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Abstract. The Stanley–Yan (SY) inequality gives the ultra-log-concavity for the numbers of
bases of a matroid which have given sizes of intersections with k fixed disjoint sets. The inequality
was proved by Stanley (1981) for regular matroids, and by Yan (2023) in full generality. In the
original paper, Stanley asked for equality conditions of the SY inequality, and proved total equality
conditions for regular matroids in the case k = 0.

In this paper, we completely resolve Stanley’s problem. First, we obtain an explicit description
of the equality cases of the SY inequality for k = 0, extending Stanley’s results to general matroids
and removing the “total equality” assumption. Second, for k ≥ 1, we prove that the equality cases
of the SY inequality cannot be described in a sense that they are not in the polynomial hierarchy
unless the polynomial hierarchy collapses to a finite level.

1. Introduction

1.1. Foreword. Among combinatorial objects, matroids are fundamental and have been exten-
sively studied in both combinatorics and their applications to other fields (see e.g. [Ox11, Sch03]).
In recent years, a remarkable progress has been made towards understanding log-concave matroid
inequalities for various matroid parameters (see e.g. [Huh18, Kal23]). Much less is known about
their equality conditions as they remain inaccessible by algebraic techniques (see Section 2).

The Stanley–Yan (SY) inequality is a very general log-concave inequality for the numbers of
bases of a matroid which have given sizes of intersections with k fixed sets. In this paper we
completely resolve Stanley’s open problem [Sta81, p. 60], asking for equality conditions for the
SY inequality, although probably not in the way Stanley had expected: we give a positive result
for k = 0 and a negative result for k ≥ 1.

Since known proofs of the SY inequality are independent of k, it came as a surprise that
the equality conditions have a completely different nature for different k. Curiously, our negative
result is formalized and proved in the language of computational complexity. Even as a conjecture
this was inconceivable until our recent work (cf. §15.1).

1.2. Stanley’s problem. Let M be a matroid or rank r = rk(M), with a ground set X of size
|X| = n. Denote by B(M) the set of bases of M. This is a collection of r-subsets of X. Fix
integers k ≥ 0 and 0 ≤ a, c1, . . . , ck ≤ r. Additionally, fix disjoint subsets R,S1, . . . , Sk ⊂ X.
Define

BSc(M, R, a) :=
{
A ∈ B(M) : |A ∩R| = a, |A ∩ S1| = c1, . . . , |A ∩ Sk| = ck

}
,

where S = (S1, . . . , Sk) and c = (c1, . . . , ck). Denote BSc(M, R, a) := |BSc(M, R, a)|, and let

PSc(M, R, a) := BSc(M, R, a)
(

r
a,c1 ,...,ck ,υ

)−1
,

where υ = r − a− c1 − . . .− ck . See §3.2 for the matroid definition and notation.

Theorem 1.1 (Stanley–Yan inequality, [Sta81, Thm 2.1] and [Yan23, Cor. 3.47]).

(SY) PSc(M, R, a)2 ≥ PSc(M, R, a+ 1) PSc(M, R, a− 1).
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This inequality was discovered by Stanley who proved it for regular (unimodular) matroids
using the Alexandrov–Fenchel inequality. The inequality was extended to general matroids by
Yan [Yan23], using Lorentzian polynomials. Both proofs are independent of k.

To motivate the result, Stanley showed in [Sta81, Thm 2.9] (see also [Yan23, Thm 3.48]), that
the Stanley–Yan (SY) inequality for k = 0 implies the Mason–Welsh conjecture (1971, 1972), see
(M1) in §2.2. This is a log-concave inequality for the number of independent sets of a matroid
(see §2.2), which remained a conjecture until Adiprasito, Huh and Katz [AHK18] famously proved
it in full generality using combinatorial Hodge theory.

In [Sta81, §2], Stanley asked for equality conditions for (SY) and proved partial results in this
direction (see below). Despite major developments on matroid inequalities, no progress on this
problem has been made until now. We give a mixture of both positive and negative results which
completely resolve Stanley’s problem. We start with the latter.

1.3. Negative results. Let M be a binary matroid given by its representation over F2 , and let
k ≥ 0, R ⊆ X, S ∈ Xk, a ∈ N, c ∈ Nk be as above. Denote by EqualitySYk the decision
problem

EqualitySYk :=
{
PSc(M, R, a)2 =? PSc(M, R, a+ 1) PSc(M, R, a− 1)

}
.

Here the input to the problem consists of a representation of the matroid M, subsets R,S1, . . . , Sk
of the ground set, and integers a, c1, . . . , ck. The integer k is the only fixed parameter.

Theorem 1.2 (k ≥ 1 case). For all k ≥ 1, we have:

EqualitySYk ∈ PH =⇒ PH = Σp
m for some m,

for binary matroids. Moreover, the result holds for a = 1 and c1 = r − 2.

This gives a negative solution to Stanley’s problem for k ≥ 1. Informally, the theorem states
that equality cases of the Stanley–Yan inequality (SY) cannot be described using a finite num-
ber of alternating quantifiers ∃ and ∀, unless a standard complexity assumptions fails (namely,
that the polynomial hierarchy PH collapses to a finite level1). This is an unusual application of
computational complexity to a problem in combinatorics (cf. §15.1). The proof of Theorem 1.2 is
given in Section 8, and uses technical lemmas developed in Section 4–7.

The theorem does not say that no geometric description of (SY) can be obtained, or that some
large family of equality cases cannot be described. In fact, the vanishing cases we present below
(see Theorem 1.6), is an example of the latter.

The proof of Theorem 1.2 uses the combinatorial coincidences approach developed in [CP24d,
CP23a]. We also use the analysis of the spanning tree counting function through continued
fractions (see §15.6 below). Paper [CP23a] is especially notable, as it can be viewed both a
philosophical and (to a lesser extent) a technical prequel to this paper. There, we prove that the
equality cases of the Alexandrov–Fenchel inequality are not in PH for order polytopes (under the
same assumptions). See §15.2 for possible variations of the theorem for other classes of matroids.

1.4. Positive results. For k = 0, we omit the subscripts:

B(M, R, a) :=
∣∣{A ∈ B(M) : |A ∩R| = a

}∣∣ and P(M, R, a) := B(M, R, a)
(
r
a

)−1
.

Denote by NL(M) the set of non-loops in M, i.e. elements x ∈ X such that {x} is an independent
set. For a non-loop x ∈ NL(M), denote by ParM(x) ⊆ X the set of elements of M that are parallel
to x, i.e. elements y ∈ X such that {x, y} is not an independent set. The following two results
(Theorem 1.3 and Proposition 1.4) give a positive solution to Stanley’s problem for k = 0.

1This is a standard assumption in theoretical computer science that is similar to P ̸= NP (stronger, in fact), and
is widely believed by the experts. If false it would bring revolutionary changes to the field, see e.g. [Aar16, Wig23].
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Theorem 1.3 (k = 0 case). Let M be a matroid of rank r ≥ 2 with a ground set X. Let R ⊂ X,
and let 1 ≤ a ≤ r − 1. Suppose that P(M, R, a) > 0. Then the equality

(1.1) P(M, R, a)2 = P(M, R, a+ 1) P(M, R, a− 1)

holds if and only if for every independent set A ⊂ X s.t. |A| = r − 2 and |A ∩ R| = a− 1, and
every non-loop x ∈ NL(M/A), we have:

(1.2) |ParM/A(x) ∩R| = s |ParM/A(x) ∩ (X −R)| for some s > 0.

In particular, Theorem 1.3 resolves a conjecture of Yan (Conjecture 1.10 in §1.6 below). We
prove the theorem in Section 10 using the combinatorial atlas technology, see §2.3. This is a
technical linear algebraic approach we developed in [CP22a, CP24a] to prove both the inequalities
and the equality cases of matroid and poset inequalities, as well as their generalizations. Notably,
we obtain the equality cases of Mason’s ultra-log-concave inequality [CP24a, §1.6], and we use a
closely related setup in this case.

1.5. Vanishing conditions. Note that when P(M, R, a) = 0, we always have equality in (1.1).
The following nonvanishing conditions give a description to such equality cases:

Proposition 1.4 (nonvanishing conditions for k = 0). Let M be a matroid of rank r = rk(M)
with a ground set X, and let R ⊆ X. Then, for every 0 ≤ a ≤ r, we have: P(M, R, a) > 0
if and only if

r − rk(X ∖R) ≤ a ≤ rk(R).

The proposition is completely straightforward and is a special case of a more general Theo-
rem 1.6, see below. Combined, Theorem 1.3 and Proposition 1.4 give a complete description of
equality cases of the Stanley–Yan inequality (SY) for k = 0.

It is natural to compare our positive and negative results, in the complexity language. In
particular, Theorem 1.2 shows that EqualitySYk ̸∈ coNP, for all k ≥ 1 (unless PH collapses).
In other words, it is very unlikely that there is a witness for (SY) being strict that can be verified
in polynomial time. This is in sharp contrast with the case k = 0 :

Corollary 1.5. Let M be a matroid given by a succinct presentation. Then:

EqualitySY0 ∈ coNP.

Here by succinct we mean a presentation of a matroid with an oracle which computes the
rank function (of a subset of the ground set) in polynomial time, see e.g. [KM22, §5.1]. Matroids
with succinct presentation include graphical, transversal and bicircular matroids (see e.g. [Ox11,
Wel76]), certain paving matroids based on Hamiltonian cycles [Jer06, §3], and matroids given
by their representation over fields Fq or Q. By a mild abuse of notation, we use EqualitySYk

to denote the equality decision problem of the Stanley–Yan inequality (SY) for general matroids
given by a succinct presentation.

Corollary 1.5 follows from the explicit description of the equality cases given in Theorem 1.3
and Proposition 1.4. See also Section 13 for several examples, and §15.4 for further discussion of
computational hardness of EqualitySY0 .

Theorem 1.6 (nonvanishing conditions for all k ≥ 0). Let M = (X, I) be a matroid with a
ground set X and independent sets I ⊂ 2X . Let r = rk(M) be the rank of M. Let S = (S1, . . . , Sℓ)
be a set partition of X, i.e. we have X = ∪iSi and Si ∩ Sj = ∅ for all 1 ≤ i < j ≤ ℓ. Finally,

let c = (c1, . . . , cℓ) ∈ Nℓ. Then, there exists an independent set A ∈ I such that

|A ∩ Si| = ci for all i ∈ [ℓ]

if and only if

rk
(
∪i∈L Si

)
≥
∑
i∈L

ci for all L ⊆ [ℓ], L ̸= ∅.
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One can think of this result as a positive counterpart to the (negative) Theorem 1.2. In
the language of Shenfeld and van Handel [SvH22, SvH23], the vanishing conditions are “trivial”
equality cases of the SY inequality, in a sense of having a simple geometric meaning rather than
ease of the proof. We prove the Theorem 1.6 in Section 11 using the discrete polymatroid theory.

Note that Proposition 1.4 follows from Theorem 1.6, by taking S1 ← R, S2 ← X ∖R, c1 ← a,
and c2 ← (r−a). More generally, the complexity of the vanishing for all k ≥ 0 follows immediately
from Theorem 1.6, and is worth emphasizing:

Corollary 1.7. Let M be a matroid given by a succinct presentation. Then, for all fixed k ≥ 0,
the problem

{
BSc(M, R, a) >? 0

}
is in P.

1.6. Total equality cases. Throughout this section, we let k = 0. We start with a simple
observation whose proof is well-known and applies to all positive log-concave sequences.

Corollary 1.8. Let M be a matroid of rank r ≥ 2 with a ground set X, and let R ⊆ X. Suppose
P(M, R, 0) > 0 and P(M, R, r) > 0. Then:

(1.3) P(M, R, 1)r ≥ P(M, R, 0)r−1 P(M, R, r).

Moreover, the equality in (1.3) holds if and only if (SY) is an equality for all 1 ≤ a ≤ r − 1.

For completeness, we include a short proof in §12.1. This motivates the following result that is
more surprising than it may seem at first:

Theorem 1.9 (total equality conditions, [Sta81] and [Yan23]). Let M be a loopless regular matroid
of rank r ≥ 2 with a ground set X, and let R ⊆ X. Suppose that P(M, R, 0) > 0 and P(M, R, r) >
0. Then the following are equivalent :

(i) P(M, R, 1)r = P(M, R, 0)r−1 P(M, R, r),

(ii) P(M, R, a)2 = P(M, R, a+ 1) P(M, R, a− 1) for all a ∈ {1, . . . , r − 1},
(iii) P(M, R, a)2 = P(M, R, a+ 1) P(M, R, a− 1) for some a ∈ {1, . . . , r − 1},
(iv) |ParM(x) ∩R| = s |ParM(x) ∩ (X −R)| for all x ∈ X and some s > 0.

Conjecture 1.10 ([Yan23, Conj. 3.40]). The conclusion of Theorem 1.9 holds for all loopless
matroids.

The equivalence (i) ⇔ (ii) is the second part of Corollary 1.8 and holds for all matroids. The
implication (ii) ⇒ (iii) is trivial. The equivalence (i) ⇔ (iv) was proved by Stanley for regular
matroids [Sta81, Thm 2.8] (see also [Yan23, Thm 3.34]). Similarly, the implication (iii) ⇒ (ii)

was proved in [Yan23, Lem 3.39] for regular matroids. The implication (iv) ⇒ (ii) was proved
in [Yan23, Thm 3.41] for all matroids. The following result completely resolves the remaining
implications of Yan’s Conjecture 1.10.

Theorem 1.11. In the notation of Theorem 1.9, we have:

(1) (i) ⇔ (ii) ⇔ (iv) for all loopless matroids, and

(2) there exists a loopless binary matroid M s.t. (iii) holds but not (ii).

The theorem is another example of the phenomenon that regular matroids satisfy certain ma-
troid inequalities that general binary matroids do not (see e.g. [HSW22] and §15.4). The proof of
Theorem 1.11 is given in Section 12, and is based on Theorem 1.3. The example in Theorem 1.11
part (2) can be found in §13.3.
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1.7. Counting spanning trees. At a crucial step in the proof of Theorem 1.2, we give bounds
for the relative version of the tree counting function, see below. This surprising obstacle occupies
a substantial part of the proof (Sections 5 and 6). It is also of independent interest and closely
related to the following combinatorial problem.

Let G = (V,E) be a connected simple graph. Denote by τ(G) the number of spanning trees
in G. Sedláček [Sed70] considered the smallest number of vertices α(N) of a planar graph G with
exactly N spanning trees: τ(G) = N .2

Theorem 1.12 (Stong [Sto22, Cor. 7.3.1]). For all N ≥ 3, there is a simple planar graph G with

O
(
(logN)3/2/(log logN)

)
vertices and exactly τ(G) = N spanning trees.

Until this breakthrough, even α(N) = o(N) remained out of reach, see [AŠ13]. As a warmup,
Stong first proves this bound in [Sto22, Cor. 5.2.2], and this proof already involves a delicate
number theoretic argument. Naturally, Stong’s Theorem 1.12 is much stronger. The following
result is a variation of Stong’s theorem, and has the advantage of having an elementary proof.

Theorem 1.13. For all N ≥ 3, there is a planar graph G with O(logN log logN) edges and
exactly τ(G) = N spanning trees.

Compared to Theorem 1.12, note that graphs are not required to be simple, but the upper bound
in terms of edges is much sharper (in fact, it is nearly optimal, see §15.6). Indeed, the planarity
implies the same asymptotic bound for the number of vertices and edges in G.3 Theorem 1.13
is a byproduct of the proof of the following lemma that is an intermediate result in the proof of
Theorem 1.2.

For an edge e ∈ E, denote by G − e and G/e the deletion of e and the contraction along e.
Define the spanning tree ratio as follows:

ρ(G, e) :=
τ(G− e)
τ(G/e)

.

Lemma 1.14 (spanning tree ratios lemma). Let A,B ∈ N such that 1 ≤ B ≤ A ≤ 2B ≤ N .
Then there is a planar graph G with O

(
(logN)(log logN)2

)
edges and ρ(G, e) = A/B spanning

tree ratio.

Note that the spanning tree ratios are not attainable by the tools in [Sto22]. This is why we
need a new approach to the analysis of the spanning tree counting function, giving the proof of
both Theorem 1.13 and Lemma 1.14 in Section 6.

Our approach follows general outlines in [CP23a, CP24c], although technical details are largely
different. Here we use a variation on the celebrated Hajós construction [Haj61] (see also [Urq97]),
introduced in the context of graph colorings. Also, in place of the Yao–Knuth [YK75] “average
case” asymptotics for continued fractions used in [CP23a], we use more delicate “best case” bounds
by Larcher [Lar86].

Finally, note that the lemma gives the spanning tree ratio ρ(G, e) in the interval [1, 2]. In the
proof of Theorem 1.2, we consider more general ratios. We are able to avoid extending Lemma 1.14
by combining combinatorial recurrences and complexity ideas.

1.8. Paper structure. In Section 2, we give an extensive historical background of many strains
leading to the two main results (Theorems 1.2 and 1.3). The material is much too rich to give
a proper review in one section, so we tried to highlight the results that are most relevant to our
work, leaving unmentioned many major developments.

In Section 3, we give basic definitions and notation, covering both matroid theory and compu-
tational complexity. In a short Section 4, we give a key reduction to the SY equality problem from

2The original problem considered general rather than planar graphs, see §2.5.
3Although Stong does not explicitly mention planarity in [Sto22], his construction involves only planar graphs.
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the matroid basis coincidence problem. In Sections 5 and 6 we relate spanning trees in planar
graphs to continuous fractions, and prove Theorem 1.13 and Lemma 1.14 in §6.1 along the way.

Sections 7 and 8 contain the proof of Theorem 1.2. Here we start with the proof of the
Verification lemma (Lemma 7.1), which uses our spanning tree results and number theoretic
estimates, and prove the theorem using a complexity theoretic argument.

In Sections 9 and 10, we give a proof of Theorem 1.3. We start with an overview of our
combinatorial atlas technology (Sections 9). We give a construction of the atlas for this problem
in §10.1 and proceed to prove the theorem. These two sections are completely independent from
the rest of the paper.

In Section 11, we discuss vanishing conditions and prove Theorem 1.6. We give examples
and counterexamples to equality conditions of (SY) in Section 13. In a short Section 14, we
present the generalized Mason inequality, a natural variation of the Stanley–Yan inequality for
the independent sets. We conclude with final remarks and several open problems in Section 15,
all of them in connection with matroid inequalities and computational complexity.

2. Background

2.1. Log-concave inequalities. Log-concavity is a classical analytic property going back to
Maclaurin (1929) and Newton (1732). Log-concavity is closely related to negative correlations,
which also has a long history going back to Rayleigh and Kirchhoff, see e.g. [BBL09]. Log-
concave inequalities for matroids and their generalizations (morphisms of matroids, antimatroids,
greedoids) is an emerging area in its own right, see [CP24a, Yan23] for detailed overview.

Stanley was a pioneer in the area of unimodal and log-concave inequalities in combinatorics,
as he introduced both algebraic and geometric techniques [Sta89], see also [Brä15, Bre89]. In
[Sta81], he gave two applications of the Alexandrov–Fenchel (AF) inequality for mixed volumes of
convex bodies, to log-concavity of combinatorial sequences. One is the (SY) for regular matroids.
The other is Stanley’s poset inequality for the number of linear extensions [Sta81, Thm 3.1] that
is extremely well studied in recent years, see a survey in [CP23b]. Among many variations, we
note the Kahn–Saks inequality which was used to prove the first major breakthrough towards the
1
3 −

2
3 conjecture [KS84].

Formally, let P = (X,≺) be a poset with |X| = n elements. A linear extension of P is an
order-preserving bijection f : X → [n]. Denote by E(P ) the set of linear extensions of P . Fix
x, z1, . . . , zk ∈ X and a, c1, . . . , ck ∈ [n]. Let Ezc(P, x, a) be the set of linear extensions f ∈ E(P ),
s.t. f(x) = a and f(zi) = ci for all 1 ≤ i ≤ k. Stanley’s poset inequality is the log-concavity of
numbers Nzc(P, x, a) := | Ezc(P, x, a)| :

(Sta) Nzc(P, x, a)
2 ≥ Nzc(P, x, a+ 1) · Nzc(P, x, a− 1).

These Stanley’s inequalities (SY) and (Sta) have superficial similarities as they were obtained in
the same manner, via construction of combinatorial polytopes whose volumes and mixed volumes
have a combinatorial interpretation. For regular matroids, Stanley used zonotopes spanned by the
vectors of a unimodular representation, while for posets he used order polytopes [Sta86]. Partly
motivated by Stanley’s paper, Schneider [Sch88] gives equality conditions for the AF inequality
in case of zonotopes. In principle, one should be able to derive Theorem 1.3 in the case of regular
matroids from Schneider’s result as well.

A word of caution: Although it may seem that inequalities (Sta) and (SY) are both consequences
of the AF inequality, and that this paper and [CP23a] cover the same or similar ground, in fact the
opposite is true. While (Sta) is a direct consequence of the AF inequality, only the computationally
easy part of the (SY) follows from the AF inequality. It took Lorentzian polynomials to prove
the computationally hard part of (SY). See Proposition 15.5 for the formal statement.

In [Sta81], Stanley asked for equality conditions for both matroid and poset inequalities that
he studied. He noted that the AF inequality has equality conditions known only in a few special
cases. He used one such known special case (dating back to Alexandrov), to describe equality
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cases of his matroid log-concave inequality for regular matroids (Theorem 1.9). The equality
conditions for (Sta) are now largely understood, see below.

Stanley’s inequality (SY) led to many subsequent developments. Notably, Godsil [God84]
resolved Stanley’s question to show that the generating polynomial∑

a

PSc(M, R, a)ta

has only real nonpositive roots (this easily implies log-concavity). Choe and Wagner [CW06]
proved that {PSc(M, R, a) : 0 < a < r} is log-concave for a larger family of matroids with the
half-plane property (HPP), see also [Brä15, §9.1].

In a remarkable series of papers, Huh and coauthors developed a highly technical algebraic
approach to log-concave inequalities for various classes of matroids, see an overview in [Huh18,
Kal23]. Most famously, Adiprasito, Huh and Katz [AHK18], proved a number of log-concave
inequalities for general matroids, some of which were conjectured many decades earlier. These
results established log-concavity for the number of independent sets of a matroid according to the
size (Mason–Welsh conjecture implied by the (SY) inequality, see below), and of the coefficients of
the characteristic polynomial (Heron–Rota–Welsh conjecture). After that much progress followed,
eventually leading to the proof of a host of other matroid inequalities.

2.2. Lorentzian polynomials. Lorentzian polynomials were introduced by Brändén and Huh
[BH20], and independently by Anari, Oveis Gharan and Vinzant [AOV18]. This approach led to a
substantial extension of earlier algebraic and analytic notions, as well as a major simplification of
the earlier proofs. Specifically, they showed that the homogeneous multivariate Tutte polynomial
of a matroid is a Lorentzian polynomial (see [ALOV24, Thm 4.1] and [BH20, Thm 4.10]). This
implied the ultra-log-concave inequality conjectured by Mason, i.e. the strongest of the Mason’s
conjectures.

Formally, let I(M, a) denotes the number of independent sets in matroid M of size a. Mason’s
weakest conjecture (the Mason–Welsh conjecture mentioned above) is the log-concave inequality

(M1) I(M, a)2 ≥ I(M, a+ 1) I(M, a− 1) for all 1 ≤ a ≤ (r − 1).

Similarly, Mason’s strongest conjecture (we skip the intermediate one), is the ultra-log-concave
inequality

(M2) I(M, a)2 ≥
(
1 + 1

a

) (
1 + 1

n−a

)
I(M, a+ 1) I(M, a− 1) for all 1 ≤ a ≤ (r − 1),

where n = |X| is the size of the ground set (see Section 14).
Most recently, Yan [Yan23] used Lorentzian polynomials to extend Stanley’s result from regular

to general matroids (Theorem 1.1). The resulting Stanley–Yan inequality (SY) is one of the most
general matroid results proved by a direct application of Lorentzian polynomials, and it easily
implies (M1) (we include this argument in §14 for the reader’s convenience).

2.3. Later developments. Recently, the authors introduced a linear algebra based combinatorial
atlas technology in [CP24a], which includes Lorentzian polynomials as a special case [CP22a, §5].
The authors proved equality conditions and various extensions of both Mason’s ultra-log-concave
inequality (for the number of independent sets of matroids), and for Stanley’s poset inequality
(Sta). Most recently, the authors used combinatorial atlases to establish correlation inequalities
for the numbers of linear extensions [CP24b]. These results parallel earlier correlation inequalities
by Huh, Schröter and Wang [HSW22].

In a separate development, Brändén and Leake introduced Lorentzian polynomials on cones
[BL23]. They were able to give an elementary proof of the Heron–Rota–Welsh conjecture. Note
that both combinatorial atlas and this new technology give new proofs of the Alexandrov–Fenchel
inequality, see [CP22a, §6] and [BL23, §6]. This is a central and most general inequality in convex
geometry, with many proofs none of which are truly simple, see e.g. [BZ88, §20].
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Shenfeld and van Handel [SvH23] undertook a major study of equality cases of the AF inequality.
They obtained a (very technical) geometric characterization in the case of convex polytopes,
making a progress on a long-standing open problem in convex geometry, see [Sch85]. They gave
a complete description of equality cases for (Sta) in the k = 0 case and showed that the equality
decision problem is in P.

The k = 0 equality cases of (Sta) were rederived in [CP24a] using combinatorial atlas, where
the result was further extended to weighted linear extensions. Shenfeld and van Handel’s approach
was further extended is in [vHYZ23] to the Kahn–Saks inequality (a diagonal slice of the k = 1
case), and in [CP23a] to the full k = 1 case of (Sta). For general k ≥ 2, Ma and Shenfeld [MS24]
gave a technical combinatorial description of the equality cases of (Sta). Notably, this description
involves #P oracles, and therefore is not naturally in PH.

2.4. Negative results. In a surprising development, the authors in [CP23a] showed that for
k ≥ 2, the equality conditions of Stanley’s poset inequality are not in PH unless PH collapses to a
finite level. In particular, this implied that the equality cases of the AF inequality for H-polytopes
with a concise description, are also not in PH, unless PH collapses to a finite level.

Prior to [CP23a], there were very few results on computational complexity of (equality cases)
of combinatorial inequalities. The approach was introduced by the second author in [Pak19], as
a way to show that certain combinatorial numbers do not have a combinatorial interpretation.
This was formalized as counting functions not being in #P, see survey [Pak22]. Various examples
of functions not in #P were given in [IP22], based on an assortment of complexity theoretic
assumptions.

It was shown by Ikenmeyer, Panova and the second author in [IPP24], that vanishing of Sn
characters problem [χλ(µ) =? 0] is C=P-complete. This implies that this problem is not in PH
unless PH collapses to the second level (ibid.). Finally, a key technical lemma in [CP23a] is based
on the analysis of the combinatorial coincidence problem. This is a family of decision problems
introduced and studied in [CP24d]. They are also characterised by a collapse of PH.

2.5. Spanning trees. Sedláček [Sed70] and Azarija–Škrekovski [AŠ13] considered two closely
related functions α′(N) and β′(N), defined to be the minimal number of vertices and edges,
respectively, over all (i.e., not necessarily planar) graphs G with τ(G) = N spanning trees. For
connected planar graphs, the number of edges is linear in the number of vertices, so this distinction
disappears.

In recent years, there were several applications of continued fractions to problems in combina-
torics. Notably, Kravitz and Sah [KS21] used continuous fractions to study a similar problem for
the number | E(P )| of linear extensions of a poset, see also [CP24c]. An earlier construction by
Schiffler [Sch19] which appeared in connection with cluster algebras, related continued fractions
and perfect matchings. We also mention a large literature on enumeration of lattice paths via
continued fractions, see e.g. [GJ83, Ch. 5].

2.6. Counting complexity. The problem of counting the number of bases and more generally,
the number of independent sets of given size, been heavily studied for various classes of matroids.
Even more generally, both problems are evaluations of the Tutte polynomial, and other evaluations
have also been considered. We refer to [Wel93] for both an introduction to the subject and a
detailed, though somewhat dated, survey of known results.

Among more recent work, let us mention #P-completeness for the number of trees (of all
sizes) in a graph [Jer94], the number of bases in bicircular matroids [GN06], in balanced paving
matroids [Jer06], rational matroids [Sno12], and most recently in binary matroids4 [KN23]. We
also note that the volumes of both order polytopes and zonotopes are #P-hard, see [BW91, §3]
and [DGH98, Thm 1]. See §15.4 for further results and applications.

4There is a mild controversy over priority of this result, see a short discussion in [CP24d, §6.3].
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Finally, in a major breakthrough, Anari, Liu, Oveis Gharan and Vinzant [ALOV19], used
Lorentzian polynomials to prove that the basis exchange random walk mixes in polynomial time.
This gave a FPRAS for the number of bases of a matroid, making a fast probabilistic algorithm
for approximate counting of bases. This resolved an open problem by Mihail and Vazirani (1989).
Previously, FPRAS for the number of bases was known for regular matroids [FM92], paving
matroids [CW96], and bicircular matroids [GJ21].

3. Notations and definitions

3.1. Basic notation. Let N = {0, 1, 2, . . .} and [n] = {1, . . . , n}. For a set A and an element
x /∈ A, we write A+ x := A ∪ {x}. Similarly, for an element x ∈ A, we write A− x := A \ {x}.

We use bold letters a = (a1, a2, . . .) to denote a sequence of integers, and A = (A1, . . . , An)
to denote a sequence of sets. We write v = (v1, . . . , vd) ∈ kd to denote vectors over the field k.
Let e1, . . . , ed denote the standard basis in kd, and let 0 = (0, . . . , 0) ∈ kd. Let Fq to denote the
finite field with q elements.

We say that v ∈ Rd is strictly positive if vi > 0 for all 1 ≤ i ≤ d. For a = (a1, . . . , ad) ∈ Nd,
denote |a| := a1 + . . . + ad. The support of a vector v = (v1, . . . , vd) ∈ Rd is the set of indices
i ∈ [d] such that vi ̸= 0. The support of a symmetric vector M= (Mi,j)i,j∈[d] is the set of indices
i ∈ [d] such that Mij ̸= 0 for some j ∈ [d].

3.2. Matroids. A (finite) matroid M is a pair (X, I) of a ground set X with |X| = n elements,
and a nonempty collection of independent sets I ⊆ 2X that satisfies the following:

• (hereditary property) A ⊂ B, B ∈ I ⇒ A ∈ I , and
• (exchange property) A, B ∈ I, |A| < |B| ⇒ ∃ x ∈ B \A s.t. A+ x ∈ I .

The rank of a matroid is the maximal size of the independent set, i.e., rk(M) := maxA∈I |A|. More
generally, the rank rk(A) of a subset A ⊆ X is the size of the largest independent set contained
in A. A basis of M is a maximal independent set of M, or equivalently an independent set with
size rk(M). We denote by B(M) the set of bases of M.

An element x ∈ X is a loop if {x} /∈ I, and is a non-loop otherwise. Matroid without loops is
called loopless.5 We denote by NL(M) the set of non-loops of M. Two non-loops x, y ∈ NL(M)
are parallel if {x, y} /∈ I. Note that the parallelship relation between non-loops is an equivalence
relation (see e.g. [CP24a, Prop 4.1]). The equivalence classes of this relation are called parallel
classes.

Given matroids M = (X, I), M′ := (X ′, I ′), the direct sum M⊕M′ := (Y,J ) is a matroid with
ground set Y = X ⊔X ′, and whose independent sets A ∈ J are disjoint unions of independent
sets: A = I ⊔ I ′, I ∈ I, I ′ ∈ I ′.

Let x ∈ NL(M). The deletion M− x is the matroid with ground set X and with independent
sets {A ⊆ X − x : A ∈ I}. The contraction M/x is the matroid with ground set X and with
independent sets {A ⊆ X − x : A + x ∈ I}. Note that both M/x and M − x share the same
ground set as M. This is slightly different than the usual convention, and is adopted here for
technical reasons that will be apparent in Section 10.

More generally, for B ⊆ NL(M), the contraction M/B is the matroid with ground set X and
with independent sets {A ⊆ X −B : A∪B ∈ I} . Recall the deletion–contraction recurrence for
the number of bases of matroids:

B(M) = B(M− x) + B(M/x).

A representation of a matroid M over the field k is a map ϕ : X → kd, such that

A ∈ I ⇐⇒ ϕ(x1), . . . , ϕ(xm) are linearly independent over k,
for every subset A = {x1, . . . , xm} ⊆ X. A matroid is binary if it has a representation over F2.
Matroid is rational if it has a representation over Q.

5Unless stated otherwise, we allow matroids to have loops and parallel elements.
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A matroid is regular (also called unimodular), if it has a representation over every field k.
Representation ϕ : X → Zd is called unimodular if det

(
ϕ(x1), . . . , ϕ(xr)

)
= ±1, for every basis

{x1, . . . , xr} ∈ B(M). Regular matroids are known to have a unimodular representation (see e.g.
[Ox11, Lem. 2.2.21]).

Let G = (V,E) be a finite connected graph, and let F be the set of forests in G (subsets F ⊆ E
with no cycles). Then MG = (E,F) is a graphical matroid corresponding to G. Bases of the
graphical matroid MG are the spanning trees in G, so B(MG) = τ(G). Recall that graphical
matroids are regular.

3.3. Complexity. We refer to [AB09, Gol08, Pap94] for definitions and standard results in com-
putational complexity, and to [Aar16, Wig19] for a modern overview.

We assume that the reader is familiar with basic notions and results in computational com-
plexity and only recall a few definitions. We use standard complexity classes: P, FP, NP, coNP,
#P, Σp

m, PH and PSPACE.
The notation {a =? b} is used to denote the decision problem whether a = b. We use the

oracle notation RS for two complexity classes R, S ⊆ PH, and the polynomial closure ⟨A⟩ for a
problem A ∈ PSPACE.

For a counting function f ∈ #P, the coincidence problem is defined as
{
f(x) =? f(y)

}
. Note

the difference with the equality verification problem
{
f(x) =? g(x)

}
. Unless stated otherwise,

we use reduction to mean a polynomial Turing reduction.

4. Reduction from coincidences

4.1. Setup. Let M = (X, I) be a binary matroid, let x ∈ X be a non-loop: x ∈ NL(M). Define
the basis ratio

ρ(M, x) :=
B(M− x)
B(M/x)

.

Denote by #Bases the problem of computing the number of bases B(M) in M. Similarly, denote
by #BasisRatio the problem of computing the basis ratio ρ(M, x).

Let M = (X, I) and N = (Y, I ′) be binary matroids, let x ∈ X and y ∈ Y be non-loop
elements: x ∈ NL(M), y ∈ NL(N). Consider the following decision problem:

BasisRatioCoincidence :=
{
ρ(M, x) =? ρ(N, y)

}
.

The following is the main technical lemma in the proof.

Lemma 4.1. BasisRatioCoincidence reduces to EqualitySY1 .

The lemma follows from two parsimonious reductions presented below.

4.2. Deletion-contraction coincidences. Let M = (X, I) be a binary matroid, and let x, y ∈
X be non-parallel and non-loop elements. Consider the following decision problem:

CoincidenceDC :=
{
B(M/x − y) =? B(M/y − x)

}
.

Lemma 4.2. CoincidenceDC reduces to EqualitySY1 .

Proof. Let ϕ : X → Fd
2 be a binary representation of M. Let X ′ := X ∪ {u, v}, where u, v

are two new elements. Consider a matroid M′ = (X ′, I ′) defined by its binary representation

ϕ′ : X ′ → Fd+1
2 , where

ϕ′(z) :=

{
(ϕ(z), 0) for z ∈ X,

(0, 1) for z ∈ {u, v}.
That is, we append a zero to the vector representation of all z ∈ X, and we represent u, v by the
basis vector ed+1 .
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Let r := rk(M) be the rank of M, and let n := |X| be the number of elements. Note that M′

is a matroid of rank r + 1 and with n + 2 elements. Note also that the bases of M′ are of the
form A+ u and A+ v, where A ∈ B(M) is a basis of M.

To define the reduction in the lemma, let

R := {x, u}, a := 1,

S := X − {x, y}, c := r − 1.

It then follows that
BSc(M

′, R, a+ 1) = B(M/x− y).
Indeed, BSc(M

′, R, a+ 1) are subsets A ⊆ X ∪ {u, v} that are of the form

A ∩R = {x, u}, A ∩ {y, v} = ∅, A− {u} ∈ B(M).

It then follows that A−{x, u} is a basis of M/x− y , and that this correspondence is a bijection,
proving our claim. By the argument as above, we have:

BSc(M
′, R, a) = B(M/x− y) + B(M/y − x),

BSc(M
′, R, a− 1) = B(M/y − x).

We have:

PSc(M
′, R, a)2 − PSc(M

′, R, a+ 1) PSc(M
′, R, a− 1)

= 1
r2(r+1)2

[
BSc(M

′, R, a)2 − 4BSc(M
′, R, a+ 1)BSc(M

′, R, a− 1)
]

= 1
r2(r+1)2

[(
B(M/x− y) + B(M/y − x)

)2 − 4B(M/x− y)B(M/y − x)
]

= 1
r2(r+1)2

(
B(M/x− y) − B(M/y − x)

)2
.

Therefore, we have:

PSc(M
′, R, a)2 = PSc(M

′, R, a+ 1) PSc(M
′, R, a− 1) ⇐⇒ B(M/y − x) = B(M/y − x),

which completes the proof of the reduction. □

4.3. Back to ratio coincidences. Lemma 4.1 now follows from the following reduction.

Lemma 4.3. BasisRatioCoincidence reduces to CoincidenceDC.

Proof. Let M,N, x, y be the input of BasisRatioCoincidence. Let M′ := M⊕N be the direct
sum of matroids M and N. Note that M′ is also binary. We have:

B(M′/x − y) = B(M/x)B(N − y) and B(M′/y − x) = B(M− x)B(N/y),
which proves the reduction. □

5. Planar graphs and continued fractions

5.1. Graph theoretic definitions. Throughout this paper G = (V (G), E(G)) will be a graph
with vertex set V (G) and edge set E(G), possibly with loops and parallel edges. We will write V
and E when the underlying graph G is clear from the context.

For an edge e = (v, w) ∈ E, the deletion G−e is the graph obtained by deleting the edge e from
the graph, and the contraction G/e is the graph obtained by identifying v and w, and removing
the resulting loops. Recall that τ(G) denotes the number of spanning trees in G. Note that τ(G)
satisfies the deletion-contraction recurrence for every non-loop e ∈ E:

τ(G) = τ(G− e) + τ(G/e).

Let G = (V,E) be a planar graph. For every planar embedding of G, the dual graph G∗ =
(V ∗, E) is the graph where vertices of G∗ are faces of G, and each edge is incident to faces of G
that are separated from each other by the edge in the planar embedding. While the dual graph
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G∗ can depend on the given planar embedding of G, we will not emphasize that as our proof is
constructive and the embedding will be clear from the context.

Note that deletion and contraction for dual graphs swap their meaning. Formally, for an edge
e ∈ E that is neither a bridge nor a loop, we have:

(5.1) τ(G− e) = τ(G∗/e) and τ(G/e) = τ(G∗ − e).
Therefore, ρ(G∗, e) = ρ(G, e)−1.

5.2. Continued fraction representation. Given a0 ≥ 0 , a1, . . . , as ≥ 1 , where s ≥ 0, the
corresponding continued fraction is defined as follows:

[a0 ; a1, . . . , as] := a0 +
1

a1 +
1

. . . + 1
as

.

Integers ai are called quotients or partial quotients, see e.g. [HW08, §10.1]. We refer to [Knu98,
§4.5.3] for a detailed asymptotic analysis of the quotients in connection with the Euclidean algo-
rithm, and further references.

The following result gives a connection between spanning trees and continued fractions. It is
inspired by a similar construction for perfect matchings given in [Sch19, Thm 3.2].

Theorem 5.1. Let a0, . . . , as ≥ 1 . Then there exists a connected loopless bridgeless planar graph
G = (V,E) and an edge e ∈ E, such that

τ(G− e)
τ(G/e)

= [a0 ; a1, . . . , as]

and |E| = a0 + . . .+ as + 1 .

We start with the following lemma.

Lemma 5.2. Let G = (V,E) be a connected loopless bridgeless planar graph, and let e ∈ E. Then
there exists a connected loopless bridgeless planar graph G′ = (V ′, E′) and e′ ∈ E′ such that

τ(G′ − e′)
τ(G′/e′)

= 1 +
τ(G− e)
τ(G/e)

and |E′| = |E|+ 1.

Proof. Let G′ be obtained from G by adding an edge e′ that is parallel to e. Note that G′ − e′ is
isomorphic to G, and G′/e′ is isomorphic to G/e, and it follows that

τ(G′/e′) = τ(G/e) and τ(G′ − e′) = τ(G) = τ(G− e) + τ(G/e).

This implies the lemma. □

5.3. Proof of Theorem 5.1. We use induction on s. For s = 0, let H be the graph with two
vertices and with a0 + 1 parallel edges connecting the two vertices, and let f be any edge of H.
Note that H − f is the same graph but with a0 edges instead, while H/f is the graph with one
vertex and a0 loops. Thus we have

τ(H − f) = a0 and τ(H/f) = 1.

We also have |E(H)| = a0 + 1. It then follows that

τ(H − f)
τ(H/f)

= a0 ,

and the claim follows by taking G← H and e← f .
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For s ≥ 1, by induction there exists a connected loopless bridgeless planar graph H and
f ∈ E(H) such that

τ(H − f)
τ(H/f)

= [a1; a2, . . . , as],

and with |E(H)| = a1 + . . .+ as + 1.
Now, by applying Lemma 5.2 a0 many times to H∗, there exists a graph G and a e ∈ E(G)

such that

τ(G− e)
τ(G/e)

= a0 +
τ(H∗ − f)
τ(H∗/f)

= a0 +
τ(H/f)

τ(H − f)
= a0 +

1

[a1; a2, . . . , as]
= [a0; a1, . . . , as],

and with |E(G)| = a0 + |E(H∗)| = a0 + . . .+ as + 1. This completes the proof. □

5.4. Sums of continued fractions. We now extend Theorem 5.1 to sums of two continued
fractions:

Theorem 5.3. Let a0, . . . , as, b0, . . . , bt ≥ 1 . Then there exists a connected loopless bridgeless
planar graph G = (V,E) and an edge e ∈ E, such that

τ(G− e)
τ(G/e)

=
1

[a0 ; a1, . . . , as]
+

1

[b0 ; b1, . . . , bt]

and |E| = a0 + . . .+ as + b0 + . . .+ bt + 1 .

We start with the following lemma.

Lemma 5.4. Let G,H be connected loopless bridgeless planar graphs, and let e ∈ E(G), f ∈
E(H). Then there exists a connected loopless bridgeless planar graph G′ and an edge e′ ∈ E(G′),
such that

τ(G′ − e′)
τ(G′/e′)

=
τ(G− e)
τ(G/e)

+
τ(H − f)
τ(H/f)

and E(G′) = E(G) + E(H)− 1.

Proof. Let e = (x, y) ∈ E(G) and let f = (u, v) ∈ E(H). Consider the graph

G′ := G⊕H/(x, u), (y, v)

obtained by taking the disjoint union of G and H, then identifying e and f . Denote by e′ ∈ E(G′)
the edge resulted from identifying e and f .

First, note that

τ(G′/e′) = τ(G/e) τ(H/f).(5.2)

This is because G′/e′ = (G/e ⊕H/f)/(x, u), i.e. can be obtained by identifying x with u in the
disjoint union of G/e and H/f .

Second, note that

τ(G′ − e′) = τ(G− e) τ(H/f) + τ(G/e) τ(H − f).(5.3)

Indeed, let T be a spanning tree of G′−e′. There are two possibilities. First, x and y are connected
in T through a path in G. Then, restricting T to edges of G gives us a spanning tree in G − e,
while restricting T to edges of H gives us a spanning tree of H/f . This bijection gives us the first
term in the RHS of (5.3).

Second, suppose that x and y are connected in T through a path in H. Then, restricting T to
edges of G gives us a spanning tree in G/e, while restricting T to edges of H gives us a spanning
tree of H − f . This bijection gives us the second term in the RHS of (5.3).

The lemma now follows by combining (5.2) and (5.3). □
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5.5. Proof of Theorem 5.3. By Theorem 5.1, there exists connected loopless bridgeless planar
graphs G,H and e ∈ E(G), f ∈ E(H) such that

τ(G− e)
τ(G/e)

= [a0 ; a1, . . . , as],
τ(H − f)
τ(H/f)

= [b0 ; b1, . . . , bt],

and with |E(G)| = a0 + . . .+ as +1, |E(H)| = b0 + . . .+ bt +1. Applying Lemma 5.4 to (G∗, e)
and (H∗, f), gives a planar graph G′ and e′ ∈ E(G′), such that

τ(G′ − e′)
τ(G′/e′)

=
τ(G∗ − e)
τ(G∗/e)

+
τ(H∗ − f)
τ(H∗/f)

=
τ(G/e)

τ(G− e)
+

τ(H/f)

τ(H − f)

=
1

[a0 ; a1, . . . , as]
+

1

[b0 ; b1, . . . , bt]

and E(G′) = E(G∗) + E(H∗)− 1 = a0 + . . .+ as + b0 + . . .+ bt + 1, as desired. □

6. Counting spanning trees

In this section, we prove Theorem 1.13 and Lemma 1.14.

6.1. Proof of Theorem 1.13. For α ∈ Q>0, consider the sum of the quotients of α :

s(α) := a0 + . . . + as where α = [a0 ; a1, . . . , as].

We will need the following theorem from number theory.

Theorem 6.1 (Larcher [Lar86, Cor. 2]). For m ≥ 9 and L ≥ 2, the set{
d ∈ [m] : gcd(d,m) = 1 and s

(
d
m

)
≤ L m

ϕ(m) logm log logm
}

contains at least
(
1− 16√

L

)
ϕ(m) many elements, where ϕ is the Euler’s totient function.

First, assume that N is prime and note that ϕ(N) = N − 1. By Larcher’s Theorem 6.1, there
exists d < N such that

s
(
d
N

)
≤ C logN log logN for some C > 0.

By Theorem 5.1 and planar duality (5.1), there exists a planar graph G = (V,E) and edge e ∈ E,
such that

τ(G− e)
τ(G/e)

=
N

d
and |E(G)| ≤ 1 + C logN log logN .

The conclusion follows by taking (G− e).
In full generality, let N = pb11 · · · p

bℓ
ℓ be the prime factorization of N . Let Gi = (Vi, Ei),

1 ≤ i ≤ ℓ, be the planar graphs constructed above:

τ(Gi) = pi and |Ei| ≤ C log pi log log pi .

Finally, let G = (V,E) be a union of bi copies of Gi attached at vertices, so that G is planar and
connected. Clearly, τ(G) = N and

|E| ≤
ℓ∑

i=1

biC log pi log log pi ≤

(
ℓ∑

i=1

bi log pi

)
C log logN = C

(
logN

)
log logN ,

as desired. □
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6.2. Number theoretic estimates. We start with the following number theoretic estimates
that is based on Larcher’s Theorem 6.1.

Proposition 6.2. There exists constants C,K > 0, such that for all coprime integers A,B which
satisfy C < B ≤ A ≤ 2B, there exists a positive integer m := m(A,B) such that m < B, and

s
(
m
A

)
≤ K (logA)(log logA)2 and s

(
B−m
A

)
≤ K (logA)(log logA)2.

Proof of Proposition 6.2. Define

ζ(A,B) :=
∣∣{m ∈ [B] : s

(
m
A

)
≤ K (logA)(log logA)2, s

(
B−m
A

)
≤ K (logA)(log logA)2

}∣∣.
We will prove a stronger claim, that ζ(A,B) = Ω

(
B
)
as C →∞.

It follows from the inclusion-exclusion, that

ζ(A,B) ≥B −
∣∣{m ∈ [B] : s

(
m
A

)
> K (logA)(log logA)2

}∣∣
−
∣∣{m ∈ [B] : s

(
B−m
A

)
> K (logA)(log logA)2

}∣∣.
On the other hand, we have∣∣{m ∈ [B] : s

(
m
A

)
> K (logA)(log logA)2 }

∣∣
≤
∣∣{m ∈ [A] : s

(
m
A

)
> K (logA)(log logA)2 }

∣∣
≤
∣∣{m ∈ [A] : s

(
m
A

)
> K

2
A

ϕ(A) logA log logA }
∣∣ ≤ 0.2A,

where the second inequality is because A
ϕ(A) < 2 log logA for sufficiently large A, and the third

inequality is because of Larcher’s Theorem 6.1. Similarly, we have∣∣{m ∈ [B] : s
(
B−m
A

)
> K logA (log logA)2 }

∣∣ ≤ 0.2A.

Combining these inequalities, we get

ζ(A,B) ≥ B − 0.4A ≥ 0.2B,

and the result follows. □

6.3. Proof of Lemma 1.14. It follows from Proposition 6.2, that there exists fixed K > 0 and
an integer m < B, such that

s
(
m
A

)
≤ K (logA)(log logA)2 and s

(
B−m
A

)
≤ K (logA)(log logA)2.

Let [a0, . . . , as] and [b0, . . . , bt] be a continued fraction representation of A/m and A/(B −m),
respectively. By Theorem 5.3, there exists a connected loopless bridgeless planar graph G and an
edge e ∈ E(G), such that

τ(G− e)
τ(G/e)

=
1

[a0 ; a1, . . . , as]
+

1

[b0 ; b1, . . . , bt]
=

B

A

and

|E(G)| = s
(
m
A

)
+ s

(
B−m
A

)
+ 1 ≤ 2K (logA)(log logA)2 + 1 = O

(
(logN)(log logN)2

)
.

Taking the dual graph G∗ gives the result. □

7. Verification of matroid basis ratios

Throughout this and the next section, we assume that all matroids are binary and given by
their binary representations.
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7.1. Setup. Let M = (X, I) be a binary matroid, let x ∈ NL(M), and let A,B ∈ N, where
B > 0. Consider the following decision problem:

BasisRatioVerification :=
{
ρ(M, x) =? A

B

}
.

Lemma 7.1 (verification lemma). NP⟨BasisRatioVerification⟩ ⊆ NP⟨BasisRatioCoincidence⟩.

The proof is broadly similar to that in [CP23a], but with major technical differences. We start
with the following simple result.

Lemma 7.2. Let M = (X, I) be a matroid on n = |X| elements, and let x ∈ X be a non-loop
of M. Then ρ(M, x) ≤ n.

Proof. To prove that

ρ(M, x) =
B(M− x)
B(M/x)

≤ n,

we construct an explicit injection γ : B(M− x)→ B(M/x)×X. Fix a basis A ∈ B(M) such that
x ∈ A. Such basis A exists since x is not a loop. By the symmetric basis exchange property, for
every basis B ∈ B(M) such that x /∈ B, there exists y ∈ B, such that B′ := B − y + x is a basis
of M. Now take the lex-smallest of such y, and define γ(B) := (B′, y). Note that map γ is an
injection because B can be recovered from (B′, y) by taking B = B′ − x+ y. This completes the
proof. □

7.2. Proof of Lemma 7.1. We now simulate BasisRatioVerification with an oracle for
BasisRatioCoincidence as follows.

Let M = (X, I) be a binary matroid of rank rk(M) = r on n = |X| elements. Let x ∈
NL(M) and A,B ∈ N, where B > 0. We can assume that A ≥ 1, as otherwise A = 0 and
BasisRatioVerification is then equivalent with checking if B(M − x) = 0 , i.e. checking if
M− x has rank (r − 1).

Without loss of generality we can assume that integers A and B are coprime. Since we have
B(M− x) ≤

(
n
r

)
and B(M/x) ≤

(
n
r

)
, we can also assume that

(7.1) 1 ≤ A, B ≤
(
n

r

)
,

as otherwise BasisRatioVerification fails. Similarly, by Lemma 7.2 we can also assume that

(7.2)
A

B
≤ n.

Let A′ be the positive integer given by

A′ := B + A −
⌊
A

B

⌋
B.

Note that B ≤ A′ ≤ 2B. From this point on we proceed following the proof of Lemma 1.14.
It follows from Proposition 6.2 that there exists fixed K > 0 and an integer m < B such that

s
(
m
A′

)
≤ K logA′ (log logA′)2 and s

(
B−m
A′

)
≤ K logA′ (log logA′)2.

At this point we guess such m. Since computing the quotients of m/A′ can be done in polynomial
time, we can verify in polynomial time that m satisfies the inequalities above.

Let [a0, . . . , as] and [b0, . . . , bt] be a continued fraction representation of A′/m and A′/(B−m),
respectively. By Theorem 5.3, there exists a connected loopless bridgeless planar graph G and an
edge e ∈ E(G) such that

τ(G− e)
τ(G/e)

=
1

[a0 ; a1, . . . , as]
+

1

[b0 ; b1, . . . , bt]
=

B

A′
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and

|E(G)| = s
(
m
A′

)
+ s

(
B−m
A′

)
+ 1 ≤ 2K logA′ (log logA′)2 + 1

≤(7.1) 2K log 2
(
n
r

)(
log log 2

(
n
r

))2
+ 1 = O

(
n (log n)2

)
.

Let G′ and e′ be the graph and edge obtained by applying Lemma 5.2 for ⌊A/B⌋ − 1 many
times to the planar dual G∗ of G. Then we have

τ(G′ − e′)
τ(G′/e′)

=

⌊
A

B

⌋
− 1 +

τ(G∗ − e)
τ(G∗/e)

=

⌊
A

B

⌋
− 1 +

A′

B
=

A

B

and

E(G′) =
⌊
A
B

⌋
− 1 + |E(G)| ≤(7.2) n − 1 + |E(G)| = O(n (log n)2).

Now, let N := (E(G′),J ) be the graphical matroid corresponding to G′, where J are spanning
forests in G′, and let y = e. Then we have

ρ(N, y) = ρ(G′, e′) =
τ(G′ − e′)
τ(G′/e′)

=
A

B
.

Thus, the decision problem BasisRatioVerification with input M, x, A,B can be simulated
by BasisRatioCoincidence with input M, x,N, y. This completes the proof. □

8. Proof of Theorem 1.2

8.1. Two more reductions. We also need two minor technical lemmas:

Lemma 8.1. For all k > ℓ, EqualitySYℓ reduces to EqualitySYk .

Proof of Lemma 8.1. Let M, R, a,S = (S1, . . . , Sℓ), c = (c1, . . . , cℓ) be an input EqualitySYℓ.
Let Sℓ+1 = . . . = Sk = ∅ and cℓ+1 = . . . = ck = 0. Let S′ := (S1, . . . , Sk) and c′ := (c1, . . . , ck).
It then follows that

PS′c′(M, R, a) = PSc(M, R, a).

We conclude that the decision problem EqualitySYℓ with input M, R, a,S, c, is equivalent to
the decision problem EqualitySYk with input M, R, a,S′, c′. □

Lemma 8.2. #Bases is polynomial time equivalent to #BasisRatio .

Proof of Lemma 8.2. Note that #BasisRatio reduces to #Bases by definition. In the opposite
direction, let M be a binary matroid of rank r = rk(M). Compute a basis {x1, . . . , xr} of M by a
greedy algorithm. Denote by Mi the contraction of M by {x1, . . . , xi}. We have

B(M) =
B(M0)

B(M1)
· B(M1)

B(M2)
· · · =

(
1 +

B(M0 − x1)
B(M0/x1)

) (
1 +

B(M1 − x2)
B(M1/x2)

)
· · · ,

which gives the desired reduction. □

8.2. Putting everything together. First, we need the following recent result:

Theorem 8.3 (Knapp–Noble [KN23, Thm 53]). #Bases is #P-complete for binary matroids.

By Lemma 8.2, we conclude that #BasisRatio is #P-hard. We then have:

(8.1) PH ⊆ P#P ⊆ P⟨#BasisRatio⟩ ⊆ NP⟨BasisRatioVerification⟩ ,

where the first inclusion is Toda’s theorem [Toda91], the second inclusion is because #BasisRatio
is #P-hard, and the third inclusion is because one can simulate #BasisRatio by first guessing
and then verifying the answer.
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We now have:

(8.2)
NP⟨BasisRatioVerification⟩ ⊆ NP⟨BasisRatioCoincidence⟩

⊆ NP⟨EqualitySY1⟩ ⊆ NP⟨EqualitySYk⟩

where the first inclusion is the Verification Lemma 7.1, the second inclusion is Lemma 4.1, and
the third inclusion is Lemma 8.1.

Now, suppose EqualitySYk ∈ PH. Then EqualitySYk ∈ Σp
m for some m. Combining (8.1)

and (8.2), this implies:

(8.3) PH ⊆ NP⟨EqualitySY1⟩ ⊆ NPΣp
m ⊆ Σp

m+1 ,

as desired. □

9. Combinatorial atlas

In this section we give a brief review of the theory of combinatorial atlas. This is the main
tool used to prove Theorem 1.3. We will be concise in our explanation of this tool for the sake of
brevity and refer the reader to [CP22a, §3, §4] for more detailed introduction, and to [CP24a] for
an even more in-depth discussion on this topic.

9.1. Informal overview. On a basic level, an inequality a2 ≥ bc can be viewed as a result that

det(M) ≤ 0 where M :=

(
a b
c a

)
.

In other words, the inequality says that the eigenvalues of M can be zero, but cannot be of the
same sign. In a similar vein, log-concavity of a sequence can be reformulated as a claim that a
certain matrix has one positive eigenvalue (OPE). Constructing such a matrix is rather technical,
and for the sequence {P(M, R, a)} this will be done in the next section.

Proving that a matrix has (OPE) is difficult, and is done essentially by a strong induction. In
this section, we present the setup (combinatorial atlas) which allows us to formalize this induction
and obtain (OPE) in Theorem 9.3 (proved in our prior work). An inelegant but unavoidable feature
of the setup is the one-parameter deformation which allows us to prove the result for matrices
with no zero eigenvalues, and taking the limit later.

Note that we do not need to reprove the Stanley–Yan inequality (SY), even though our con-
struction does give an independent proof, see Proposition 10.5. An important feature of the
combinatorial atlas is its ability to also give equality conditions in certain cases. This requires
further assumptions and a technical Theorem 9.6 (also proved in our prior work). We include this
setup in this section before using it to prove Theorem 1.3 in the next section.

9.2. The setup. Let Γ = (Ω,Θ) be a (possibly infinite) acyclic digraph. We denote by Ω0 ⊆ Ω
the set of sink vertices in Γ (i.e. vertices without outgoing edges). Similarly, denote by Ω+ :=
Ω∖Ω0 the non-sink vertices. We denote by Dv the set of out-neighbors of v, i.e. vertices v′ ∈ Ω
such that (v, v′) ∈ Θ6.

Definition 9.1. Let d be a positive integer. A combinatorial atlas A of dimension d is an acyclic
digraph Γ := (Ω,Θ) with an additional structure:

• Each vertex v ∈ Ω is associated with a pair (Mv,hv), where Mv is a nonnegative symmetric
d× d matrix, and hv ∈ Rd

≥0 is a nonnegative vector.

• Each vertex v ∈ Ω+ has out-degree equal to d, and the i-th edge is labeled e⟨i⟩ = (v, v⟨i⟩) for
1 ≤ i ≤ d.
• Each edge e⟨i⟩ is associated to a linear transformation T

⟨i⟩
v : Rd → Rd.

6The set Dv was denoted by v∗ in [CP22a, CP24a].
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We call Mv = (Mij)i,j∈[d] the associated matrix of v, and h = hv = (hi)i∈[d] the associated

vector of v. In notation above, we have v⟨i⟩ ∈ Dv, for all 1 ≤ i ≤ d.

A common objective of the setup above is to demonstrate that the matrices in the atlas satisfy
the following property. A matrix M is called hyperbolic, if

(Hyp) ⟨v,Mw⟩2 ≥ ⟨v,Mv⟩⟨w,Mw⟩ for every v,w ∈ Rd, such that ⟨w,Mw⟩ > 0.

For the atlas A, we say that v ∈ Ω is hyperbolic, if the associated matrix Mv is hyperbolic, i.e. it
satisfies (Hyp). We say that A satisfies hyperbolic property if every v ∈ Ω is hyperbolic.

Property (Hyp) is equivalent to the following property:

(OPE) M has at most one positive eigenvalue (counting multiplicity).

The equivalence between these two properties is well-known in the literature, see e.g. [Gre81],
[COSW04, Thm 5.3], [SvH19, Lem. 2.9] and [BH20, Lem. 2.5].

Lemma 9.2 ([CP24a, Lem. 5.3]). Let M be a symmetric matrix. Then:

M satisfies (Hyp) ⇐⇒ M satisfies (OPE).

9.3. Sufficient conditions for hyperbolic property. In practice, verifying that an atlas sat-
isfies the hyperbolic property can be a nontrivial task. In this subsection we present a set of
conditions that are sufficient to imply the hyperbolic property.

We say that the atlas A satisfies inheritance property if for every non-sink vertex v ∈ Ω+, we
have:

(Mv)i =
〈
T⟨i⟩ v, M⟨i⟩T⟨i⟩ h

〉
for every i ∈ supp(M) and v ∈ Rd,(Inh)

where M := Mv , T
⟨i⟩ = T

⟨i⟩
v , h = hv and M⟨i⟩ := Mv⟨i⟩ is the matrix associated with v⟨i⟩ . Note

that for the remainder of this section, we omit the subscript v from some notations to prevent
cluttering the equations.

We say that A satisfies pullback property if for every non-sink vertex v ∈ Ω+, we have:

(Pull)
∑

i∈supp(M)

hi
〈
T⟨i⟩ v, M⟨i⟩T⟨i⟩ v

〉
≥ ⟨v,Mv⟩ for every v ∈ Rd .

We say that A satisfies pullback equality property if for every non-sink vertex v ∈ Ω+, we have:

(PullEq)
∑

i∈supp(M)

hi
〈
T⟨i⟩ v, M⟨i⟩T⟨i⟩ v

〉
= ⟨v,Mv⟩ for every v ∈ Rd .

Clearly (PullEq) implies (Pull).

We say that a non-sink vertex v ∈ Ω+ is regular if the following positivity conditions are
satisfied7:

The associated matrix Mv restricted to its support is irreducible.(Irr)

Vector hv is strictly positive when restricted to the support of Mv .(h-Pos)

The following theorem provides a method to establish the hyperbolic property for atlases by
reducing the problem to checking the hyperbolic property only for the sink vertices of the atlases.

Theorem 9.3 (local–global principle, see [CP24a, Thm 5.2], [CP22a, Thm 3.4]). Let A be a
combinatorial atlas that satisfies properties (Inh) and (Pull), and let v ∈ Ω+ be a non-sink
regular vertex of Γ. Suppose every out-neighbor of v is hyperbolic. Then v is also hyperbolic.

7In [CP22a], there was an additional assumption that Mv hv given in (h-Pos) is strictly positive when restricted
to the support of Mv . Note that this additional assumption is redundant here because we assume that Mv is a
nonnegative matrix.
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In our applications, the pullback property (PullEq) is more involved than the inheritance prop-
erty (Inh). Below we give sufficient conditions for (PullEq) that are easier to establish.

We say that the atlas A satisfies the identity property, if for every non-sink vertex v ∈ Ω+ and
every i ∈ supp(M), we have:

(Iden) T⟨i⟩ : Rd → Rd is the identity mapping.

We say that A satisfies the transposition-invariant property, if for every non-sink vertex v ∈ Ω+,

(T-Inv) M
⟨i⟩
jk = M

⟨j⟩
ki = M

⟨k⟩
ij for every i, j, k ∈ supp(M),

where M
⟨i⟩
jk is the (j, k)-th entry of the matrix M⟨i⟩.

We say that A has the decreasing support property, if for every non-sink vertex v ∈ Ω+,

(DecSupp) supp(M) ⊇ supp
(
M⟨i⟩) for every i ∈ supp(M).

Theorem 9.4 (cf. [CP24a, Thm 6.1], [CP22a, Thm 3.8]). Let A be a combinatorial atlas that
satisfies (Inh), (Iden), (T-Inv) and (DecSupp). Then A also satisfies (PullEq).

9.4. Equality conditions for hyperbolic inequalities. In this subsection, we discuss a strength-
ening of the hyperbolic property for a given matrix, where the inequality in (Hyp) is replaced with
equality.

A global pair f ,g ∈ Rd is a pair of nonnegative vectors, such that

(Glob-Pos) f + g is a strictly positive vector.

Here f and g are global in a sense that they are the same for all vertices v ∈ Ω.

Fix a number s > 0. We say that a vertex v ∈ Ω satisfies (s-Equ), if

(s-Equ) ⟨f ,Mf⟩ = s ⟨g,Mf⟩ = s2 ⟨g,Mg⟩,
where M= Mv is the matrix associated to v. Observe that (s-Equ) implies that equality occurs
in (Hyp) for substitutions v← g and w← f , since

⟨g,Mf⟩2 = s ⟨g,Mg⟩ s−1 ⟨f ,Mf⟩ = ⟨g,Mg⟩ ⟨f ,Mf⟩ .

The following lemma gives another equivalent condition to check (s-Equ).

Lemma 9.5 ([CP24a, Lem 7.2]). Let M be a nonnegative symmetric hyperbolic d×d matrix. Let
f ,g ∈ Rd be nonnegative vectors, let s > 0, and let z := f −sg. Then (s-Equ) holds if and only if
Mz = 0.

A common objective of setting up an atlas is to identify vertices v ∈ Ω that satisfy (s-Equ).
As it turns out, the property (s-Equ) for a given vertex v ∈ Ω is equivalent to the statement that
some, but not all, of the out-neighbors of v, satisfy (s-Equ). The focus then shifts to identifying
neighbors that inherit (s-Equ), and we describe these vertices as follows.

A vertex v ∈ Ω+ is called a functional source if the following conditions are satisfied:

fj =
(
T⟨i⟩ f

)
j

and gj =
(
T⟨i⟩ g

)
j
∀ i ∈ supp(M), j ∈ supp(M⟨i⟩),(Glob-Proj)

f = hv .(h-Glob)

Here condition (Glob-Proj) means that f ,g are fixed points of the projection T⟨i⟩ when restricted
to the support.

We say that an edge e⟨i⟩ = (v, v⟨i⟩) ∈ Θ is functional if v is a functional source and i ∈
supp(M) ∩ supp(h). A vertex w ∈ Ω is a functional target of v, if there exists a directed path
v→ w in Γ consisting of only functional edges. Note that a functional target is not necessarily a
functional source.
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The following theorem is the main result in this section and is a key to the proof of Theorem 1.3
we give in the next section.

Theorem 9.6 (local–global equality principle, [CP24a, Thm 7.1]). Let A be a combinatorial atlas
that satisfies properties (Inh), (Pull). Suppose also A satisfies property (Hyp) for every vertex
v ∈ Ω. Let f ,g be a global pair of A. Suppose a non-sink vertex v ∈ Ω+ satisfies (s-Equ) with
constant s > 0. Then every functional target of v also satisfies (s-Equ) with the same constant s.

10. Proof of Theorem 1.3

10.1. Combinatorial atlas construction. In this subsection, we construct a combinatorial
atlas, which will be used to prove Theorem 1.3.

Let M := (X, I) be a matroid with rank r ≥ 2 on n := |X| elements. Denote by X∗ the set of
finite words in the alphabet X. A word is called simple if it contains each letter at most once; we
consider only simple words in this paper. For a word α ∈ X∗ , the length |α| of α is the number
of letters in α. For two words α, β ∈ X∗ , we denote by αβ ∈ X∗ the concatenation of α and β .

Let a ∈ {0, . . . , r} and let R ⊆ X . A word γ = x1 . . . xr ∈ X∗ of length r is called compatible
with a triple (M, R, a), if

• {x1, . . . , xr} forms a basis of M, and
• x1, . . . , xa ∈ R and xa+1, . . . , xr ∈ X −R.

We denote by Comp(M, R, a) the set of words compatible with (M, R, a). Note that every such
word γ ∈ Comp(M, R, a) is simple. It also follows that

(10.1) |Comp(M, R, a)| = r! P(M, R, a).

For every a ∈ [r − 1], we denote by C(M, R, a) :=
(
Cxy

)
x,y∈X the symmetric n × n matrix

given by

Cxy :=

{ ∣∣Comp(M/{x, y}, R, a− 1)
∣∣, if x ̸= y and {x, y} ∈ I ,
0, if x = y or {x, y} /∈ I .

(DefC-1)

Equivalently, Cx,y is given by

Cxy :=


∣∣{γ : xγy ∈ Comp(M, R, a)

}∣∣ for x ∈ R, y ∈ X −R,∣∣{γ : xyγ ∈ Comp(M, R, a+ 1)
}∣∣ for x, y ∈ R,∣∣{γ : γxy ∈ Comp(M, R, a− 1)
}∣∣ for x, y ∈ X −R.

(DefC-2)

Both definitions will be frequently used throughout this section. It follows from the definition
that C(M, R, a) is a nonnegative symmetric matrix, and the diagonal entries of C(M, R, a) are
equal to 0. Note that the Stanley–Yan inequality (Theorem 1.1) is a direct consequence of the
preceding matrix satisfying (Hyp), as explained below.

Let f ,g ∈ Rn be the indicator vector of R and X − R, respectively. It follows from (DefC-2)
and (10.1) that

⟨f ,C(M, R, a)g⟩ = r! P(M, R, a), ⟨f ,C(M, R, a) f⟩ = r! P(M, R, a+ 1),

⟨g,C(M, R, a)g⟩ = r! P(M, R, a− 1).
(Cfg)

Therefore, Stanley–Yan inequality will follow once we demonstrate that C(M, R, a) satisfies (Hyp)
(which we will prove in Proposition 10.5).

We define the combinatorial atlas A = A(M, R, a) of dimension d = n , corresponding to the
matroid M, the subset R ⊆ X, and the integer a ∈ 2, . . . , r − 1, as the acyclic graph and the
linear algebraic data defined below.

Let Γ := Γ(M, R, a) := (Ω,Θ) be the acyclic graph with Ω = Ω0 ∪ Ω1, where

Ω1 := {t ∈ R | 0 ≤ t ≤ 1}, Ω0 := X.
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For a non-sink vertex v = t ∈ Ω1 and x ∈ X, the corresponding outneighbor in Ω0 is v⟨x⟩ := x.
For each vertex v = x ∈ Ω0 , the associated matrix is

Mv := C(M/x,R, a− 1) if x is a non-loop of M,

and is equal to the zero matrix otherwise. Note that the ground set of M/x is still X (instead of
X − x) under our convention. For each vertex v = t ∈ Ω1 , the associated matrix is

Mv := t C(M, R, a) + (1− t) C(M, R, a− 1),

and the associated vector hv := (hx)x∈V ∈ Rd is defined to have coordinates

hx :=

{
t if x ∈ R ,
1− t if x ∈ X −R .

Finally, let the linear transformation T
⟨x⟩
v : Rd → Rd associated to the edge (v, v⟨x⟩) to be the

identity map.

10.2. Properties of the constructed matrices. In this subsection we gather properties of the
matrix C(M, R, a) that will be used in the proof. Recall that NL(M) is the set of non-loops of M.

Lemma 10.1. Let M be a matroid of rank r ≥ 2, let R ⊆ X, and let a ∈ [r − 1] such that
P(M, R, a) > 0. Then we have:

• the support of C(M, R, a) is equal to NL(M), and
• matrix C(M, R, a) is irreducible.

Proof. Since P(M, R, a) > 0, there exists a basis B of M such that |B ∩R| = a . Since a ∈ [r− 1],
this implies that there exists x ∈ R and y ∈ X − R such that x, y ∈ B . It also follows from
(DefC-1) that x and y are contained in the same irreducible component of the matrix C(M, R, a).
Now, let z be an arbitrary non-loop of M. For the first claim it suffices to show that z ∈
supp (C(M, R, a)) , and for the second claim it suffices to show that that z is contained in the
same irreducible component as x and y. We will without loss of generality assume that z ∈ R, as
the proof of the other case is analogous.

There are now two possibilities. First suppose that z ∈ B. Then B′ := B − y − z is a basis
of M/{y, z} such that |B′ ∩R| = a− 1. This implies that |Comp(M/{y, z}, R, a− 1)| > 0 , so it
follows from (DefC-1) that z is contained in the support of C(M, R, a) and z is contained in the
same irreducible component as y.

Now suppose that z /∈ B . By the symmetric basis exchange property, there exists z′ ∈ B such
that A := B− z′ + z is a basis of M. Now, if |A∩R| = a (i.e. z′ ∈ R), then A′ := A− y− z is a
basis of M/{y, z} satisfying |A′ ∩R| = a− 1. This implies that |Comp(M/{y, z}, R, a− 1)| > 0,
so it follows from (DefC-1) that z is contained in the support of C(M, R, a) and z is contained
in the same irreducible component as y. On the other hand, if |A ∩ R| = a + 1 (i.e. z′ /∈ R),
then A′ := A − x − z is a basis of M/{x, z} satisfying |A′ ∩ R| = a − 1. This implies that
|Comp(M/{x, z}, R, a − 1)| > 0 , so it follows from (DefC-1) that z is contained in the support
of C(M, R, a) and z is contained in the same irreducible component as x. This completes the
proof. □

Lemma 10.2. Let M be a matroid of rank r ≥ 2, let R ⊆ X, and let a ∈ {2, . . . , r− 1} such that
P(M, R, a) > 0 and P(M, R, a− 1) > 0 . Then, for every x ∈ X that is not a loop,

P(M/x,R, a− 1) > 0.

Proof. We will without loss of generality assume that x ∈ R, as as the proof of the other case is
analogous. By the assumption, there exists a basis A and B of M, such that |A ∩ R| = a and
|B ∩R| = a− 1 . Applying the symmetric basis exchange property to x and A, we get that there
exists a basis A′ of M such that x ∈ A′ and |A′ ∩ R| ∈ {a, a + 1}. Similarly, by applying the
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symmetric basis exchange property to x and B, there exists a basis B′ of M such that x ∈ B′ and
|B′ ∩R| ∈ {a− 1, a}.

If either |A′ ∩R| = a or |B′ ∩R| = a then we are done, since A′ − x (resp. B′ − x) is then a
basis of M/x for which |(A′ − x) ∩R| = a− 1 (resp. |(B′ − x) ∩R| = a− 1). So we assume that
|A′ ∩R| = a− 1 and |B′ ∩R| = a+1 . Then by applying the basis exchange properties to A′ and
B′ (possibly more than once), there exists a basis C ′ of M such that |C ′ ∩ R| = a and x ∈ C ′ ,
and the claim follows by the same argument as before. □

10.3. Properties of the atlas. In this subsection, we show that the atlas A(M, R, a), con-
structed in Section 10.1, satisfies the properties outlined in Section 9.3. This, in turn, enables us
to apply tools and methods associated to atlases as described in Section 9.

Lemma 10.3. Let M be a matroid of rank r ≥ 2, let R ⊆ X, and let a ∈ {2, . . . , r − 1}. Then
the atlas A(M, R, a) satisfies (Inh), (Iden), (T-Inv).

Proof. The condition (Iden) follows directly from the definition. For (Inh), let v := t ∈ Ω1 , let
x ∈ X , and let M := Mv be the associated matrix of v. By linearity, it suffices to prove that, for
every y ∈ X,

Mxy =
〈
T⟨x⟩ ey,M

⟨x⟩T⟨x⟩ h
〉
.

Now we have〈
T⟨x⟩ ey,M

⟨x⟩T⟨x⟩ h
〉

=
〈
ey,M

⟨x⟩ h
〉

= t
∑
z∈R

M⟨x⟩
yz + (1− t)

∑
z∈X−R

M⟨x⟩
yz .

Now note that, if either x or y is a loop of M, then it follows from the definition (DefC-1) that
the sum above is 0. Also note that in this case we also have Mxy = 0 by definition (DefC-1).
Hence it suffices to consider the case when both x and y are non-loops of M. Now, continuing the
equation above,〈
T⟨x⟩ ey,M

⟨x⟩T⟨x⟩ h
〉

=(DefC-2) t
∑
z∈R

∣∣{γ : zγ ∈ Comp(M/{x, y}, R, a− 1)
}∣∣

+ (1− t)
∑
z∈S

∣∣{γ : γz ∈ Comp(M/{x, y}, R, a− 2)
}∣∣

= t
∣∣Comp(M/{x, y}, R, a− 1)

∣∣ + (1− t)
∣∣Comp(M/{x, y}, R, a− 2)

∣∣
=(DefC-1) Mxy .

This completes the proof of (Inh).
For (T-Inv), it suffices to show that

M⟨x⟩
yz = M⟨y⟩

zx = M⟨z⟩
xy

holds for all x, y, z ∈ X. Note that all three numbers are equal to 0 if either one of x, y, or z is a
loop of M, so we assume that x, y, z ∈ NL(M). In this case, it follows from (DefC-1) that

M⟨x⟩
yz = M⟨y⟩

zx = M⟨z⟩
xy =

∣∣Comp(M/{x, y, z}, R, a− 2)
∣∣.

This completes the proof of (T-Inv) and finishes the proof of the lemma. □

Lemma 10.4. Let M be a matroid of rank r ≥ 2, let R ⊆ X, and let a ∈ {2, . . . , r − 1}, such
that P(M, R, a) > 0 and P(M, R, a− 1) > 0. Then the atlas A(M, R, a) satisfies (DecSupp).

Proof. Let v = t ∈ Ω1. In the notation above, we have:

M := Mv = t C(M, R, a) + (1− t) C(M, R, a− 1).
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It follows from Lemma 10.1, that the support of M is equal to the set NL(M) of non-loop elements
of M. Let x be an arbitrary element of X. If x is a loop of M, then

supp(M⟨x⟩) = ∅ ⊆ supp(M).

If x is not a loop of M, then

supp(M⟨x⟩) ⊆ NL(M/x) ⊆ NL(M) = supp(M),

as desired. □

10.4. Hyperbolicity of the constructed atlas. The following proposition is the main technical
result we need in the proof of Theorem 1.3. Also note that this proposition directly implies
Stanley–Yan inequality (Theorem 1.1) as previously discussed in Section 10.1.

Proposition 10.5. Let M be a matroid of rank r ≥ 2, let R ⊆ X, and let a ∈ [r − 1], such that
P(M, R, a) > 0. Then the matrix C(M, R, a) satisfies (Hyp).

Proof. We prove the claim by induction on the rank r of M. First suppose that r = 2. Note that
this implies a = 1. Write

(
Cxy

)
x,y∈X := C(M, R, a). It then follows from (DefC-1) that

Cx,y =

{
1 if x ̸= y and {x, y} ∈ I,
0 if x = y or {x, y} /∈ I.

(10.2)

In particular, this shows that the x-row (respectively, x-column) of C is identical to the y-row
(respectively, y-column) of C whenever x, y are non-loops in the same parallel class. In this case,
deduct the y-row and y-column of C by the x-row and x-column of C. It then follows that the
resulting matrix has y-row and y-column is equal to zero, and note that (Hyp) is preserved under
this transformation.

Now, apply the above linear transformation repeatedly and remove the zero rows and columns,
and let C′ be the resulting matrix. It suffices to prove that C′ satisfies (Hyp). Note that C′ is a
p× p matrix (where p is the number of parallel classes of M), with 0s at the diagonal entries and
1s as the non-diagonal entries. It follows from direct calculations that (p− 1) is the only positive
eigenvalue of C′, and it follows that C′ (and thus C) satisfies (Hyp). This proves the base case of
the induction.

We now assume that r ≥ 3, and that the claim holds for matroids of rank (r − 1). First,
suppose that we have P(M, R, a+ 1) = P(M, R, a− 1) = 0. Then M = M1 ⊕M2 is a direct sum
of matroids M1 and M2 , where M1 (resp. M2) is the matroid obtained from M by restricting the
ground set to R (resp. S). It then follows that

Cx,y =

{
B(M1/x)B(M2/y) if x ∈ NL(M) ∩R and y ∈ NL(M) ∩ S,
0 otherwise.

Rescale the rows and columns of x ∈ R by B(M1/x), and the rows and columns of y ∈ S by
B(M2/y), and note that these rescalings preserve hyperbolicity. Then C becomes a special case
of the matrix in (10.2), which was already shown to satisfy (Hyp). So we can assume that either
P(M, R, a + 1) > 0 or P(M, R, a − 1) > 0 . By the symmetry, we can without loss of generality
assume that P(M, R, a− 1) > 0.

We split the proof into three parts. First assume that a ≥ 2. Let A(M, R, a) be the atlas
defined in §10.1. It follows from Lemma 10.3 and Lemma 10.4 (note that these lemmas require
a ≥ 2), that this atlas satisfies (Inh), (Iden), (T-Inv), and (DecSupp). We now show that, for
every sink vertex v = x ∈ Ω0, the matrix Mv satisfies (Hyp). If x is a loop of M, then Mv is
equal to the zero matrix, which satisfies (Hyp). If x is a non-loop of M, then by definition Mv is
equal to C(M/x,R, a− 1) . Also note that P(M/x,R, a− 1) > 0 by Lemma 10.2. It then follows
from the induction assumption that Mv satisfies (Hyp).
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Now every condition in Theorem 9.3 has been verified in the paragraph above, so it follows that
every non-sink regular vertex in Γ is hyperbolic. On the other hand, we have from Lemma 10.1
that the the vertex v := t ∈ Ω1 is regular if and only if t ∈ (0, 1) . Hence this implies that, for
every t ∈ (0, 1), the matrix

Mv = t C(M, R, a) + (1− t) C(M, R, a− 1),

satisfies (Hyp). By taking the limit t → 0 and t → 1, it then follows that C(M, R, a) and
C(M, R, a− 1) also satisfies (Hyp).

For the second case, assume that a = 1 and P(M, R, a + 1) > 0. Then let a′ := a + 1 = 2 .
Note that we have P(M, R, a′) > 0, P(M, R, a′ − 1) > 0 . By the same argument as before, we
conclude that C(M, R, a) = C(M, R, a′ − 1) satisfies (Hyp).

For the third case, assume that a = 1 and P(M, R, a + 1) = 0. Since P(M, R, 1) > 0, there
exists A ∈ B(M) such that |A ∩ R| = 1. Since |A| = r ≥ 2, there exists y ∈ X − R such that
y ∈ A. Let M′ be the matroid obtained by adding an element x′ that is parallel to y, and let
R′ := R+ x′. Observe that M′ has the same rank as M. Note also that P(M′, R′, 2) > 0 because
A′ := A− y + x′ is a basis of M′ and satisfies |A′ ∩R′| = 2.

Finally, note that C(M, R, 1) can be obtained from C(M′, R′, 1) by removing the row and col-
umn corresponding to x′. By the same argument as the second case, we conclude that C(M′, R′, a)
satisfies (Hyp). Since (Hyp) is a property that is preserved under restricting to principal subma-
trices, it then follows that C(M, R, a) also satisfies (Hyp), and the proof is complete. □

10.5. Proof of Theorem 1.3. We will first prove Theorem 1.3 under the assumption that the
rank r = rk(M) = 2. Recall that ParM(x) denotes the set of elements of M that are parallel to x.

Lemma 10.6. Let M := (X, I) be a matroid of rank 2, and let R ⊆ X such that P(M, R, 1) > 0.
Let s > 0 be a positive real number. Then

(10.3) P(M, R, 2) = s P(M, R, 1) = s2 P(M, R, 0)

if and only if, for every non-loop x of M,

(10.4) |ParM(x) ∩R| = s |ParM(x) ∩ (X −R)|.

Proof. Let M := C(M, R, 1) , and recall that f ,g ∈ Rn are the indicator vectors of R and X −R
respectively. It follows from (Cfg) that (10.3) is equivalent to

(10.5) ⟨f ,Mf⟩ = s ⟨f ,Mg⟩ = s2 ⟨g,Mg⟩.

i.e. (s-Equ) holds. It then follows from Lemma 9.5 that (10.3) is equivalent to z := f − sg is
contained in the kernel of M. On the other hand, the matrix M is described by

Mx,y =

{
1 if x ̸= y and {x, y} ∈ I,
0 if x = y or {x, y} /∈ I.

It then follows that the kernel of M is the set of vectors v ∈ Rn such that, for every non-loop x
of M, ∑

y∈ParM(x)

vy = 0.

Substituting v← z, the equation above is equivalent to

|ParM(x) ∩R| − s |ParM(x) ∩ (X −R)| = 0,

and the lemma follows. □

We now give an intermediate lemma which takes us halfway towards Theorem 1.3.
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Lemma 10.7. Let M := (X, I) be a matroid of rank r ≥ 3, let R ⊆ X, and let a ∈ {2, . . . , r−1},
such that P(M, R, a) > 0. Finally, let s > 0. Then

(10.6) P(M, R, a+ 1) = s P(M, R, a) = s2 P(M, R, a− 1)

holds if and only if for every x ∈ R ∩NL(M), we have:

(10.7) P(M/x,R, a) = s P(M/x,R, a− 1) = s2 P(M/x,R, a− 2) > 0.

Proof. We first prove the ⇐ direction. Note that

P(M, R, a+ 1) =
(

r
a+1

)−1 ∣∣{B ∈ B(M) : |B ∩R| = a+ 1
}∣∣,

=
(

r
a+1

)−1 1
a+1

∑
x∈R ∩NL(M)

∣∣{B ∈ B(M) : |B ∩R| = a+ 1, x ∈ B}
∣∣

=
(

r
a+1

)−1 1
a+1

∑
x∈R ∩NL(M)

∣∣{B′ ∈ B(M/x) : |B′ ∩R| = a}
∣∣

=
1

r

∑
x∈R ∩NL(M)

P(M/x,R, a).

Applying (10.7) to the RHS, we get

P(M, R, a+ 1) =
1

r

∑
x∈R ∩NL(M)

s P(M/x,R, a− 1) = sP(M, r, a).

By the same argument, we also get P(M, R, a) = sP(M, R, a− 1), as desired.
We now prove the ⇒ direction. Let A(M, R, a) be the combinatorial atlas defined in §10.1.

It follows from the assumption, that P(M, r, a) > 0 and P(M, r, a − 1) > 0 . It follows from
Lemma 10.3 and Lemma 10.4 that this atlas satisfies (Inh), (Iden), (T-Inv), and (DecSupp). It
also follows from Proposition 10.5, that this atlas satisfies (Hyp). Recall that f ,g ∈ Rn is the
indicator vector of the subset R and X − R, respectively. It follows from the definition that f ,g
is a global pair for this atlas, and that the edge (1, x) is a functional edge for every x ∈ R.

Let M := C(M, R, a) be the matrix associated to v = 1 ∈ Ω1. It follows from (Cfg) that (10.6)
is equivalent to v = 1 satisfying (s-Equ). By Theorem 9.6, this implies that every vertex x ∈ Ω0

contained in R also satisfies (s-Equ) with the same constant s. In other words, for every x ∈ R,
we have:

(10.8) ⟨f ,M⟨x⟩ f⟩ = s ⟨f ,M⟨x⟩ g⟩ = s2 ⟨f ,M⟨x⟩ g⟩.

On the other hand, for every x ∈ R that is a non-loop of M, we have M⟨x⟩ is equal to
C(M/x,R, a− 1) by definition, so it follows from (Cfg) that

⟨f ,M⟨x⟩ f⟩ = (r − 1)! P(M/x,R, a), ⟨f ,M⟨x⟩ g⟩ = (r − 1)! P(M/x,R, a− 1),

⟨g,M⟨x⟩ g⟩ = (r − 1)! P(M/x,R, a− 2).

Finally note that P(M/x,R, a) > 0 by Lemma 10.2. This completes the proof. □

Proof of Theorem 1.3. Note that (1.1) is equivalent to

(10.9) P(M, R, a+ 1) = s P(M, R, a) = s2 P(M, R, a− 1) > 0,

for some positive s > 0. It then suffices to show that (10.9) is equivalent to (1.2) with the same
s > 0.

By applying Lemma 10.7 a− 1 many times, we have that (10.9) is equivalent to

(10.10) P(M/A,R, 2) = s P(M/A,R, 1) = s2 P(M/A,R, 0) > 0,



EQUALITY CASES OF THE STANLEY–YAN INEQUALITY 27

for every A ⊆ R that is independent in M, and such that |A| = a− 1. Now note that (10.10) is
equivalent to

(10.11) P(M/A,X −R, r − a− 1) = s P(M/A,X−R, r−a) = s2 P(M/A,X−R, r−a+1) > 0,

for every A ⊆ R that is independent in M and such that |A| = a − 1. By applying Lemma 10.7
r − a− 1 many times, it then follows that (10.11) is equivalent to

(10.12) P(M/B,X −R, 0) = s P(M/B,X −R, 1) = s2 P(M/B,X −R, 2) > 0,

for every B ⊆ R that is independent in M and such that |B| = r− 2 and |B ∩R| = a− 1. Noting
that M/B is a matroid of rank 2, it then follows that (10.12) is equivalent to

(10.13) P(M/B,R, 2) = s P(M/B,R, 1) = s2 P(M/B,R, 0) > 0,

for every B ⊆ R that is independent in M and such that |B| = r − 2 and |B ∩ R| = a− 1. The
theorem now follows by applying Lemma 10.6 to (10.13). □

11. Vanishing conditions

11.1. Setup. A discrete polymatroid D is a pair ([n],J ) of a ground set [n] := {1, . . . , n} and a
nonempty finite collection J of integer points a = (a1, . . . , an) ∈ Nn that satisfy the following:

• a ∈ J , b ∈ Nn s.t. b ⩽ a ⇒ b ∈ J , and
• a,b ∈ J , |a| < |b | ⇒ ∃i ∈ [n] s.t. ai < bi and a+ ei ∈ J .

Here b ⩽ a is a componentwise inequality, |a| := a1 + . . . + an, and {e1, . . . , en} is a standard
linear basis in Rn. When J ⊆ {0, 1}n, discrete polymatroid D is a matroid. The role of bases
in discrete polymatroids is played by maximal elements with respect to the order “⩽”. These are
also called M-convex sets in [Mur03, §1.4] and [BH20, §2]. We refer to [HH02] and [Mur03] for
further details on discrete polymatroids.

11.2. Proof of Theorem 1.6. Consider D1 := ([ℓ],J1) defined by

(11.1) J1 :=
{
c ∈ Nℓ : ∃A ∈ I such that |A ∩ Si| = ci for all i ∈ [ℓ]

}
.

It follows from the matroid exchange property that D1 is a discrete polymatroid. Similarly,
consider D2 :=

(
[ℓ],J2

)
defined by

(11.2) J2 :=
{
c ∈ Nℓ :

∑
i∈L

ci ≤ rk
(
∪i∈L Si

)
for all L ∈ 2[ℓ]

}
.

It follows from [HH02, Thm 8.1], that D2 is a discrete polymatroid.
The theorem claims that J1 = J2 . We prove the claim by induction on ℓ. The case ℓ = 1

is trivial. We now assume that ℓ > 1, and that the claim holds for smaller values. Note that
J1 ⊆ J2 by definition, so it suffices to show that J2 ⊆ J1 .

Let P1,P2 ⊂ Rℓ
+ be convex hulls of J1,J2 ⊂ Nℓ, respectively. Note that Pi are convex

polytopes with vertices in Nℓ, and with Pi ∩ Nℓ = Ji , see [HH02, Thm 3.4]. Hence the theorem
follows by showing that all vertices of P2 belong to J1. In fact, because P2 is closed downward
under ⩽, it suffices to prove the claim for every vertex c of P2 satisfying |c| = rk(X).

First suppose that ci = 0 for some i ∈ [ℓ]. Then it follows from induction that c ∈ J1 by
applying the theorem to the matroid M restricted to the ground set X \ Si. So we assume that

ci ≥ 1 for all i ∈ [ℓ]. Since c is a vertex of P2, there exists a non-empty L ⊊ 2[ℓ], such that∑
i∈L

ci = rk
(
∪i∈L Si

)
.

Let S := ∪i∈LSi . On one hand, it follows from induction that there exists an independent set A1

of the matroid M restricted to the ground S, that satisfies

|A1 ∩ Si| = ci for all i ∈ L.
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On the other hand, it again follows from induction that there exists an independent set A2 of the
matroid M/S that satisfies

|A2 ∩ Si| = ci for all i /∈ L.
Let A := A1∪A2 . Since rk(S) =

∑
i∈L ci , it follows that A is an independent set of M satisfying

|A ∩ Si| = ci for all i ∈ [ℓ].

This implies that c ∈ J1, which completes the proof. □

12. Total equality cases

12.1. Proof of Corollary 1.8. To simplify the notation, denote pa := P(M, R, a). By Propo-
sition 1.4, we have pa > 0 for all 0 ≤ a ≤ r. Writing (SY) for all 1 ≤ a < r, we get:

(12.1)
p1
p0
≥ p2

p1
≥ p3

p2
≥ · · · ≥ pr

pr−1

> 0.

This gives: (
p1
p0

)r

≥ p1 · p2 · · · pr
p0 ·p1 · · · pr−1

=
pr
p0
,(12.2)

and proves the first part. For the second part, observe that all inequalities in (12.1) must be
equalities, which implies the second part. □

12.2. Proof of Theorem 1.11, part (1). As described in the introduction, it remains to show
the (ii) ⇒ (iv) implication. It follows from Theorem 1.3, that

(12.3) |ParM/A(x) ∩R| = s |ParM/A(x) ∩ (X −R)|,

for every independent set A ∈ I of size |A| = r − 2, and every x ∈ NL(M/A). It thus suffices to
show that (12.3) implies (iv) for the same value of s.

We use induction on r. For r = 2, the claim follows immediately by applying (12.3), since M

is loopless and we must have A = ∅ in this case.
For r > 2, suppose the claim holds for all matroids of rank (r − 1). Then, for all x ∈ X, it

follows from applying the claim to M/x, that

(12.4) |ParM/x(y) ∩R| = s |ParM/x(y) ∩ (X −R)|,

for y ∈ NL(M/x). In particular, it then follows from (12.4) that

(12.5) |NL(M/x) ∩R| = s |NL(M/x) ∩ (X −R)|.

On the other hand, it follows from NL(M) = X, that

(12.6) NL(M/x) = X \ ParM(x).

By combining (12.5) and (12.6), we conclude:

(12.7) |ParM(x) ∩R| − s |ParM(x) ∩ (X −R)| = |R| − s |X −R|,

for all x ∈ X. Summing the equation above over all parallel classes of M, we then have

|R| − s |X −R| = p
(
|R| − s |X −R|

)
,

where p ≥ r ≥ 3 is the number of parallel classes of M. This implies |R| = s |X − R|. Together
with (12.7) this gives

|ParM(x) ∩R| = s |ParM(x) ∩ (X −R)| for all x ∈ X,

as desired. □
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13. Examples and counterexamples

13.1. Double matroid. Let M be a loopless matroid with a ground set X that is given by a
representation ϕ : X → Rr. Denote by X ′ the second copy of X. Define a matroid M2 with the
ground set Y := X ⊔X ′, that is given by a representation ψ : Y → Rr, where ψ(x) := ϕ(x) and
ψ(x′) := −ϕ(x).

Now let R← X and S ← X ′. By the symmetry, observe that

(13.1) |ParM2(y) ∩R| = |ParM2(y) ∩ S|,
for all y ∈ Y . In other words, matroid M2 satisfies condition (iv) in Theorem 1.9 with s = 1.
By Theorem 1.11, we conclude that M2 has total equality in the Stanley–Yan inequality, i.e.
condition (ii) in Theorem 1.9.

Note that (13.1) is a special case of (1.2) with s = 1. In fact, it is easy to modify this example
to make the ratio to be any rational number. Indeed, to get the ratio s = a/b, take a copies of R
and b of S. One can make all vectors to be distinct by taking different multiples (over R). We
omit the easy details.

13.2. Linear matroid. Fix r ≥ 3. Let X = Fr
2 and let M be a binary matroid with a ground

set X in its natural representation. Let R ⊂ X be a subspace of dimension (r − 1). Note that 0
is the only loop in M.

Take an independent set of vectors A ⊂ X such that |A| = r − 2 and |A ∩ R| = 0. Since
A ̸= ∅, it is easy to see that for every non-loop x ∈ NL(M/A), we have:

(13.2) |ParM/A(x) ∩R| = |ParM/A(x) ∩ (X −R)|.
This is (1.2) for a = 1, with s = 1. By Theorem 1.3, this implies that (1.1) also holds for a = 1.

Finally, note that P(M, R, 0) = 0 in this case, which is why this is not an example of total
equality condition (ii) in Theorem 1.9 (and why the theorem is inapplicable in any event).

13.3. Combination matroid. The previous two examples illustrate different reasons for the
equality (1.1) to hold for a = 1. The following matroid is a combination of the two which still
gives equality for a = 1, but not for a > 1.

Fix r ≥ 3 and let V = Fr
2 . Let R0 ⊂ V be a subspace of dimension (r − 1), let S0 := V ∖R0

be the complement. Let R1, S1 ⊂ S0 be two copies of the same nonempty set of vectors. Finally,
let M be a matroid on the ground set X := R0 ⊔R1 ⊔ S0 ⊔ S1 and let R := R0 ⊔R1 .

Clearly, rk(R) = rk(X ∖ R) = r, so P(M, R, 0) > 0 and P(M, R, r) > 0. We have (13.2) by a
direct computation. By Theorem 1.3, this again implies that (1.1) holds for a = 1. On the other
hand, one can directly check that (1.2) (and thus (1.1)) does not hold for a = r− 1. We omit the
details.

In summary, this gives an example when total equality condition (ii) in Theorem 1.9 fails, even
though (iii) holds. This disproves Conjecture 1.10 and proves the second part of Theorem 1.11.8

14. Generalized Mason inequality

Let M be a matroid or rank r = rk(M), with a ground set X of size |X| = n. Denote by
I(M) ⊆ 2X the set of independent sets of M. Fix integers k ≥ 0 and 0 ≤ a, c1, . . . , ck ≤ r.
Additionally, fix disjoint subsets S1, . . . , Sk ⊂ X, and let R := X ∖ ∪iSi . Define

ISc(M, a) :=
{
A ∈ I(M) : |A ∩R| = a, |A ∩ S1| = c1, . . . , |A ∩ Sk| = ck

}
,

and let ISc(M, a) := |ISc(M, a)|. Let m := n − c1 − . . . − ck and denote by Fm a free matroid
on m elements. Substituting the direct sum M ← M⊕ Fm into the Stanley–Yan inequality, we
obtain a log-concave inequality:

ISc(M, a)2 ≥ ISc(M, a+ 1) ISc(M, a− 1).

8To be precise, matroid M is not loopless. To fix this, remove 0 from R0.
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This is the argument that was used by Stanley in [Sta81, Thm 2.9], to obtain Mason’s log-
concave inequality (M1) in the case k = 0. The following ultra-log-concave inequality is a natural
extension.

Theorem 14.1 (generalized Mason inequality). For all 1 ≤ a ≤ min{r − 1,m− 1}, we have:

(14.1) ISc(M, a)2 ≥
(
1 + 1

a

)(
1 + 1

m−a

)
ISc(M, a+ 1) ISc(M, a− 1).

This inequality is an easy consequence of the results by Brändén and Huh [BH20]. We include
a short proof for completeness.

Proof of Theorem 14.1. We assume that X = [n]. Let fM ∈ N[w0, w1, . . . , wn] be a multivariate
polynomial defined by

fM(w0, w1, . . . , wn) :=
∑

A∈I(M)

w
n−|A|
0

∏
i∈A

wi .

It is shown in [BH20, Thm 4.10], that fM is Lorentzian.
Take the following substitution: w0 ← y, wi ← x for i ∈ R, and wi ← zj for i ∈ Sj , 1 ≤ j ≤ k.

Let gM(x, y, z1, . . . , zk) be the resulting polynomial, and let

hM(x, y) :=
∂c1+ ...+ck

∂zc11 · · · ∂z
ck
k

∣∣∣
z1,...,zk=0

gM(x, y, z1, . . . , zk).

Since the Lorentzian property is preserved under diagonalization, taking directional derivatives,
and zero substitutions, see [BH20, §2.1], it follows that hM(x, y) is a Lorentzian polynomial with
degree m.

Now note that the coefficients [xaym−a]hM(x, y) is equal to ISc(M, a) c1! · · · ck! by definition.
Recall now that a bivariate homogeneous polynomial with nonnegative coefficients is Lorentzian if
and only if the sequence of coefficients form an ultra-log-concave sequence with no internal zeros.
This implies the result. □

15. Final remarks and open problems

15.1. Computational complexity ideas. Looking into recent developments, one cannot help
but admire Rota’s prescience and keen understanding of mathematical development:

“Anyone who has worked with matroids has come away with the conviction
that the notion of a matroid is one of the richest and most useful concepts of
our day. Yet, we long, as we always do, for one idea that will allow us to see
through the plethora of disparate points of view.” [Rota86]

Arguably, the idea of hyperbolicity is what unites both the combinatorial Hodge theory, Lorentzian
polynomials and the combinatorial atlas approaches, even if technical details vary considerably.
On the other hand, our complexity theoretic approach is as “disparate” as one could imagine,
leaving many mathematical and philosophical questions unanswered.9

That an open problem in the old school matroid theory was resolved using tools and ideas
from computational complexity might be very surprising to anyone who had not seen theoretical
computer science permeate even the most distant corners of mathematics. To those finding them-
selves in this predicament, we recommend a recent survey [Wig23], followed by richly detailed
monograph [Wig19].

9Some of these questions related to the nature of the P vs. NP problem are addressed in [Aar16, §§1–4].
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15.2. Negative results for other matroids. One can ask if Theorem 1.2 extends to other
families of matroids given by a succinct presentation. In fact, our proof is robust enough, and
extends to every family of matroids which satisfies the following:

(1) computing the number of bases is #P-complete, and
(2) the family includes all (loopless, bridgeless) graphical matroids.

Notably, matroids realizable over Z obviously satisfy (2), and satisfy (1) by [Sno12]. On the other
hand, paving matroids based on Hamiltonian cycles considered in [Jer06, §3], easily satisfy (1),
but are very far from (2).

For bicircular matroids, property (1) was proved in [GN06]. Unfortunately, not all graphical
matroids are bicircular matroids, see [Mat77]. In fact, not all graphical matroids are necessarily
transversal (see e.g. [Ox11, Ex. 1.6.3]), or even a gammoid (see e.g. [Ox11, Exc. 11(ii) in §12.3]).
Nevertheless, we believe the following:

Conjecture 15.1. Theorem 1.2 holds for bicircular matroids.

Note that not all bicircular matroids are binary, see [Zas87, Cor. 5.1], so the conjecture would
not imply Theorem 1.2. If one is to follow the approach in this paper, a starting point would
be Conjecture 6.1 in [CP24d] which is analogous to Theorem 1.13 in this case, and needs to be
obtained first. Afterwards, perhaps the proof can be extended to basis ratios as in Lemma 1.14.

15.3. Generalized Mason inequality. Denote by EqualityMasonk the equality of (14.1)
decision problem. As we mentioned earlier, EqualityMason0 is in coNP. In fact, it is coNP-
complete, see Corollary 15.3 below. By analogy with Theorem 1.2, it would be interesting to see
what happens for general k :

Open Problem 15.2. For what k > 0, is EqualityMasonk in PH?

In particular, any explicit description of equality cases for EqualityMason1 would be a large
step forward and potentially very difficult. We note aside that the combinatorial atlas approach
can also be used to prove (14.1). Unfortunately, the specific construction we have in mind cannot
be used to describe the equality cases, at least not without major changes.

15.4. Completeness. As evident from this paper, the computational complexity of equality cases
for matroid inequalities is very interesting and remains largely unexplored. Of course, for Mason’s
log-concave inequality (M1), the equality cases are trivial since the sequence satisfies a stronger
inequality (M2). On the other hand, for Mason’s ultra-log-concave inequality (M2), the equality
cases have a simple combinatorial description: girth(M) > a+1, i.e. the size of the minimal circuit
in the matroid has to be at least a+2, see [MNY21] and [CP24a, §1.6] for proofs using Lorentzian
polynomials and combinatorial atlases, respectively.

Now, the decision problem GIRTH :=
{
girth(M) ≤? a+1

}
is in NP for matroids with concise

presentation. The problem is easily in P for graphical matroids via taking powers of adjacency
matrix. Recently, it was shown to be in P for regular matroids in [FGLS18]. Famously, the
problem was shown to be NP-complete for binary matroids by Vardy [Var97]. This gives:

Corollary 15.3. EqualityMason0 is coNP-complete for binary matroids.

We believe that the upper bound in Corollary 1.5 is optimal:

Conjecture 15.4. EqualitySY0 is coNP-complete for binary and for bicircular matroids.

Note that for graphical matroids, the number of bases B(M) is in FP by thematrix-tree theorem.
For regular matroids, the same linear algebraic argument applies. More generally, the number
BSc(M, R, a) can also be computed in polynomial time via the weighted (multivariate) version of
the matrix-tree theorem (see e.g. [GJ83]). This gives the following observation to contrast with
Conjecture 15.4.

Proposition 15.5. EqualitySYk is in P for regular matroids and all fixed k ≥ 0.
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We conclude with a possible approach to the proof of Conjecture 15.4. The 2-SPANNING-
CIRCUIT is a problem whether a matroid has a circuit containing two given elements. For
graphical matroids, this problem is in P by Menger’s theorem. For regular matroids, this problem
is in P by a result in [FGLS16] based on Seymour’s decomposition theorem. One can modify
examples in Section 13 to show the following:

Proposition 15.6. 2-SPANNING-CIRCUIT reduces to ¬EqualitySY0 for binary matroids.

By the proposition, the first part of Conjecture 15.4 follows from the following natural conjecture
that would be analogous to Vardy’s result for the GIRTH:

Conjecture 15.7. 2-SPANNING-CIRCUIT is NP-complete for binary matroids.

15.5. Defect. Denote by φ the defect of the SY inequality:

φSc(M, R, a) := PSc(M, R, a)2 − PSc(M, R, a+ 1) PSc(M, R, a− 1).

By definition, φ is a rational function with denominators in FP. If the numerators were also in
FP for binary matroids, we would have EqualitySYk ∈ P, implying that PH collapses for k ≥ 1
by Theorem 1.2. In fact, we have a stronger result:

Proposition 15.8. φ is #P-hard for binary matroids and all k ≥ 0.

Proof. For k = 0, let M be a matroid of rank r, and let M′ := M⊕M1 be a direct sum of matroid
M with a matroid with a single element v. Note that M′ has rank r+1 and every basis in M′ must
contain v. Let R := {v}. Observe that B(M′, R, 0) = B(M′, R, 2) = 0 and B(M′, R, 1) = |B(M)|.
By the definition of PSc(M, R, a) and Theorem 8.3, we conclude that φ is #P-hard. Finally, for
k ≥ 1, the result follows from the proof of Lemma 8.1. □

Note that the argument above does not imply Conjecture 15.4 since, in the case outlined,
EqualitySY0 reduces to deciding the vanishing of the number of bases of a given matroid,
which is trivially in P. We refer to [Pak22] for an extensive overview of complexity of combinatorial
inequalities and their defect.

15.6. Spanning trees. Note that for simple planar graphs, Stong’s Theorem 1.12 is nearly op-
timal since the number of spanning trees is at most exponential for planar graphs with n vertices
[BS10], or even all graph with bounded average degree, see [Gri76]. This gives α(N) = Ω(logN),
where recall that α(N) is the smallest number of vertices of a simple planar graph G with exactly
N spanning trees. In fact, since the number of unlabeled planar graphs with n vertices is expo-
nential in n, see e.g. [Noy15, §6.9.2], proving the corresponding upper bound α(N) = O(logN) is
likely to be very difficult.

On the other hand, it follows from the proof of Theorem 1.13, that, for the smallest number
of edges of a non-simple graph with exactly N spanning trees, the upper bound of log n will be
implied by the celebrated Zaremba’s conjecture, see a discussion and further references in [CP24c]
and [CKP24].

15.7. Understanding the results. There are several ways to think of our results. First and
most straightforward, we completely resolve a 1981 open problem by Stanley by both showing
that the equality cases of (SY) cannot have a satisfactory description (from a combinatorial point
of view) for k > 0, and by deriving such a description for k = 0.

Second, one can think of the results as a showcase for the tools. This includes both the com-
putational complexity and number theoretic approach towards the proof of Theorem 1.2, and the
(rather technical) combinatorial atlas approach towards the proof of Theorem 1.3. Let us empha-
size that Yan was unable to obtain our Theorem 1.3 using Lorentzian polynomials (cf. [Yan23,
§3.3]). While we believe that Theorem 1.3 is not attainable with Lorentzian polynomials, we lack
the formal language to make this claim rigorous.
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Third, one can think of Theorem 1.2 as an evidence of the strength of Lorentzian polynomials.
In combinatorics, some of the most natural combinatorial inequalities are proved by a direct
injection. See e.g. [CPP23a, CPP23b, DD85, DDP84] for injective proofs of variations and special
cases of (Sta), and to [Mani10] for a rare injective proof of a matroid inequality. Now, if an
injection and its inverse (when defined) are poly-time computable, this implies that the equality
cases are in coNP. Thus, having EqualitySY1 /∈ PH shows that Lorentzian polynomials are
powerful, in a sense that they can prove results beyond elementary combinatorial means.

Finally, this paper gives a rare example of limits of what is knowable about matroid inequalities,
as opposed to realizability of matroids where various hardness and undecidability results are
known, see e.g. [KY22, Sch13]. This is especially in sharp contrast with the equality cases for
Mason’s inequalities, which are known to have easy descriptions.
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[Brä15] Petter Brändén, Unimodality, log-concavity, real-rootedness and beyond, in Handbook of enumerative
combinatorics, CRC Press, Boca Raton, FL, 2015, 437–483.
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