋖ utij and u(i) < u(j) − 1,

where tij = (i, j) is a transposition and x ⋖ y is the cover relation in the strong Bruhat order
of Sn . Finally, let v = (i, i+ 1) be a simple transposition, and let w = utij. Then:

(1.5) cwu,v = 1 and cN∗w
N∗u,N∗v = 0 for all N > 1.

We illustrate the theorem by an explicit sequence of counterexamples:

Corollary 1.3. For all n ≥ 4, let v := (n− 2, n− 3) be a simple transposition Sn , and let

u := (2, 3, . . . , n− 2, 1, n, n− 1) , w := (2, 3, . . . , n, 1, n− 2, n− 1).

Then:
cwu,v = 1 and cN∗w

N∗u,N∗v = 0 for all N > 1.

In particular, this shows that Kirillov’s Conjecture 1.1 fails for all n ≥ 4 and all N ≥ 2. Note
also that in Theorem 1.2, we always have v is a simple transposition. In this case, Schubert
coefficients have a simple combinatorial interpretation given by Monk’s rule (Proposition 2.1). The
proof of Theorem 1.2 (see §3.3) uses this combinatorial rule for the first part of (1.5), and the
St. Dizier–Yong vanishing condition (Lemma 3.2) for the second part.

Let us emphasize that although (1.4) is a direct generalization of the saturation property (1.1), it
fails for what was originally an “easy direction” ⇒ . Also, observe that the permutations in Corol-
lary 1.3 have at most 2 descents. In this case, Schubert coefficients have two different combinatorial
interpretations [Cos09, BKPT16], cf. §5.1.

Finally, note that there is more than one way to define an operation on permutations to produce a
saturation property. For completeness, we obtain similar results for the folklore bit scaling operation
(see §4.1), which can be viewed as a partial tensor product with the identity permutation. The
saturation property in this case also generalizes the saturation property for LR coefficients, so it is
natural to ask whether this property holds (cf. §5.3). Again, we refute this possibility in a strong
sense, see Theorem 4.4 and Corollary 4.6. The proof in this case uses Monk’s rule (Proposition 2.1)
and the dimension condition (Proposition 2.2).

1.3. Structure of the paper. We start with the algebraic combinatorics background in Section 2,
where we include standard definitions, notation and basic results in the area. In Section 3, we
prove Theorem 1.2, thus giving counterexamples to Kirillov’s Conjecture 1.1. Then, in Section 4
we introduce bit scaling and discuss analogous results for the corresponding saturation property.
We conclude with final remarks and open problems in Section 5. Notably, we discuss the failure of
the saturation property (1.4) in the context of the complexity of Schubert vanishing.

2. Background

2.1. Basic notation. We use N = {0, 1, 2, . . .} and [n] = {1, 2, . . . , n}. To simplify the notation,
for a set A and elements x, y, we write A+ x to denote A ∪ {x}, and A− y to denote A− {y}.

We use K to denote the set of infinite sequences with entries in N with finite support. When
writing such sequences, we omit the infinite tail of zeros, and write only the prefix with the support
of the sequence, so e.g. 30120000 . . . is written as 3012.

We use Sn to denote the symmetric group, which we view as the group of permutations of [n].
Denote by ι the inclusion ι : Sn ↪→ Sn+1 defined by w(1) · · · w(n) 7→ w(1) · · · w(n) n + 1. As
above, let S∞ =

⋃
n≥1 Sn denote the group of permutations of N≥1 = {1, 2, . . .} with all but

finitely many fixed points, where the inclusion is given by ι. By analogy with infinite sequences,
when writing such permutations we omit the tail of fixed points, so e.g. 34125678 . . . is written as
3412.
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For convenience, we use both the sequence and word notation for permutations, so for example
(3, 1, 4, 2) and 3142 correspond to the same permutation in S4 . We also use si = (i, i + 1) to
denote simple transpositions swapping i and i+1, and tij = (i, j) to denote general transpositions
swapping i and j, where i < j. We hope this does not lead to confusion.

For a permutation w ∈ Sn , let ℓ(w) := |{(i, j) : 1 ≤ i < j ≤ n, w(i) > w(j)}| denote the number
of inversions in w. For permutations u, v ∈ Sn , we write u ⋖ v if v = utij for some i < j, and
ℓ(v) = ℓ(u) + 1. This is the cover relation for the strong Bruhat order, which can now be defined
by transitivity.

Finally, let Des(w) := {i : w(i) > w(i + 1)} denote the set of descents in w. A permutation
w ∈ Sn is Grassmannian if it has at most one descent.

2.2. Schubert coefficients. Below we give a brief reminder of few basic results on Schubert
polynomials. We refer to [Knu16, Mac91, Man01] for standard introductions to combinatorial
aspects, and to [AF24, Ful97] for geometric aspects.

Schubert polynomials give a graded Z-linear basis of polynomials Z[x1, x2, . . .], which we define
recursively. Let w◦ = (n, n− 1, . . . , 1) ∈ Sn . Define

Sw◦(x1, . . . , xn) := xn−1
1 xn−2

2 · · ·xn−1 , and

Sw(x1, . . . , xn) := ∂iSwsi(x1, . . . , xn) if w(i) < w(i+ 1),

where

∂if :=
f − sif

xi − xi+1
.

Note that under the inclusion ι : Sn ↪→ Sn+1 we have Sw = Sι(w). This allows us to consider Sw

for each w ∈ S∞.
As Schubert polynomials {Sw} form a polynomial basis, Schubert coefficients (also called Schu-

bert structure coefficients) {cwu,v} are defined by (1.3). Although cwu,v ∈ N, they have no known
combinatorial interpretation in full generality. However, such an interpretation is known when v is
a simple transposition:

Proposition 2.1 (Monk’s rule [Man01, §2.7.1]). Let u ∈ Sn and let 1 ≤ k ≤ n− 1. Then:

Su · Ssk =
∑

i≤k<j
u⋖utij

Sutij .

By their definition, Schubert polynomials Sρ are homogeneous of degree ℓ(ρ). Thus we have:

Proposition 2.2 (dimension condition). Suppose ℓ(w) ̸= ℓ(u) + ℓ(v). Then cwu,v = 0.

2.3. Rothe diagrams. For a permutation w ∈ Sn , the Rothe diagram is defined as

D(w) :=
{
(i, j) : 1 ≤ i, j ≤ n, j < w(i), i < w−1(j)

}
⊂ N2.

Note that |D(w)| = ℓ(w) is the number of inversions in w. Depending on the context, we refer to
elements of D(w) as squares or boxes.

For a permutation w ∈ S∞ , its Lehmer code is the vector code(w) = (c1, c2, . . .), where ci is the
number of boxes in row i of D(w). We shorten this to “code” when the context is clear. For the
identity permutation id ∈ S∞ , the code is the all zero sequence. Note that code : S∞ → K is a
bijection, i.e. code(w) uniquely determines w ∈ S∞ and code−1 is well defined.

Example 2.3. For a permutation w = 72415836 ∈ S8, we have code(w) = (6, 1, 2, 0, 1, 2) and
ℓ(w) = 12. In this case n = 8, and the corresponding Rothe diagram D(w) is shown below. Here
the squares are in positions (i, j) ∈ D(w), and the dots are in positions (i, w(i)), 1 ≤ i ≤ n.
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3. Code scaling

3.1. Preliminaries. Let w ∈ Sn be a permutation where code(w) = (c1, c2, . . . , cn). Recall that
for a given integer N ≥ 2, the code scaling N ∗ w is the unique permutation with the code
(Nc1, Nc2, . . . , Ncn).

Observe that ℓ(N ∗ w) = Nℓ(w). Thus, ℓ(u) + ℓ(v) = ℓ(w) if and only if ℓ(N ∗ u) + ℓ(N ∗ v) =
ℓ(N ∗ w) for any N > 1. Additionally, it is clear by construction that code scaling preserves the
underlying descent sets of the permutations: Des(N ∗ w) = Des(w).

Example 3.1. Take w = (7, 2, 4, 1, 5, 8, 3, 6) with code(w) = (6, 1, 2, 0, 1, 2) as in Example 2.3. Let
N = 2. By definition,

2 ∗ w = code−1(12, 2, 4, 0, 2, 4) = (13, 3, 6, 1, 5, 9, 2, 4, 7, 8, 10, 11, 12).

We then have ℓ(2 ∗ w) = 2ℓ(w) = 24 and Des(2 ∗ w) = Des(w) = {1, 3, 6}. The corresponding
Rothe diagram D(2 ∗ w) is the following:

3.2. St. Dizier–Yong vanishing condition. For permutations u, v, w ∈ Sn , let code(w) =
(c1, . . . , cn). Consider integer fillings of boxes in D(u) ∪ D(v) with entries in [n]. We view
D(u) ∪ D(v) as a subset of [n] × [2n], where D(v) is shifted right horizontally by n units to
the right of D(u).

In [ARY21], Adve, Yong, and the second author define an indicator tableau to be an integer
filling T : D(u) ∪D(v) → [n], such that

(i) the number of i’s in T is equal to ci = code(w)i, for each i ∈ [n],
(ii) each column of T strictly increases from top to bottom, and
(iii) if an entry m appears in row r of T , then m ≤ r.

Denote by Tabwu,v to be the set of such indicator tableaux. The St. Dizier–Yong vanishing condition
is the following:

Lemma 3.2 (St. Dizier–Yong [SY22, Thm B, §4.3]). We have:

Tabwu,v = ∅ =⇒ cwu,v = 0.
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3.3. Proof of Theorem 1.2. For the first part, the equality cwu,v = 1 follows directly from Monk’s
rule (Proposition 2.1) and the construction of permutations u, v, w.

For the second part, let us show that the set of indicator tableaux TabN∗w
N∗u,N∗v is empty for

each N > 1. The result follows immediately by Lemma 3.2.
Since u⋖ utij = w, by the definition of the Rothe diagram, we have:

D(w) = D(u) −
{
(j, c) : c ∈ [u(i) + 1, u(j)− 1]

}
∪

{
(i, c) : c ∈ [u(i), u(j)− 1]

}
.

In particular, we have

code(w) = code(u) + (u(j)− u(i))ei − (u(j)− u(i)− 1)ej ,

where ek = (0, . . . , 1, . . . , 0) is the k-th standard basis vector. By definition of the code scaling, we
then have:

(3.1) code(N ∗ w) = code(N ∗ u) + N(u(j)− u(i))ei − N(u(j)− u(i)− 1)ej .

Let D := D(N ∗ u) ∪D(N ∗ v). Suppose there exists an indicator tableau

(3.2) T ∈ TabN∗w
N∗u,N∗v

which by definition is a filling of D. Note that for every r ∈ [n], tableau T contains code(N ∗ w)r
many r’s by assumption. Note also that every such entry of r must appear in row r or below.

Claim: For all (r, c) ∈ D, we have:

T (r, c) ∈ {i, j} if r = j, and T (r, c) = r otherwise.

Proof. By (3.1), we have code(N ∗ w)r = code(N ∗ u)r for all r < i. This forces T (r, c) = r for
all (r, c) ∈ D. Similarly, for r > j, we have code(N ∗ w)r = code(N ∗ u)r . Thus again, we have
T (r, c) = r for all (r, c) ∈ D.

For the case of r = i, Equation (3.1) gives:

code(N ∗ w)i = code(N ∗ u)i + N(u(j)− u(i)).

Similarly, this implies that T (i, c) = i for all (i, c) ∈ D. Note that D(N ∗ v) contains N boxes in
row i and no boxes elsewhere. This leaves(

Ncode(u)i +N(u(j)− u(i))
)
−

(
Ncode(u)i +Ncode(v)i

)
= N(u(j)− u(i)− 1) > 0

many i’s left to place in T .
For the case i < r < j, we again have code(N ∗ w)r = code(N ∗ u)r . Since u ⋖ utij = w, it

follows that any (r, c) ∈ D lies below of some square (i, c) ∈ D. Since there can be no repetition
of entries in columns of T , this gives T (r, c) ̸= i. Then similarly as in the previous cases, this
forces T (r, c) = r for (r, c) ∈ D. Finally, for the case r = j, this leaves T (j, c) ∈ {i, j} for all
(j, c) ∈ D. □

Now we focus on the entries in row j of T . By the Claim, this row must contain the remaining
N(u(j)− u(i)− 1) entries i. Since the entries in columns of T must be distinct, and row i contains
all i’s, these N(u(j)− u(i)− 1) many i’s cannot appear below a square from row i.

Recall that row j of D contains code(N ∗ u)j = Ncode(u)j many squares. Additionally, note
that since u ⋖ utij = w, we know that if i < m < j, then u(m) ̸∈ [u(i), u(j)]. Combining these
facts with the definition of the Rothe diagram, it follows that D has

code(N ∗ u)i − (j − i− 1) = Ncode(u)i − (j − i− 1)

many squares in row j of D directly below boxes in row i of D. Summarizing, since T must have
distinct column entries, we have:

(3.3) Ncode(u)j − (Ncode(u)i − (j − i− 1)) ≥ N(u(j)− u(i)− 1).
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By (3.1) and the fact that u⋖ utij = w, we have:

code(u)j = (code(u)i − (j − i− 1)) + (u(j)− u(i)− 1).

Applying this to the left-hand side of Equation (3.3) gives

(3.4) Ncode(u)j −
(
Ncode(u)i − (j − i− 1)

)
=

(
N(u(j)− u(i)− 1)

)
− (N − 1)(j − i− 1).

Combining Equations (3.3) and (3.4), we conclude:

0 ≥ (N − 1)(j − i− 1),

a contradiction with assumptions j− i ≥ 2 and N > 1. We conclude that there is no T as in (3.2),

i.e. TabN∗w
N∗u,N∗v = ∅. The result now follows by Lemma 3.2. □

3.4. Examples and special cases. We start with the simplest example which both illustrates
the proof above and motivates other special cases.

Example 3.3. Take u = 2143, v = s1 = 2134 and w = ut13 = 4123. Note that code(u) = (1, 0, 1),
code(v) = (1), code(w) = (3), and that u⋖ w. By Monk’s rule, we have cwu,v = 1.

Observe that 2 ∗ u = 31524, 2 ∗ v = 21345 = v, and 2 ∗ w = 7123456. Since code(2 ∗ w) = (6),
there is a unique way to fill D = D(2 ∗ u) ∪D(2 ∗ v) with 1’s.

1 1

1 1

1 1

By the definition of indicator tableaux, they must be increasing in columns, ruling out the filling
above. Thus Tab2∗w2∗u,2∗v = ∅. By Lemma 3.2, we have c2∗w2∗u,2∗v = 0, giving a counterexample to the

saturation property (1.4).

The following corollary follows immediately from Theorem 1.2 by taking j = i+ 2.

Corollary 3.4. Let u ∈ Sn such that u(i + 1) < u(i) < u(i + 2) − 1. Let v = (i, i + 1) and let
w = u · (i, i+ 2). Then:

(3.5) cwu,v = 1 and cN∗w
N∗u,N∗v = 0 for all N > 1.

Note that Corollary 1.3 is a special case of Corollary 3.4. Note also that Example 3.3 is a special
case of Corollary 1.3 when n = 4.
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4. Bit scaling

4.1. Preliminaries. We now introduce a new scaling operation on permutations, which we define
in terms of Rothe diagrams.

Let w ∈ Sn be a permutation with maximal descent d where d ≤ k for fixed k. For j ∈ [n],
let Cj ⊂ D(w) denote the j-th column of the Rothe diagram. Then take S(w) to be the set of
pairs (i, j) such that i > k and (i, j) ∈ Cj . Denote by J(w) ⊂ [n] the set of indices j of such
columns Cj . We call these shaded columns.

For an integer N ≥ 2, define N ⊗D(w) to be the set of squares where each shaded column Cj ,
j ∈ J(w), is replaced with N copies of Cj . Denote by N ⊗ w the unique permutation in S∞ with
D(N ⊗ w) = N ⊗D(w). Permutation N ⊗ w is called the bit scaling of w with respect to k.

Alternatively, one can define N ⊗ w by taking the prefix w(1) · · ·w(k) and meshing it with
the Kronecker product of the suffix w(k + 1) · · ·w(n) with the identity permutation of size N , see
Remark 4.2 below.

Finally, we note that bit scaling preserves the set of descents, i.e. Des(N ⊗ w) = Des(w). More-
over, for a Grassmannian permutation w corresponding to the partition λ = λ(w), the permutation
N ⊗ w is also Grassmannian, corresponding to the partition Nλ(w); we omit the details.

Example 4.1. Take w = (7, 2, 4, 1, 5, 8, 3, 6) as in Example 2.3, with n = 8, Des(w) = {1, 3, 6}
and maximal descent d = 6. Set k = d. We have S(w) = {(7, 3), (8, 6)}, so J(w) = {3, 6}. Below
the shaded columns are C3 = {(1, 3), (3, 3), (5, 3), (6, 3)} and C6 = {(1, 6), (6, 6)}.

Now let N = 2. Doubling the shaded columns gives the Rothe diagram D(2 ⊗ w) = 2 ⊗D(w)
shown below. Thus we have in this case 2⊗ w = (9, 2, 5, 1, 6, 10, 3, 4, 7, 8).

2⊗−−→

Remark 4.2. In the Kronecker product of permutations, one permutation is viewed as a block
matrix, with all blocks given by the second permutation. For example, the Kronecker product of
(1, 3, 2, 4) and (1, 2, 3) is given by (1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12). The bit scaling can be viewed as
a similar operation, where each element in S(w) is replaced with an identity permutation of size N .

4.2. Underlying motivation for this interpretation. Suppose w ∈ Sn such that Des(w) ⊂
{k1 < . . . < kℓ}. Set k0 := 0 and kℓ+1 := n. Let δ = (δ1, . . . , δn), such that δi = m when
km < i ≤ km+1. Then we may equivalently encode w as a sequence τ = (τ1, . . . , τn) ∈ {0, . . . , ℓ}n,
where τi := δw(i). We denote this as seq(w), given with respect to {k1 < . . . < kℓ}. Note that
viewing w ∈ S∞ will result in infinitely many trailing ℓ’s in seq(w). Then seq(N ⊗ w) can be
constructed from seq(w) by replacing each ℓ with N copies of ℓ.

Example 4.3. Return to w = (7, 2, 4, 1, 5, 8, 3, 6) as in Example 4.1. Then Des(w) = {1 < 3 < 6},
so ℓ = 3. In this case, since n = 8 we have δ = 01122233. Then seq(w) = 21312302, which gives
seq(2⊗ w) = 2133123302. This corresponds to 2⊗ w = (9, 2, 5, 1, 6, 10, 3, 4, 7, 8), just as above.
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4.3. Saturation property under bit scaling is false. Once the bit scaling operation is defined,
it is natural to ask if it satisfies the saturation property:

(4.1) cwu,v > 0 ⇐⇒ cN⊗w
N⊗u,N⊗v > 0 for any N ≥ 1.

If true, this would give a far-reaching extension of the usual saturation property (1.1) for LR coeffi-
cients to general Schubert coefficients. The following result shows that (4.1) fails on a large family
of examples.

Theorem 4.4. Let u ∈ Sn and let 1 ≤ i < d < j ≤ n where d is the maximal descent in u.
Suppose also that u ⋖ utij. Finally, let v = si and w = utij . Set k = d. Then:

cwu,v = 1 and cN⊗w
N⊗u,N⊗v = 0 for all N > 1.

In particular, for d = n− 1 and j = n, we have:

Corollary 4.5. Let u ∈ Sn be a permutation with u(i) = n− 2, u(n− 1) = n, u(n) = n− 1, where
i < n− 2. Let v = (i, i+ 1) and w = u · (i, n). Then:

cwu,v = 1 and cN⊗w
N⊗u,N⊗v = 0 for all N > 1.

Even more explicitly, by analogy with Corollary 1.3, we have:

Corollary 4.6. For all n ≥ 4, let v := (n− 2, n− 3) be a simple transposition Sn , and let

u := (2, 3, . . . , n− 2, 1, n, n− 1) , w := (2, 3, . . . , n− 1, 1, n, n− 2).

Then:

cwu,v = 1 and cN⊗w
N⊗u,N⊗v = 0 for all N > 1.

Similar to the Corollary 1.3, this shows that the bit scaling saturation (4.1) fails for all n ≥ 4
and all N ≥ 2. Moreover, it fails already for permutations with at most two descents. We conclude
with a small example which both illustrates the proof of Theorem 4.4 and motivates other special
cases.

Example 4.7. Take u = 2143, v = s1 = 2134 and w = ut14 = 3142. Note that u⋖w. By Monk’s
rule, we have cwu,v = 1. Below we show Rothe diagrams of u, v, w, from left to right:

We then have Des(v) ⊂ Des(u) = Des(w) = {1, 3}, and maximal descent d = 3. Then we have
2⊗ u = 21534, 2⊗ v = 21345 = v, and 2⊗ w = 41523. Below we show Rothe diagrams of 2⊗ u,
2⊗ v, 2⊗ w, from left to right:

Counting squares in these Rothe diagrams, we get ℓ(2⊗ u) = 3, ℓ(2⊗ v) = 1 and ℓ(2⊗ w) = 5.
Thus, by Proposition 2.2, we have c2⊗w

2⊗u,2⊗v = 0. In other words, this gives a counterexample to

the saturation property (4.1).
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4.4. Proof of Theorem 4.4. For the first part, the equality cwu,v = 1 follows directly from Monk’s
rule (Proposition 2.1) and the construction of permutations u, v, w.

For the second part, let us show that

(4.2) ℓ(N ⊗ u) + ℓ(N ⊗ u) < ℓ(N ⊗ w) for all N ≥ 2.

By Proposition 2.2, the result follows.
Since v = si, we have D(v) = {(i, i)}. As illustrated by the Example 4.7 above, we have

N ⊗ v = v. In particular, we have ℓ(N ⊗ v) = ℓ(v) = 1.
Since u⋖ utij = w, by the definition of the Rothe diagram, we have:

D(w) = D(u) −
{
(r, u(j)) : i < r

}
∪
{
(r, u(i)) : (r, u(j)) ∈ D(u)

}
+ (i, u(i)).

Denote by (C1, . . . , Cn) and (C ′
1, . . . , C

′
n) the columns of D(u) and D(w), respectively. Then we

have:

C ′
h =


Cu(j) + (i, h) if h = u(i),

Cu(i) if h = u(j),

Ch otherwise.

(4.3)

By assumption, u(j) ∈ J(u) and u(i) ̸∈ J(u). Then we have J(w) = J(u) − u(j) + u(i). By (4.3)
and the definition of bit scaling, we have:

|D(N ⊗ w)| =
∑

h̸∈J(w)

|C ′
h| +

∑
h∈J(w)

N · |C ′
h|

= |C ′
u(j)| + N · |C ′

u(i)| +
∑

h̸∈J(w)−u(j)

|C ′
h| +

∑
h∈J(w)−u(i)

N · |C ′
h|

= |Cu(i)| + N ·
(
|Cu(j)|+ 1

)
+

∑
h̸∈J(w)−u(j)

|Ch| +
∑

h∈J(w)−u(i)

N · |Ch|

= |Cu(i)| + N ·
(
|Cu(j)|+ 1

)
+

∑
h̸∈J(u)−u(i)

|Ch| +
∑

h∈J(u)−u(j)

N · |Ch|

= N +
∑

h̸∈J(u)

|Ch| +
∑

h∈J(u)

N · |Ch|

= N + |D(N ⊗ u)|.
Since N > 1 and ℓ(N ⊗ v) = 1, we conclude:

ℓ(N ⊗ w) = |D(N ⊗ w)| = |D(N ⊗ u)| + N = ℓ(N ⊗ u) + N

> ℓ(N ⊗ u) + 1 = ℓ(N ⊗ u) + ℓ(N ⊗ v).

This gives (4.2) and completes the proof. □

5. Final remarks

5.1. Our own motivation to study the saturation property for Schubert coefficients lies in con-
nection to the Schubert vanishing problem

[
cwu,v =? 0

]
. The idea here is to extend the approach

in [DM06, MNS12] to the LR vanishing problem
[
cλµν =? 0

]
. There, the authors independently

observed1 that the saturation property (1.1) implies that the vanishing of LR–coefficients can be
solved by a linear program (LP). This gives a deterministic poly-time algorithm for deciding the
LR vanishing.

There are two main ingredients in the approach above, both representing a major obstacle. First,
one needs a combinatorial interpretation of the LR coefficient cλµν to show that it counts the number

1The original preprints appeared on the arXiv in January 2005, within a day of each other.



SATURATION PROPERTY FAILS FOR SCHUBERT COEFFICIENTS 11

of integer points in a convex polytope Qλµν defined by integer constraints. Second, one needs a
saturation property to reduce the LR vanishing problem to Qλµν containing a rational point. One
then applies known results that LP is in P to conclude the same for the LR vanishing.

In our most recent paper [PR25] capping a series of weaker results, we show that the vanishing of
Schubert coefficients

[
cuvw =? 0

]
is in coRP ⊆ BPP, i.e. can be decided in probabilistic polynomial

time with a one-sided error (in the case of a positive answer). This is very low in the polynomial
hierarchy, and suggests a possibility that Schubert vanishing might be in P, at least for some classes
of permutations.

Since the reduction to LP is really the only approach that we know (short of derandomization),
we would need the two ingredients described above. As mentioned in the introduction, there are at
least two different combinatorial interpretations of 2-step Schubert coefficients, which correspond
to permutations with at most two descents [Cos09, BKPT16]. While we are not aware if there is a
way to restate either of these combinatorial interpretations in terms of the number of integer points
in polytopes, this case is a natural place to start.

Question 5.1. Can the vanishing problem for 2-step Schubert coefficients be decided in poly-time?

Unfortunately, our Corollaries 1.3 and 4.6 imply that in the 2-step case, the natural saturation
properties fail. The question remains wide open, unlikely to be resolved by the existing tools.

5.2. In connection to Question 5.1, it is worth comparing how the failure of saturation properties
for other algebraic combinatorics constants discussed in the introduction relate to the complexity
of the corresponding vanishing problems.

For example, it remains open whether the vanishing of the Clebsch–Gordan (CG) coefficients
(particular generalizations of LR coefficients to other root systems) can be decided in poly-time.
The problem is resolved for the even weights by a combination of results in [DM06] and [KM08].
It is known that the Ehrhart positivity conjectures in [KTT04] would imply that CG vanishing is
in P in full generality. Unfortunately, these conjectures remain wide open even in the special case
of Kostka numbers, see e.g. [Ale19].

In some cases, there are known computational complexity obstacles for the vanishing problem,
immediately invalidating a saturation property approach as above. Notably, it is known that the
vanishing problem for the Kronecker coefficients is NP-hard [IMW17]. Later, in [PP20], it was
shown that the vanishing of reduced Kronecker coefficients is also NP-hard. By itself, the NP-
hardness of the vanishing problem does not automatically imply that the saturation property fails,
but it does suggest a more involved underlying structure in the problem.

5.3. There are other possible scaling operations which can be defined on permutations, i.e. by
replacing each box of the Rothe diagram with an N×N square of boxes. Unfortunately, code scaling
and bit scaling are the only operations we know that preserve the descents. This is a necessary
condition to ensure that the operation applied to Grassmannian permutations corresponds to the
usual partition multiplication.
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[DM06] Jesús A. De Loera and Tyrrell B. McAllister, On the computation of Clebsch–Gordan coefficients and the

dilation effect, Experiment. Math. 15 (2006), 7–19.
[DW00] Harm Derksen and Jerzy Weyman, Semi-invariants of quivers and saturation for Littlewood–Richardson

coefficients, Jour. AMS 13 (2000), 467–479.
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