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Ribbon tiles are polyominoes consisting of n squares laid out in a path, each step
of which goes north or east. Tile invariants were first introduced by the second
author (2000, Trans. Amer. Math. Soc. 352, 5525–5561), where a full basis of
invariants of ribbon tiles was conjectured. Here we present a complete proof of the
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© 2002 Elsevier Science (USA)

Key Words: polyomino tilings; tile invariants; Conway group; height representa-
tion.

1. INTRODUCTION

Polyomino tilings have been an object of attention of serious mathema-
ticians as well as amateurs for many decades [G]. Recently, however, the
interest in tiling problems has grown as some important ideas and tech-
niques have been introduced. In [P1], the second author introduced a tile
counting group, which appears to encode a large amount of information
concerning the combinatorics of tilings. He made a conjecture on the group
structure, and obtained several partial results. A special case of the conjec-
ture was later resolved in [MP]. In this paper we continue this study and
complete the proof of the conjecture.



FIG. 1. Two dominoes.

Consider the set of ribbon tiles Tn, defined as connected n-square tiles
with no two squares in the same diagonal x+y=c (as in Figs. 1–3). It is
easy to see that |Tn |=2n−1, as each tile can be associated with a path of
length n−1 in the square lattice, each step of which goes east or north.
Recording these moves by 0 and 1 respectively, we obtain a sequence
e=(e1, ..., en−1) ¥ {0, 1}n−1, which uniquely encodes a ribbon tile. We will
refer to this tile as ye.

Now, let C be a finite simply connected region, and let n be a tiling of C
by ribbon tiles in Tn, n \ 2. We denote by ae(n) the number of times the
ribbon tile ye is used in n.

Conjecture 1.1 [P1]. Let C and n be as above. Then for every i,
1 [ i < n/2, we have

C
e: ei=0, en−i=1

ae(n)− C
e: ei=1, en−i=0

ae(n)=ci(C),

where the ci(C) depend only on C and are independent of the tiling n of C.
Furthermore, when n is even, we have

C
e: en/2=1

ae(n)=cg(C) mod 2,

where cg(C) is also independent of n.

The main result of the paper is a proof of this conjecture for all n \ 2:

Theorem 1.2. Conjecture 1.1 holds for tilings by ribbon tiles Tn for all
n \ 2, and for all simply connected regions C.

FIG. 2. Four ribbon trominoes.
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FIG. 3. Eight ribbon tetrominoes.

A few words about the history of this conjecture. For n=2, it implies
that for every domino tiling of C, the parity of the number of vertical
dominoes is always the same. This, in fact, holds for every region, not just
the simply connected ones, and follows from a folklore coloring argument
(see [G, P1] for details).

For n=3, the conjecture gives only one relation:

a01(n)−a10(n)=c1(C).

This is the celebrated Conway–Lagarias relation for trominoes [CL].
Recently, the conjecture was established for n=4 [MP], using a combina-
torial technique similar to [CL]. In this notation, it was shown in [MP]
that

a001+a011−a101−a111=c1(C),

a010+a011+a110+a111=cg(C) mod 2.

It was shown in [CL], in a certain rigorous sense, that even for n=3,
the conjecture can’t be proved by means of coloring arguments. This was
extended by the second author to all n \ 4 [P1]. It was observed in [P1],
that for n=3 there exists a non-simply connected region for which the
relations in the conjecture do not hold. Thus, there is little hope of
generalizing the conjecture to all regions.

The conjecture originated in [P1], where the author considered only row
(or column) convex regions C, and proved the linear relations in Conjec-
ture 1.1 for all such C [P1, Theorem 1.4]. The technique used a connection
with combinatorics of Young tableaux which could not be extended to all
simply connected regions (see [P1] for details). The author in [P1] also
showed that the linear relations in the conjecture are the only relations
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which can occur between the ae(n), even for this smaller set of regions (see
Section 2 below).

About the proof technique: We use notion of tile invariants, introduced
in [P1], but here we define new real-valued invariants, which we call adèle
invariants. As it turns out, these invariants imply all the integer-valued
invariants that we need to establish. We then show the validity of the adèle
invariants by presenting them as a signed area of a certain polygon corre-
sponding to each tile. These two results together imply Theorem 1.2.

The rest of the paper is structured as follows. In Section 2 we introduce
tile invariants and compute the tile counting group based on Theorem 1.2.
Much of the material follows [P1], so we present only sketches of the
proofs for completeness. In Section 3, we define and study the adèle
invariants. Small examples are computed in Section 4. We exhibit the rela-
tionship between the adèle invariants and integer invariants in Section 5.
This completes the proof of Theorem 1.2. We conclude with final remarks
in Section 6.

2. TILE INVARIANTS

Let us start by defining tilings and tile invariants. Let L be a set of
(closed) squares of a square grid Z2 on a plane. A region is a finite subset
C … L. Region C … L is called simply connected if its boundary “C is con-
nected. We say that two regions C and C − are equivalent, denoted C ’ C −, if
C is a parallel translation of C − (rotations and reflections are not allowed).
Let C2={C −: C − ’ C} be the set of regions equivalent to C.

Let T={y1, ..., yr} be a finite set of simply connected regions, which we
call tiles. By ỹi we denote the set of their parallel translations, and let
T̃=1i ỹi. A tiling n of C, denoted n * C, is a set of tiles y ¥ T̃, such that
their disjoint union is C:

C=e
y ¥ n

y.

Here we ignore the intersection of the boundaries.
Let G be an abelian group, and let j: T Q G be any map. We extend the

definition of j to all y ¥ T̃, by setting j(y)=j(yi) for all y ’ yi. We say
that the map j is a tile invariant of T if, for every simply connected region
C and every tiling n * C by the set of tiles T, we have

C
y ¥ n

j(y)=c(C),
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where the constant on the r.h.s. depends only on the region C and is inde-
pendent of n. In this paper G is either Z, or Zn(=Z/nZ), or R (with
addition as the group operation).

Tile invariants are directly related to numerical relations between the
respective numbers of times differently-shaped tiles occur in a tiling.
Indeed, let ai(n)=|n 5 ỹi | be the number of tiles y ’ yi in the tiling n * C.
We immediately have

C
r

i=1
j(yi) ai(n)=C

y ¥ n

j(y)=c(C).

In [P1], we introduced a tile counting group G(T), which is defined as a
quotient,

G(T)=Z r/O(a1(n)−a1(n −), ..., ar(n)−ar(n −)), n, n − * CP,

where n, n − are tilings of the same simply connected region C by the set of
tiles T. Computing the tile counting group G(T) is a difficult task, even in
simple cases. The main result of this paper is a computation of G(Tn) for
the case of ribbon tiles:

Theorem 2.1. If n=2m+1, then G(Tn) 4 Zm+1. If n=2m, then G(Tn)
4 Zm×Z2.

Theorem 2.1 was stated as a conjecture in [P1]. It was shown in [P1]
that it follows from Theorem 1.2. For completeness, we sketch the proof
below.

Sketch of Proof. Indeed, in [P1, Theorem 1.4] it was shown that
G(T) … Zm+1 for n=2m+1 and G(Tn) … Zm×Z2 for n=2m. Observe that
one can view the relations in Conjecture 1.1 as elements of G(Tn). Recall
that these relations, together with the trivial area invariant f0 (defined by
f0(y)=1 for all y ¥ Tn), are independent in Zn (see the proof of
Theorem 1.4 in [P1, Sect. 5]). Now Theorem 1.2 implies the result. L

Before we conclude this section, let us make a final observation on the
relations in Conjecture 1.1 implied by previous work. Following [P1,
Sect. 9], define the shade invariant as

f©(ye)=C
n−1

k=1
k · ek mod n,

where e=(e1, ..., en−1). The fact that it is an invariant follows easily from
an extended coloring argument [P1, Sect. 9]. Namely, consider a coloring
of the squares z: Z2Q Zn defined by z(x, y)=ymod n. Note that the sum
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of the colors in each ribbon tile y is equal to f©(y)+C, where C=
C(n) ¥ Zn is a constant which depends only on n. We omit the (easy)
details.1

1 In contrast with other ribbon tile invariants we introduce, the shade invariant can be
extended to all regions, not just the simply connected ones [P1, Theorem 9.1].

Proposition 2.2. When n is even, the relations in the first part of
Conjecture 1.1 imply that in the second part.

Proof. We will show that the mod 2 relation follows from the m=n/2
relations in the first part, and the shade invariant. In the language of
invariants, consider the k-convexity invariants fk, introduced in [P1]:

fk(ye)=ek− en−k, where e=(e1, ..., en−1).

We need to show that the shade invariant and the k-convexity invariants
generate the parity invariant fg:

fg(ye)=em mod 2, where n=2m.

But this is immediate since

f© mod 2=(f1+2f2+·· ·+(m−1) fm−1)+fg mod 2

(cf. [P1, Sect. 9]). This completes the proof. L

3. NEW RIBBON TILE INVARIANTS AND THE SIGNED AREA

Let Tn be the set of ribbon tiles, defined as above. From now on, we will
also use a different encoding of Tn, by sequences a=(a1, ..., an) ¥ {±1}n−1:
Tn={ya}, where ya=ye, if ai=1−2ei for all 1 [ i [ n−1 (i.e. 0 Q+1 and
1 Q −1).

For every 1 [ a < n we define a function Fa: Tn Q R as

Fa(ya)=C
n−1

k=1
ak sin

2pk a
n
,

where a=(a1, ..., an−1), ak ¥ {±1} as above. The main result of this
section is the following key observation:

Theorem 3.1. The function Fa: Tn Q R is a tile invariant for the set Tn
of ribbon tiles, for all 1 [ a < n.
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FIG. 4. The ribbon tile y=y0011 with labels on the edges, the roots of unity v0, ..., v4,
vk=e2pik/5, and the closed loop g1(y).

We will call Fa the a-th adèle invariant. Note that when n=2m, we
have Fm(ya)=0 for all ya ¥ Tn. The claim of the theorem is trivial in this
case.

The proof of Theorem 3.1 is based on a new geometric construction. But
first we need several definitions.

Let the squares of the grid have numbers written on them, from 0 to
n−1, with the rule that (x, y) ¥ Z2 has the number x+ymod n. Let us
orient edges of the grid eastward and southward as in Fig. 4. Set labels on
the edges so that the edge between square k and (k+1mod n) has label k.

Let a ] n/2 be fixed for the rest of this section. On a complex plane
V=C, fix n vectors v0, v1, ..., vn−1, where vk=e2pika/n. We say that a loop in
V is a polygon if it is a closed (perhaps self-intersecting) path with straight
edges.

Now, let C be a simply connected region on a grid, and let “C be the
boundary of C. Fix any integer point O ¥ “C. Consider a sequence of edges
on the grid obtained by moving along “C counterclockwise, starting at O.
Recall that these edges are oriented and labeled with integers modulo n.

We shall describe a map g=ga, which maps simply connected regions C,
tileable by Tn, into polygons in V. First, fix any O − ¥ V. As one moves
along the sequence of edges of “C, add a vector ±vj ¥ V, where j is a label
of the edge in “C, and a sign ± is chosen depending on whether the edge in
“C is oriented counterclockwise or clockwise (see figures below). We
denote the resulting path by g(c)=ga(C). Note that it already has an
induced orientation.

In Fig. 4 we present a V-pentomino (cf. [G]), which is encoded by
a=(+1,+1, −1, −1) in our notation, along with 5 vectors v0, ..., v4, and
the corresponding polygon. Note that a priori, it is unclear whether our
map is well-defined, i.e., whether all tileable regions correspond to closed
loops in V. By definition, g(C) is only a path starting at O −, with straight
edges.
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Lemma 3.2. The above map ga is well-defined, i.e. for any simply con-
nected region C tileable by Tn, the path ga(C) is a closed loop in V.

Proof. We prove the result by induction on the area of C. Suppose y is
one of the ribbon tiles and let (k+1mod n) be the label of the square in
the lower left corner. Let O be the point in the upper left corner of this
square. Now observe that the sequence of edges in “y has two labels k, then
a sequence w of labels, then two labels k, and then the same sequence as w
but in the opposite order. Observe also that the first two edges, with the
label k, are directed counterclockwise, while the second two are clockwise.
This implies that the pieces of g(y), corresponding to these four edges, form
two straight parallel intervals oriented in opposite directions.

Note also, that each edge in the first sequence w has an orientation
which is opposite to that of a corresponding edge in the second (reversed)
w. Therefore, the pieces corresponding to the two w are exactly parallel to
each other, with a shift of 2vk. We conclude that g(y) is a closed loop in V,
so g is well-defined for ribbon tiles. This proves the base of our induction.

The induction step is straightforward. Let C be a region tileable by Tn.
Fix any tiling of C. Consider a tile y in the tiling such that C −=C0y is
simply connected. In [MP, Lemma 2.1] we prove that there always exists
such a tile.2 Now present “C as a union of two regions, “C − and “y (inter-

2 Versions of this result were also used in [CL, Pr].

sections of these will cancel each other as they have opposite orientations).
If both g(C −) and g(y) are closed, then g(C) is also closed. This completes
the proof. L

Let us present now a standard inductive definition of a signed area A(c)
of an oriented polygon c in V (see, e.g., [GO]). If c is not self-intersecting,
define A(c) to be the usual area times ±1 depending on whether c is
oriented counterclockwise or not. If c is self-intersecting at point x, split c
into the disjoint union of two c1 and c2 (separated by the point x), and let
A(c)=A(c1)+A(c2).

Now let C be a region tileable by Tn. Let us show that for any a, the
signed area of c=ga(C) is invariant under parallel translation of C (recall
that the construction of ga involves a fixed labeling of the plane, so a priori
it may differ for C − ’ C). Indeed, observe that for a parallel translation
C − ’ C, we have a cyclic shift of the labels of the edges in “C −. Therefore
ga(C −) is simply a rotation of ga(C) by a multiple of 2pan . Thus these two
loops have the same signed area A(ga(C −))=A(ga(C)). Similarly, the
choice of the starting point O ¥ “C (and O − ¥ V) doesn’t change the signed
area of c. We shall prove now that there exists a closed formula for A(c)
when C is a ribbon tile.
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Proposition 3.3. Let c=ga(ya), where a=(a1, ..., an−1) ¥ {±1}n−1.
Then

A(c)=2 C
n−1

k=1
ak sin

2pk a
n
.

Proof. This follows immediately from the analysis used in the induction
step in the proof of Lemma 3.2. Indeed, let us translate the tile y so that the
lower left square has label 1. Also, choose point O ¥ “y as in the proof
above. Recall that the signed area remains unchanged. Observe that the
signed area is exactly the area of the parallelogram whose vertices are the
endpoints of two horizontal intervals of length 2. Therefore A(c)=
2·height, where height is the height of the image of a sequence of labels w,
defined as in the proof above. Now, the height of the image of w is the sum
of the heights of each of the vectors vk, taken with a sign ak, for k=
1, ..., n−1. This implies the formula in the proposition. L

Proposition 3.4. Let n * C be a tiling of C by ribbon tiles in Tn. Then

C
y ¥ n

A(ga(y))=A(ga(C)), for all 1 [ a [ n−1.

Proof. This is an immediate corollary of the induction step in the proof
of Lemma 3.2. Indeed, let us prove the claim by induction on the area of C.
The claim is trivial when C=y ¥ Tn.

Now, by construction, c is a union of c1 and c2, where c=ga(C),
c1=ga(C −), and c2=ga(y). By definition, this implies that A(c)=A(c1)+
A(c2). This completes the inductive step and finishes the proof. L

Proof of Theorem 3.1. This is a corollary of Propositions 3.3 and 3.4.
Indeed, Proposition 3.4 implies that

Fa(y)=
1
2 A(ga(y))

for every ribbon tile y ¥ Tn, and every 1 [ a [ n−1. Now Proposition 3.4
implies that Fa satisfies the definition of a tile invariant. L

4. EXAMPLES

Let n=3. In Fig. 5, we show all four ribbon trominoes ya, along with the
corresponding polygons g1(ya) ¥ V. Let us calculate the values of the adèle
invariant F1. Consider the straight trominoes first. Observe that the signed
area of the corresponding polygons is zero. Indeed, the two equilateral
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FIG. 5. Four ribbon trominoes ya and the corresponding closed loops g1(ya).

triangles cancel each other, since we circle one equilateral triangle clockwise
and the other counterclockwise. On the other hand, for the two right tro-
minoes the adèle invariant F1=±`3. Indeed, in both cases these
polygons circle eight equilateral triangles, in the first case counterclockwise
and in the other clockwise. Thus the signed area is A=±8 `3

4
=±2`3,

which implies the claim.
Now observe that 1

`3
·F1 coincides with the Conway–Lagarias invariant

(see Section 1). This gives a new interpretation of this remarkable invariant
in terms of an ‘‘area,’’ rather than the ‘‘winding number’’ as defined in
[CL].

Let us note here that for n=3, 4 the group of translations of V=C by
integer linear combinations of vectors vi is a lattice in V. Thus the corre-
sponding polygons g(y) have a natural combinatorial group structure and
can be described by the technique of [CL]. However, for other values of n
these vectors do not form a lattice, and instead form a dense set in the
plane. This explains the reason why [MP] were able to completely resolve
the case n=4, and why the case n=5 has remained mysterious until now.
(We note that signed area on the square grid is used to study other tetro-
minoes in [Pr].)

Consider the case n=5. Let us calculate the adèle invariant of several
ribbon pentominoes. First, let y be the V-pentomino, which corresponds to
a=(+1,+1, −1, −1). We have

F1(y)=
1
2
A(g1(ya))=sin

2p
5
+sin

4p
5
− sin

6p
5
− sin

8p
5

=2 sin
2p
5
+2 sin

4p
5
==5+`5

2
+=5−`5

2
.

The same calculation can be done for all remaining ribbon pentominoes
(see Fig. 6). For example, for I- and Z-pentominoes, which correspond to
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FIG. 6. Several ribbon pentominoes ya and the corresponding closed loops g1(ya). The
remaining ribbon pentominoes, as well as the corresponding closed loops, can be obtained
from these by rotation, reflection, etc.

(+1,+1,+1,+1) and (−1,+1,+1, −1), all adèle invariants are zero. In
general, we have:

Proposition 4.1. Let y be a ribbon tile with a 180° rotational symmetry.
Then Fa(y)=0 for all 1 [ a [ n−1.

Proof. Having 180° symmetry implies that ak=an−k for all k < n2 . On
the other hand, we have sin 2pk an =−sin 2p(n−k) an , i.e., all the sign terms in the
expression for Fa( · ) cancel each other. This implies the result. L

Before we conclude, let us state two possible ways of deriving the linear
relations in Conjecture 1.1 from adèle invariants.

We consider only the case n=5. Recall that sin p5 and sin 2p5 are rationally
independent. Observe that for all regions C tileable by T5, we have

F1(C)=−2c1 sin
2p
5
−2c2 sin

4p
5
,(j)

where c1=c1(C) and c2(C) are as in Conjecture 1.1. Indeed, this holds for
all ribbon tiles y ¥ T5, and thus by additivity for all tileable simply con-
nected regions C. Since c1 and c2 are integers, by rational independence, the
adèle invariant then induces two integer-valued invariants.

Another approach is based on using both F1 and F2. We have

F2(y)=−2c1 sin
4p
5
+2 c2 sin

2p
5
.(jj)
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We can write both (j) and (jj) as

(F1, F2)=−2 (c1, c2) R sin
2p
5

sin
4p
5

sin
4p
5
− sin

2p
5

S .
Since the matrix on the r.h.s. is invertible, we can obtain c1 and c2 as a
linear combination of F1, F2 (the same for every tile ya ¥ T5).

We will show in the next section that we can generalize this argument for
any n, and prove Theorem 1.2.

5. PROOF OF THEOREM 1.2

Let n=2m+1 be an odd integer, n \ 3. We claim that in this case the
functions Fa(y), 1 [ a [ m, are linearly independent (as real functions on
Tn). Similarly, when n=2m is an even integer, the functions Fa(y),
1 [ a < m, are linearly independent (note that Fm — 0 in this case). Let us
state this as follows:

Lemma 5.1. For all n, we have dimOF1, ..., FmP=m, where m=N
(n−1)
2 M.

Proof of Theorem 1.2. By Proposition 2.3, it suffices to prove only
the first part of Conjecture 1.1. We claim that this part follows from
Lemma 5.1. Indeed, let W=Of1, ..., fmP, where fk is a k-convexity
invariant defined in the proof of Proposition 2.3.

Using sin 2pka/n=−sin 2p(n−k) a/n, we can rewrite the ath adèle
invariant as

Fa(ya)=C
m

k=1
(ak−an−k) sin

2pk a
n
=−2 C

m

k=1
(ek− en−k) sin

2pk a
n

=−2 C
m

k=1
fk sin

2pk a
n
,

where a=(a1, ..., an−1) ¥ {±1}n−1, e=(e1, ..., en−1) ¥ {0, 1}n−1, ak=1−2ek,
for all 1 [ k [ n−1 (so that ya=ye). This implies that Fa ¥W. From
Lemma 5.1 we obtain

m=dimOF1, ..., FmP [ dimOf1, ..., fmP=dimW [ m,

and therefore O F1, ..., FmP=W. We conclude fk ¥ OF1, ..., FmP for all
1 [ k [ m. The linearity of tile invariants implies that fk is a tile invariant
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of the set Tn of ribbon tiles (cf. proof of Proposition 2.3). This completes
the proof of Theorem 1.2. L

Proof of Lemma 5.1. Suppose n=2m+1 is odd. Consider two n×n
matrices X=(xk, a), Y=(yk, a), 0 [ k, a [ n−1, defined as

xk, a=cos
2pk a
n
, yk, a=sin

2pk a
n
.

Since Z=X+i·Y is a Vandermonde matrix Z=(zk, a), zk, a=
exp(2pik a/n), we immediately have

det(Z)= D
0 [ k < a [ n−1

(e2pik/n−e2pia/n) ] 0.

Thus rk(Z)=n.
From yk, a=−yn−k, a, y0, a=0, and xk, a=xn−k, a, we obtain rk(Y) [ m,

and rk(X) [ m+1. Since 2m+1=rk(Z)=rk(X+iY) [ rk(X)+rk(Y),
we immediately have rk(Y)=m. From yk, a=−yk, n− a, 1 [ a [ m, we
conclude that an m×(n−1) submatrix Y −=(xk, a), where 1 [ k [ n−1,
1 [ a [ m, has rank rk(Y −)=m. One can think of a ¥ {±1}n−1 as vectors
Rn−1. Since

(F1(ya), ..., Fm(ya))=(a) ·Y −

and dimOaP=n−1, we get dimOF1, ..., FmP=m.
When n=2m, the proof follows verbatim, except that in this case
ym, a=±y0, a=±1 (depending on the parity of a). Then rk(X)=rk(Y)
=m, and the result follows. L

6. FINAL REMARKS

The main result in this paper can be viewed as an existence of a large
number of invariants for tilings by ribbon tiles. Still, the source of these
invariants remains something of a mystery, yet to be discovered. It seems
that such a rich structure of invariants is an exception rather than the rule,
and these sets of tiles enjoy some special properties others do not. In this
section we shall speculate on the possible explanations for these questions.

Let us start by saying, that although we do not pursue here the ‘rational
independence’ approach (see Section 4), it can in fact be used. In fact, it is
quite straightforward for prime n, while for composite n one has to employ
Fd, for each d | n and Möbius inversion. In the original version of the
paper the authors favored this idea, while at the end we chose to employ an
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elementary linear algebra approach. Let us mention here that the argu-
ments in Section 5, while elementary, were influenced by the ideas in [BF].
As the referee pointed out, one can think of the proof as an application of
the discrete Fourier transform.

We shall note here, that miraculously, for any n, the real-valued tile
invariant F1 already induces a large number f(n)=W(n/log log n) of
linearly independent integer-valued ribbon tile invariants. It would be
interesting to find other examples of this phenomenon.

Let us now state the following conjecture, which seems more plausible
now in view of Theorem 1.2.

Conjecture 6.1 [P1]. Define 2-flips to be transformations of tilings by
Tn which involve exactly two tiles. Then for any simply connected region
C, and any two tilings n, n − of C, there is a sequence of 2-flips which moves
n into n −.

The are several reasons behind this conjecture. For n=2 the truth of the
assertion is well known (see, e.g., [T1]). For n \ 3 it has been established
when C has the shape of a Young diagram [P1] or skew Young
diagram [P2]. For n=3 it was also proved by an ad hoc argument for a
very special set of regions [W]. There is also a topological reason in favor
of the conjecture [T2]. Perhaps the most compelling reason,3 however, is

3 As the referee validly points out, this is rather a reason for wishing that Conjecture 6.1
were true. While we agree, we leave the final judgement to the reader.

given by the following result:

Proposition 6.2 [P1]. Conjecture 6.1 implies Theorem 1.2.

Indeed, assume the conjecture. Then to prove Theorem 1.2 one needs
only to check that the invariants are preserved along the 2-flips. As the
structure of the flips is known, this is straightforward. We refer to [P1] for
details.

To conclude, let us speculate on how Conjecture 6.1 can be proved. The
most promising and relevant method seem the ‘‘height representation’’
approach, pioneered in this context by Thurston [T1].4 In view of impor-

4 Interestingly, Thurston’s paper [T1] was inspired by [CL].

tance of the subject, let us elaborate on this.
A height representation is a way of assigning a height to each site in the

lattice so that a given tiling corresponds to a surface, i.e., a function from
the lattice to the space in which the heights take their values. While the best-
known height representations are integer-valued, in general they can be two-
or more-dimensional vectors, or elements of a non-Abelian group (see [K,
KK, MP, Pr, T1].
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Height representations have many uses. If one desires to sample ran-
domly from the set of tilings of a given simply connected region, these
representations can be used to prove that this set is connected under some
set of local moves [K, R], to devise exact sampling Monte Carlo algo-
rithms based on these moves [PW], and to place upper limits on the
mixing time of these algorithms [LRS]. They can also be used to develop
an efficient algorithm to tell whether a given region can be tiled at all
[K, R], which is interesting since this problem is NP-complete in general,
even for some simple sets of tiles (see, e.g., [MR]).

For tilings, the standard approach is to define how the height changes,
by small increments, as we move along the boundary between one tile and
another. In order for the height to be a single-valued function, it must
return to its original value whenever we travel around a loop. Therefore,
each type of tile induces a relation in the height group [CL, T1], or, in the
Abelian case, a linear constraint on the amount by which the height
increases or decreases as we traverse different kinds of edges.

For instance, domino tilings of the square lattice have a height represen-
tation which can be thought of as follows. We color the lattice as a
checkerboard, with white and black squares alternating. Whenever we
move along an edge of the lattice, we change the height by+1 if the square
on our left is black, and −1 if it is white. The reader can easily check that a
set of moves encircling a horizontal or vertical domino will have a total
height change of +1+1+1−1−1−1=0. In fact, this is our mapping g in
the case n=2. We refer the reader to [KK, R, T1] for other examples and
details.

Now consider what happens in our case. We define a complex-valued
height function which is defined by local rules. It seem likely that our
height function is a projection onto two dimension of the height function
with values in an n-dimensional lattice [T2], but we were unable to make
this observation precise. If only we could show a ‘‘nice’’ behavior under
2-flips, we would be able to prove Conjecture 6.1 and perhaps even give a
linear time algorithm for checking tileability by ribbon tiles. So far, this
remains a fantasy, so we leave the reader here until further developments.
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Note added in proof. Conjecture 6.1 was recently resolved by Scott Sheffield in ‘‘Ribbon
tilings and multidimensional height functions,’’ to appear in Trans. Amer. Math. Soc.
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