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Introduction

A problem of great importance in computational group theory is to generate
(nearly) uniformly distributed random elements in a finite groupG. A good example
of such an algorithm should start at any given set of generators, use no prior
knowledge of the structure of G, and in a polynomial number of group operations
return the desired random group elements (see [Bb2]). Then these random elements
can be used further to determine the structure of G.

In a pioneer paper [Bb1] Babai found such an algorithm which provably gen-
erates (nearly) uniformly distributed random elements in O(log5 |G|) group multi-
plications, too many for practical applications. A different heuristic, the “product
replacement algorithm”, was designed by Leedham-Green and Soicher [LG], and
studied by Celler et al. in [CLMNO]. In spite of the fact that very little theoretical
justification was known, practical experiments showed excellent performance. So, it
quickly became the most popular “practical” algorithm to generate random group
elements, and was included in the two most frequently used group algebra packages
GAP ([Sc]) and MAGMA ([BCP]).

A systematic and quantitative approach was carried out by Diaconis and Saloff-
Coste [DS1], [DS2] (see also [Bb2], [CG]), but their results did not reveal the mystery
of the truly outstanding performance of the algorithm. The aim of this paper
is to propose a conceptual explanation based on Kazhdan’s property (T) from
representation theory of Lie groups and to improve some of the previous estimates
on the running time.

The product replacement algorithm works as follows ([CLMNO]): Given a finite
group G, let Γk(G) be the set of k-tuples (g) = (g1, . . . , gk) of elements of G such
that 〈g1, . . . , gk〉 = G. We call elements of Γk(G) the generating k-tuples. Given a
generating k-tuple (g1, . . . , gk), define a move on it in the following way: Choose
uniformly a pair (i, j), such that 1 ≤ i 6= j ≤ k, then apply one of the following
four operations with equal probability:

R±i,j : (g1, . . . , gi, . . . , gk)→ (g1, . . . , gi · g±1
j , . . . , gk),

L±i,j : (g1, . . . , gi, . . . , gk)→ (g1, . . . , g
±1
j · gi, . . . , gk).
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Note that these moves map a generating k-tuple into a generating k-tuple. Now ap-
ply these moves t times and return a random component of the resulting generating
k-tuple. This is the desired “random” element of the group G.

Another way to describe the algorithm is to define on Γk(G) a structure of a
graph induced by maps R±i,j and L±i,j . This turns Γk(G) into a 4k(k − 1)-regular
graph with no orientation on edges, but with loops when k > d(G), where d(G) is
the minimal number of generators of G. Now the algorithm consists of running a
nearest neighbor random walk on this graph (for t steps) and returning a random
component. We refer to this random walk as the product replacement random walk.
By abuse of notation, we denote this graph Γk(G) as well.

Our work grew from the following observation: Let Fk be the free group on k
generators x1, . . . , xk. For every group G, the set Γk(G) can be identified with
Epi(Fk, G) — the set of epimorphisms from Fk onto G. Now, the group A =
Aut(Fk) acts on E = Epi(Fk, G) in the following way: If α ∈ A and ϕ ∈ E,
α(ϕ) = ϕ · α−1. Moreover the moves R±i,j and L±i,j defined above correspond to
Nielsen moves1 on Γk(Fk). Each such move on Γk(Fk) defines an automorphism
of Fk. Let A+ ≤ A be a subgroup generated by these automorphisms. Following
[Ge], we call A+ the special automorphism group of Fk. It is of index two in A (see
Proposition 1.2 below), and the projection of A+ to GLk(Z) = Aut(Fk/[Fk, Fk]) is
exactly SLk(Z).

Now one can deduce from here that Γk(G) are quotient graphs of the Cayley
graph of A+ with respect to the generators R±i,j and L±i,j .

A longstanding conjecture asserts that A = Aut(Fk) (at least for k large enough,
say k ≥ 4) has Kazhdan’s property (T) (see §2 for a definition). The same therefore
applies to A+. Now, if this is the case, then by a fundamental result of Margulis,
the finite quotient graphs of the Cayley graph of A+ are expanders (see §2 for a
definition). This would imply that Γk(G) are expanders. Random walks on ex-
panding graphs mix very rapidly. This would explain the outstanding performance
of the product replacement algorithm.

Formulating the above in precise terms we get:

Theorem 1. Aut(Fk) (or equivalently A+(Fk)) has Kazhdan’s property (T). Then
for every finite group G generated by k elements, the mixing time mix(g) of the lazy
random walk starting at (g) on a connected component Γ′ ⊂ Γk(G), (g) ∈ Γ′, is
bounded as

mix(g) = C(k) log |G|,
where C(k) depends only on k.

By a “lazy” product replacement random walk we mean a random walk on a
graph Γk(G) in which with probability 1/2 we stay put and with probability 1/2
we move to a neighbor. This is a technical condition which enables us to avoid the
periodicity problem (see §2 below).

It is not clear how well founded the conjecture is that Aut(Fk) has (T) (see the
discussion in §5). We prove some partial results in this direction.

Let W be a characteristic subgroup of Fk. There is a natural homomorphism
π : Aut(Fk) → Aut(Fk/W ). Denote π(A+) by A+(Fk/W ), and call it the special
automorphism group of Fk/W . For general W the group A+(Fk/W ) can have an
infinite index in Aut(Fk/W ).

1To be precise, they correspond to a subset of Nielsen moves.
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Theorem 1′. If the special automorphism group A+(Fk/W ) has (T), then the con-
clusion of Theorem 1 is satisfied for every finite quotient G of Fk/W .

We indeed prove that in a number of interesting cases the special automor-
phism group has (T). For example, if W is the commutator subgroup of Fk, then
A+(Fk/W ) is SLk(Z) which indeed has (T) if k ≥ 3. Moreover, the Nielsen moves
are projected to the elementary matrices for which Shalom [Sh2] estimated the
Kazhdan constant. We can deduce:

Theorem 2. Let G be an abelian group, let (g) = (g1, . . . , gk) be the initial gener-
ating k-tuple, and let Γ′ ⊂ Γk(G) be a connected component containing (g). Then
for the mixing time of the lazy product replacement random walk starting at (g), we
have

mix(g) ≤ C · k5 · log |G|,
where C is a universal constant.

A similar result was proved in [DS1] for groups of the form (Zp)m, where p is a
prime. A somewhat more general but weaker version was announced by the second
named author in [P1], [PB].

The following result is a generalization of Theorem 2 to nilpotent groups of fixed
class:

Theorem 3. Let W = γi+1(Fk), where γi+1(Fk) is the (i+ 1)-th term of the lower
central series of Fk. Then A+(Fk/W ) has (T) for every k ≥ 3. Hence for a fixed
k and i and any nilpotent group G of class at most i we have

mix(g) ≤ C(k, i) · log |G|,
where mix(g) is the mixing time of the lazy product replacement random walk starting
at (g) ∈ Γk(G) on a connected component Γ′ ⊂ Γk(G), Γ′ 3 (g).

In other words, the mixing time is linear in log |G|. This should be compared
with [DS2], where only a subexponential bound (in log |G|) is given under the same
assumptions. The behavior of the constants C(k, i) in Theorem 3 and C(k) in
Theorem 1 are intimately connected with computing Kazhdan constants. Estimat-
ing Kazhdan constants is usually a very difficult problem, but a breakthrough was
made recently by Shalom [Sh1], [Sh2]. See §5 for a discussion.

The paper is organized as follows. In §1 we define the graph Γk and look at some
of its functorial properties. In §2 we define the mixing time and relate it to the
Kazhdan constant and the eigenvalue gap. In §3 we prove Theorem 2 by showing
that graphs Γk(G) are expanders when G is abelian. In §4 we prove Theorem 3
by showing that A+

(
Fk/γi+1(Fk)

)
has property (T). We finish with concluding

remarks in §5.

1. The graph Γk(G)

Let G be a group and k ≥ d(G). Consider Γk(G) to be the set of all k-tuples of
generators (g1, . . . , gk) ofG. We define a structure of graphs on Γk(G) by connecting
(g1, . . . , gk) to (g1, . . . , gig

±1
j , . . . , gk) and to (g1, . . . , g

±1
j gi, . . . , gk) for every (i, j),

1 ≤ i, j ≤ k, i 6= j. This turns Γk(G) into a 4k(k− 1)-regular oriented graph (with
possibly loops and multiple edges).

Let us note that the graphs Γk(G) are not necessarily connected. In fact, the
graphs Γk(G) for k = d(G) can have an arbitrarily large number of connected
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components (see [DG], [P3]). It is not hard to see that Γk(G) is connected when
G is abelian and k ≥ d(G) + 1 (see [DG], [P3]). Further, Dunwoody [Du2] showed
that if G is a finite solvable group and k ≥ d(G) + 1, then Γk(G) is connected.
A longstanding conjecture of Wiegold2 asserts that Γk(G) is connected for every
simple group if k ≥ 3. In a pioneering paper [Gi] Gilman proves the Wiegold
conjecture for G = PSL2(p). Also, M. Evans confirms the conjecture for G =
PSL(2, 2m) and Suzuki groups Sz(22m−1), where m ≥ 2 (see [P3] and references
therein).

One way to get around the connectivity problem was found by the second named
author in [P2], where it was shown that for large simple groups G the graphs Γk(G),
k ≥ 3, have “large” connected components (see [P2], [P3] for details). Then the
random walk on the “large” connected component suffices for the purposes of the
algorithm.

While our main interest is in Γk(G) for finite groups G, it is of interest to look
at the following example:

Example 1.1. Let F = Fk be the free group on k generators x1, . . . , xk, and let
R±i,j , L

±
i,j be the following automorphisms of Fk:

R±i,j(xi) = xix
±1
j and R±i,j(xl) = xl if l 6= i,

L±i,j(xi) = x±1
j xi and R±i,j(xl) = xl if l 6= i.

We will call these automorphisms the Nielsen moves (see [MKS]). A classical result
of Nielsen (see [MKS]) shows that Aut(Fk) is generated by the Nielsen moves and
elementary automorphisms of permutation and inversion of generators.

Proposition 1.2. Let A+(Fk) be the subgroup of Aut(Fk) generated by Nielsen
moves. Then A+(Fk) is a normal subgroup of index two in Aut(Fk).

This proposition seems to be well known (cf. [Ge]). Here is an easy proof.

Proof. Let A+(Fk) be the subgroup of Aut(Fk) generated by Nielsen moves. Let
us show that A+(Fk) is a normal subgroup of index two in Aut(Fk).

Indeed, consider the automorphisms Ti,j = L−i,j · L+
i,j · R−i,j , which act on Fk as

follows:

Ti,j : xi → x−1
j , xj → xi, xl → xl, l 6= i, j .

Note also that

T 2
i,j : xi → x−1

i , xj → x−1
j , xl → xl, l 6= i, j .

Thus the automorphisms Ti,j generate a subgroup of index two in a hyperoctahedral
group Hk ' Sk n Zk2 of all permutations and inversion of variables.

By Nielsen’s theorem, one can obtain any generating k-tuple (y) = (y1, . . . , yk) ∈
Γk(Fk) from (x1, . . . , xk) by Nielsen moves, transpositions xi ↔ xj and inversions
xi → x−1

i . Now apply the same Nielsen moves, and use Ti,j instead of transposi-
tions, and T 2

i,j instead of inversions. It is easy to see that one can obtain an element
(y1, . . . , yk−1, yk) or (y1, . . . , yk−1, y

−1
k ) by such moves. This immediately implies

that A+(Fk) is of index at most two in Aut(Fk).

2The Wiegold conjecture is formulated in terms of the so-called T -systems. We present here a
modified version of the conjecture. We refer to [P3] for a connection and references.
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Now consider a natural projection π : Aut(Fk) → Aut(Fk/[Fk, Fk]) ' GLk(Z).
Observe that π(R±i,j) = π(L±i,j) ∈ SLk(Z) and corresponds to elementary transvec-
tions, for all i 6= j. Therefore π(A+) = SLk(Z) and A+ has index exactly two in
Aut(Fk).

Proposition 1.3. The graph Γk(Fk) has two connected components. Each of them
is isomorphic to the right Cayley graph of the special automorphism group A+(Fk)
with respect to the Nielsen moves.

Indeed, Aut(Fk) acts simply transitively on the vertices of Γk(Fk). This gives a
one to one correspondence ι between Aut(Fk) and Γk(Fk) defined as

ι : α ∈ Aut(Fk)→ (α(x1), . . . , α(xk)).

It is easy to see that αR±i,j and αL±i,j correspond to the neighbors of ι(α) ∈
Γk(G). This shows that Γk(Fk) is the Cayley graph of Aut(Fk) with respect to
the Nielsen moves. As they do not generate the group but rather a subgroup of
index two, the graph Γk(Fk) has two connected components, each one isomorphic
to Cayley

(
A+(Fk); {R±i,j , L±i,j}

)
.

Let H and G be two groups and ϕ an epimorphism from H onto G. Then ϕ
induces a map Γk(ϕ) : Γk(H)→ Γk(G), where

Γk(ϕ) : (h1, . . . , hk) → (ϕ(h1), . . . , ϕ(hk)) ,

provided that Γk(H) is not empty, i.e. when k ≥ d(H). It is easy to see that Γk(ϕ)
is a morphism (projection) of graphs which preserve adjacency relations.

Proposition 1.4. If ϕ : H → G is an epimorphism between finite groups, then
Γk(ϕ) is a surjective morphism provided k ≥ d(H).

The assertion of surjectivity of Γk(ϕ) is equivalent to the following proposition
known as the Gaschütz Lemma:

Proposition 1.5 (Gaschütz). Let ϕ : H → G be an epimorphism between finite
groups, let k ≥ d(H), and let (g1, . . . , gk) be a generating k-tuple of G. Then there
exists a generating k-tuple (h1, . . . , hk) of H with ϕ(hi) = gi for i = 1, . . . , k.

The proof of the Gaschütz Lemma can be found in [Gr] (Proposition 6.14, p.39).
Note that it immediately implies the following:

Corollary 1.6. If ϕ : H → G is an epimorphism between two finite groups and
k ≥ d(H), then the number of connected components of Γk(G) is bounded by that
of Γk(H).

It should be noted however that Propositions 1.4 and 1.5 and Corollary 1.6 do
not hold when H = Fk. In fact, Γk(Fk) has two connected components while it
is known that there are finite groups with an arbitrary number of components in
Γk(G) (see [Du1], [DG]). Let us remark that the connected components measure
to what extend the Gaschütz Lemma holds for ϕ : Fk → G. We have:

Proposition 1.7. Let ϕ : Fk → G be an epimorphism. Let (g) ∈ Γk(G) and
(g) = (ϕ(x1), . . . , ϕ(xk)), and suppose (g) and (g′) ∈ Γk(G), (g′) = (g′1, . . . , g

′
k), lie

in the same connected component of Γk(G). Then there exist (y1, . . . , yk) ∈ Γk(Fk)
which lie in the same connected component of Γk(Fk) as (x1, . . . , xk) ∈ Γk(Fk), and
such that ϕ(yi) = g′i for every i = 1, . . . , k.
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Proof. By connectivity, (g′) is obtained from (g) by an application of a series of
Nielsen moves R±i,j and L±i,j on Γk(G). Apply the same sequence to (x1, . . . , xk) to
get the desired (y1, . . . , yk).

We call a projection of graph X onto Y which preserves a graph structure a
morphism ψ : X → Y of graphs X,Y , i.e. maps adjacent vertices into adjacent
vertices.

Corollary 1.8. Let X = Cayley(A+(Fk); {R±i,j , L±i,j}) be the Cayley graph of
A+(Fk) with respect to the Nielsen generators. Then for every G and every con-
nected component Y of Γk(G), there exists a graph morphism ψ : X → Y .

The above morphism can also be defined as follows. Identify Γk(G) with the set
Epi(Fk, G) of all epimorphisms ϕ : Fk � G, where an epimorphism ϕ is identified
with (ϕ(x1), . . . , ϕ(xk)). Then A = Aut(Fk) acts on E = Epi(Fk, G) by: α(ϕ) =
ϕ ◦ α−1 for α ∈ Aut(Fk) and ϕ ∈ E. Fix ϕ : Fk → G and let B be the subgroup
of A+ = A+(Fk) defined as B = {α ∈ A+ |α(ϕ) = ϕ}. Then A+/B is naturally
identified with the connected component of (g) = (ϕ(x1), . . . , ϕ(xk)) in Γk(G).
Indeed, if α1, α2 ∈ A+, then α1B = α2B if and only if α1(ϕ) = α2(ϕ). Moreover,[
R±i,j ◦ α

]
(ϕ) and

[
L±i,j ◦ α

]
(ϕ) are exactly the neighbors of α(ϕ). We conclude:

Corollary 1.9. For every G and every (g) ∈ Γk(G), the connected component of
(g) in Γk(G) is isomorphic to the Schreier graph of the special automorphism group
A+(Fk) with respect to the Nielsen moves and modulo some finite index subgroup
of A+(Fk).

Here the Schreier graph is the quotient of the left Cayley graph of A+(Fk) by
the subgroup B defined above.

For later purposes, we need to generalize our results from free groups to “rela-
tively free groups”.

LetW be a characteristic subgroup of Fk, i.e. α(W ) = W for every α ∈ Aut(Fk).
There is a natural homomorphism π : Aut(Fk)→ Aut(Fk/W ). Denote π(A+(Fk))
by A+(Fk/W ), and call it the special automorphism group of Fk/W . Note that in
general π is not necessarily an epimorphism, so A+(Fk/W ) can be of large (even
infinite) index in Aut(Fk/W ). Still, the Nielsen moves generate A+(Fk/W ) and we
have a slight generalization of Corollary 1.9.

Proposition 1.10. Let W be a characteristic subgroup of Fk and let G be a fi-
nite quotient of Fk/W . Then every component of Γk(G) is a Schreier graph of
A+(Fk/W ) with respect to the Nielsen moves and modulo some finite index sub-
group of A+(Fk/W ).

Example 1.11. Let W = [Fk, Fk] be the commutator subgroup of Fk. Then
Aut(Fk/W ) = GLk(Z) and A+(Fk/W ) = SLk(Z). The Nielsen moves R±i,j and
L±i,j give the elementary matrices E±i,j with 1’s along the diagonal, ±1 at the (i, j)
entry, and 0 elsewhere. We therefore conclude:

Proposition 1.12. Let G be a finite abelian graph. Then any connected component
of Γk(G) is a Schreier graph of SLk(Z) with respect to the elementary matrices E±i,j
(each appears twice) modulo a finite index subgroup of SLk(Z).

Remark 1.13. It is not difficult to see that a finite index subgroup of SLk(Z) in
Proposition 1.12 is a congruence subgroup containing Ker

(
SLk(Z)→ SLk(Z/mZ)

)
,
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where m = exp(G) is the smallest number l s.t. l · a = 0 for every a ∈ G. Clearly,
m divides |G|. Recall also that Γk(G) is connected when k ≥ d(G) + 1.

Example 1.14. Define the lower central series of Fk by γ1(Fk) = Fk and γi+1(Fk)
= [Fk, γi(Fk)]. Let W = γi+1(Fk), so Fk/W is the “free nilpotent group of class
i”. Let A+(Fk/W ) and Aut(Fk/W ) be as above. It is known that when k ≥ 2 and
i ≥ 4, A+(Fk/W ) is of infinite index in Aut(Fk/W ) (see [An], [Bh]). Nevertheless,
we still have that for every nilpotent group G of class i, every connected component
of Γk(G) is a quotient of the Cayley graph of A+(Fk/W ) with respect to the Nielsen
moves.

2. Mixing time, expanders and Kazhdan’s property (T)

Recall the definition of the product replacement random walk from the intro-
duction: We start at some given generating k-tuple (g) = (g1, . . . , gk) and at each
step apply a random move R±i,j or L±i,j . Recall also that this walk can be defined
as a random walk on the graph Γk(G) (see §1). In this section we do not consider
the question of whether Γk(G) is connected, but rather concentrate on the mixing
time of the walk on a connected component Γ′ which contains (g). Note that by
definition Γ′ ⊂ Γk(G) must also be a 4k(k − 1)-regular graph.

Let Γ be a connected d-regular simple graph (edges are unoriented, but loops
and multiple edges are allowed). Assume also that Γ is not bipartite, for example
it has at least one loop. Fix a vertex v ∈ Γ and denote by Qtv the probability
distribution of the nearest neighbor random walk W = W(Γ, v) on Γ starting at
v after t steps. Since Γ is connected and non-bipartite, the random walk has a
stationary distribution, which is uniform since Γ is regular:

Qtv(w)→ 1
|Γ| , as t→∞, for all w ∈ Γ.

Recall the definition of the total variation distance :

‖P −Q‖tv = max
B⊂Γ

|P (B)−Q(B)| =
1
2

∑
w∈Γ

∣∣P (w)−Q(w)
∣∣,

where P , Q are two probability distributions on Γ. By U we denote a uniform
distribution. Now define a mixing time mixv of the random walk W as follows:

mixv = min
{
t | ‖Qtv(w) − U‖tv <

1
e

}
.

In this section we present (mostly classical) bounds on the mixing times via spectral
and isoperimetric properties of Γ.

Denote by A the adjacency matrix of the graph Γ and let P = 1
dA be the

transition matrix of the random walk W . Let n = |Γ| and let

1 = β0(P) > β1(P) ≥ · · · ≥ βn−1(P) > −1

be the eigenvalues of P . Denote β(P ) = max{|β1(P)|, |βn−1(P)|}. A classical and
easy bound on the variation distance gives:

‖Qtv − U‖tv ≤
√
|X |
2

β(P)t.

From here we immediately have mixv < C(β) log |Γ|. More precisely:
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Proposition 2.1. Let α(Γ) = 1−β1(Γ) be the spectral gap of Γ. Then for the total
variation distance ‖Qtv − U‖tv, v ∈ Γ, of the random walk W on Γ we have:

‖Qtv − U‖tv ≤ e−c, for t ≥ log |Γ|+ c

min{α, βn−1 + 1} .

In particular, for the mixing time mixv we have:

mixv ≤
1

min{α, βn−1 + 1} (log |Γ|+ 1).

Now recall the definition of the lazy random walk W ′ (see e.g. [Ch]) which is a
random walk on Γ which with probability 1/2 stays and with probability 1/2 moves
to a uniform neighbor. An easy argument shows that

mix′v ≤ 2 mixv,

where mix′ is the mixing time of W ′ (see e.g. [Bb1], [Ch]). This implies that by
making the walk lazy we can slow the walk by the factor at most 2, but sometimes,
of course, can speed it up if the gap |βn−1 − (−1)| is small.

Now observe that the transition matrix becomes P ′ = 1
2 (P + Id), and for the

eigenvalues we have β1(P ′) = (β1(P ) + 1)/2, βn−1(P ′) ≥ 0. Thus we have β(P ′) =
β1(P ′) and α(P ′) = α(P )/2. We conclude:

Proposition 2.1′. Let α(Γ) = 1 − β1(Γ) be the spectral gap of Γ. Then for all
c > 0 the total variation distance ‖Qtv − U‖tv, v ∈ Γ, of the lazy random walk W
on Γ satisfies:

‖Qtv − U‖tv ≤ e−c, for t ≥ 2 log |Γ|
α

+
2c
α
.

In particular, for the mixing time mixv we have:

mix′v ≤
2
α

(log |Γ|+ 1). �

From now on we will restrict our attention to estimates on β1 which suffice to
analyze mixing of lazy random walks. We start with the following definition:

Definition 2.2. A finite d-regular graph Γ is called an ε-expander if for every
subset of vertices B ⊂ Γ, |B| ≤ |Γ|/2, we have |∂B| ≥ ε|B|, where

∂B = {v ∈ Γ | v /∈ B, but v is adjacent to a vertex in B}.
It is well known that expanders can be very large (with the same d) and have

spectral gap bounded away from zero. The inverse is also true (see [Ch], [Lu1] for
references and details).

There are various methods in the literature to construct expanders, but usually
it is not easy to prove that some given families of graphs are ε-expanders with the
same ε. Margulis was the first one to give explicit examples which he constructed
using property (T).

Definition 2.3. A topological group G is said to have (Kazhdan) property (T) if
there exists a compact subset Q of G such that K = K(G,Q) > 0, where

(∗) K(G,Q) = inf
ρ

inf
v

max
q∈Q

‖ρ(q) v − v‖
‖v‖ ,

where ρ runs over all unitary representations (H, ρ) of G which do not contain the
trivial representation (i.e., no non-zero G-fixed vector), and v runs over all vectors
v 6= 0 in H.
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We say that (Q, ε) is a Kazhdan constant for G if ε ≤ K(G,Q).
Now let Γ be a discrete group. It is well known and not difficult to prove that if

Γ has (T), then Γ is finitely generated, and if (Q, ε) is a Kazhdan constant for Γ ,
then Q generates Γ .

Proposition 2.4. Let Γ be a discrete group generated by a finite set S. Assume
Γ has property (T) with Kazhdan constant (S,K). Then for every finite index
subgroup N of Γ , the Schreier graph X on Γ/N with respect to S is an ε-expander
with ε ≥ α ≥ K2/2|S|, where α(X) = 1− β1(X) is a spectral gap of X.

The proof can be found in [HRV], Corollary to Proposition III, p. 89.

Proposition 2.5. Using the conditions of Proposition 2.4, assume that there is a
finite group H < Aut(Γ ) such that H(S) = S and the action of H on S has m
equal size orbits. Then one can improve the eigenvalue gap bound as follows:

α ≥ K
2

2m
.

The proof will appear in a forthcoming paper [PZ]. Let us note that one can
always take H = {1}. Then m = |S| and the bound in Proposition 2.5 coincides
with a bound in Proposition 2.4.

3. Γk(G) as expanders

We can now combine the preliminary results we presented in §1 and §2 to deduce:

Theorem 3.1. Let W be a characteristic subgroup of Fk, let π : Aut(Fk) →
Aut(Fk/W ) and let A+(Fk/W ) = π(A+(Fk)) be the special automorphism group
of Fk/W generated by the set Υ of Nielsen moves. If A+(Fk/W ) has Kazhdan’s
property (T), then there exists an ε > 0 such that for every finite quotient G of
Fk/W , every connected component Γ′ of Γk(G) is an ε-expander, for some ε > 0.

Moreover, for all c > 0 the total variation distance ‖Qt(g)−U‖tv and the mixing
time mix′(g) of the lazy random walk W ′ on Γ′ starting at (g) ∈ Γ′ satisfy:

‖Qt(g) − U‖tv ≤ e−c for t ≥ 16 log |Γ|
K2

+
16 · c
K2

,

and mix′(g) ≤
16
K2

(log |Γ′|+ 1) ,

where (Υ,K) is a Kazhdan constant for A+(Fk/W ).

Proof. Let Υ be the set of Nielsen moves. By Proposition 1.10, Γ′ is a Schreier
graph of A+(Fk/W ) with respect to Nielsen moves, and by Proposition 2.4 ev-
ery such Schreier graph is an ε-expander for an ε > 0 which depends only on
K (A+(Fk/W ),Υ). Notice that a symmetric group Sk ⊂ A+(Fk) preserves Υ
(Sk(Υ) = Υ), and has exactly 4 orbits. Now Proposition 2.5 gives a bound on the
eigenvalue gap and, finally, Proposition 2.1′ gives a desired bound on the mixing
time.

Ideally, we would like to apply Theorem 3.1 to the characteristic subgroup W =
{1}, the trivial group. But this is a well-known open problem:

Open Problem 3.2. Does Aut(Fk) (or equivalently A+(Fk)) have Kazhdan’s
property (T) ?
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Clearly the answer for k = 2 is negative since GL2(Z) is a quotient of Aut(F2)
and the latter does not have (T). It follows from [Mc] that the answer for k = 3 is
also negative. On the other hand, for some non-trivial W , A+(Fk/W ) does have
(T).

Theorem 3.3. a) For k ≥ 3, the group SLk(Z) has Kazhdan’s property (T).
b) K

(
SLk(Z),

{
E±i,j

})
= Ω

(
1
k2

)
, where E±i,j, i 6= j, is an elementary matrix

with ones on the diagonal, ±1 at (i, j), and zeroes elsewhere.

Proof. Part a) is a classical result of Kazhdan (see [Lu1]). Part b) is a recent result
of Shalom [Sh2].

Now, if W is the commutator subgroup of Fk, then A+(Fk/W ) ' SLk(Z) and
the Nielsen moves give the elementary matrices (see Example 1.11). Recall also
that Γk(G) is connected for G abelian and k ≥ d(G) + 1. We obtain:

Theorem 3.4. Let G be a finite abelian group and k ≥ max{3, d(G) + 1}. Fix
any generating k-tuple (g) ∈ Γk(G). Then for all c > 0 the total variation distance
‖Qt(g)−U‖tv and the mixing time mix′(g) of the lazy random walk W ′ on Γ′ starting
at (g) ∈ Γ′ satisfy:

‖Qt(g) − U‖tv ≤ e−c for t ≥ C k5 log |G|+ c · C′ k4,

mix′(g) ≤ C′′ k5 log |G| ,
where C, C′, C′′ are universal constants.

Proof. By Theorem 3.3 part b) we have K = Ω(1/k2). Further,

log |Γk(G)| ≤ log
(
|G|k

)
= k log |G|.

Therefore by Theorem 3.1 we immediately have:

mix′(g) ≤
16
K2

log |Γk(G)| ≤ C k5 log |G|.

The total variation distance is bounded analogously. This completes the proof.

Remark 3.5. (i) In [Sh1] Shalom showed that

K
(
SLk(Z),

{
E±i,j

})
≥ 1

33 k2 − 11 k + 1122
.

Combined with the estimates in Theorem 3.1, the constants C, C′, C′′ can be
explicitly computed.

(ii) When G is abelian and k = d(G) the graph Γk(G) can have many connected
components, each of equal size (see [DG]). In this case one can generalize the
result of the theorem to the same bound for mixing on the connected component
containing the starting point (g) of the random walk.

(iii) Theorem 3.4 remains true also for k = 2. By Remark 1.13, it suffices that
the congruence quotients of SL2(Z) are expanders. This is indeed the case: In
spite of the fact that G = SL2(Z) does not have property (T), it has property (τ)
with respect to the congruence subgroups Γ (m) = (Ker(SL2(Z))→ SL2(Z/mZ)),
m ≥ 1. Hence there exists a common ε > 0 such that for every Schreier graph X of
SL2(Z) modulo Γ (m) we have α(X) > ε. This follows from the celebrated result of
Selberg asserting that λ1

(
Γ (m) \H

)
≥ 3/16, where H is the upper half plane with

its hyperbolic metric and λ1(M) means the bottom of the positive spectrum of the
Laplacian on the manifold M (see [Lu1], [Lu2] for details).
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Let us mention here that the notion of congruence subgroups can be extended
to the non-commutative setting:

Definition 3.6. Let B be any group and Γ ≤ Aut(B). For a characteristic
subgroupN of a finite index inB define Γ (N) = Ker

(
Γ → Aut(B/N)

)
. A subgroup

of Γ containing Γ (N) for some such N will be called a congruence subgroup of Γ .

It is not difficult to see that if B is a finitely generated residually finite group,
then the congruence subgroups define a Hausdorff topology on Γ . If B = Zk and
Γ = SLk(Z) ≤ Aut(Zk), the congruence topology is just the usual one.

Now one can formulate a “congruence subgroup problem” in this setting. In
particular, for B = Fk:

Open Problem 3.7. Is every finite index subgroup of Aut(Fk) a congruence sub-
group?

Recall that for SLk(Z), k ≥ 3, every finite index subgroup is a congruence, while
for k = 2 this is not the case [BMS] (compare [Mo] for a related question).

Let us return to our main interest, finding bounds on the mixing time of the
product replacement random walk. Observe that it is actually not necessary that
A+(Fk/W ) have property (T). One can check along the proof that it suffices to
have “property (τ) with respect to congruence subgroups” (compare with Remark
1.13). Note that the latter is called the “Selberg property” in [Lu2].

So far, we have presented a completely satisfactory result for abelian groups,
which explains the outstanding performance of the product replacement algorithm
for these groups. Let us consider now the case of nilpotent groups.

As in §2, define the lower central series of a groupG by γ1(G) = G and γi+1(G) =
[G, γi(G)]. A group G is called nilpotent of class i if γi+1(G) = 1. For any group G
the group γi+1(G) is a characteristic subgroup of G and Fk/γi+1(Fk) is called the
free nilpotent group of class i on k generators. Let Υ be the set of Nielsen moves in
Aut(Fk). We shall denote by Υi the image πi(Υ) of the Nielsen moves under the
natural map πi : Aut(Fk)→ Aut(Fk/γi+1(Fk)).

Theorem 3.8. For every k ≥ 3 and i ≥ 1 the special automorphism group of
the free nilpotent group of class i on k generators Ak(i) = A+(Fk/γi+1(Fk)) has
Kazhdan’s property (T).

Theorem 3.8 will be proved in §4. It is a direct generalization of part a) of
Theorem 3.3. From Theorem 3.8 we can now deduce:

Theorem 3.9. For fixed i ≥ 1 and k ≥ 3 and for every nilpotent group of class
at most i the mixing time of the lazy random walk on any connected component X
of Γk(G) is bounded by C(k, i) · log |G|, where C = C(k, i) is a constant depending
only on k and i.

Proof. This is a corollary of Theorem 3.8 and Theorem 3.1.

Remark 3.10. Recall that Γk(G) is connected for k ≥ d(G) + 1 ([Du2]). Therefore
in this case one obtains a complete answer for the performance of the algorithm
(cf. [P3]).

One can extend Selberg’s theorem to show that Theorem 3.9 is valid for k = 2.
We will not present the details as the case k = 2 is of interest only for cyclic groups
and thus covered by Theorem 3.4 and Remark 3.5.

Finally, in §5 we discuss the estimates on the constant C that one can obtain by
various methods.
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4. Automorphism groups of free nilpotent groups

In this section we prove that Ak(i) has property (T), completing the proof of
Theorem 3.8.

Let Fk(i) be the free nilpotent group on k generators and class i. For every
finitely generated torsion free nilpotent group G one has a central series

G = G1 > G2 > · · · > Gr > Gr+1 = {e} ,

where Gi/Gi+1 ' Z. By choosing xi ∈ Gi \ Gi+1 such that xiGi+1 generates
Gi/Gi+1 one gets a “Malcev basis” for G: every g ∈ G can be written as

g = xa1
1 · xa2

2 · . . . · xarr ,

with ai ∈ Z for 1 ≤ i ≤ r. Identifying G with Zr via g → (a1, . . . , ar), P. Hall
([H]) showed that the group operations are given by polynomials with rational
coefficients. One can use these polynomials to extend the group operations from Zr
to Rr, thus embedding G in a simply connected unipotent group U (the “Malcev
embedding” of Γ ). Moreover, every automorphism of G can be extended to an
automorphism of U .

Applying all this to G = Fk(i) we get a free nilpotent group U = Uk(i) over R,
and an embedding of Aut(Fk(i)) in Aut(Uk(i)). The latter is a Lie group ([Ho],
Corollary 15.9).

The group theoretic structure of Aut(Fk(i)) was described by Andreadakis [An]:
First, denote J = Ker

(
Aut(Fk(i))→ Aut(Fk(i− 1))

)
. Every α ∈ J is an automor-

phism which takes each of the free generators x1, . . . , xk of Fk(i) to x1ζ1, . . . , xkζk,
where ζ1, . . . , ζk ∈ γi(Fk)/γi+1(Fk). It is not difficult to check that α→ (ζ1, . . . , ζk)
defines an isomorphism from J onto

(
γi(Fk)/γi+1(Fk)

)k. From the Witt formula
([MKS], Theorem 5.11) and by induction we can now deduce that Aut(Fk(i)) is an
extension:

(∗) 1→ M̃k(i)→ Aut(Fk(i))→ GLk(Z)→ 1 ,

where M̃i is the group of IA-automorphisms of Fk(i), i.e. the group of automor-
phisms which act trivially on the commutator quotient. The group M̃i is a nilpotent
group of class (i− 1) and of Hirsh rank mi:

mk(i) = k

i−1∑
j=1

1
j

∑
d | j

µ(d) kj/d

 ,

where µ is a classical Möbius function. See [An] for details.
The group Aut(Uk(i)) has a similar structure:

(∗∗) 1→ Ñk(i)→ Aut(Fk(i)) π→ GLk(R)→ 1 ,

where Ñk(i) is a simply connected nilpotent group of dimension mk(i).
Now, from the description it is clear that Aut(Fk(i)) is a discrete subgroup of

Aut(Uk(i)). It is not a lattice there, but it is a lattice in the preimage of SL±k (R)
under π, where SL±k (R) denotes the group of matrices of determinant ±1.

Unlike (∗), the sequence (∗∗) splits, and so

Aut(Uk(i)) = Ñk(i)o SL±k (R).
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Let us look now at Ak(i), which is the image of A+(Fk) in Aut(Fk(i)), as a
subgroup of Aut(Uk(i)). Let Mk(i) be the intersection of Ak(i) with M̃k(i).

We have that Mk(i) is a discrete subgroup of Ñk(i); it is a subgroup of

M̃k(i) = Ker
(
Aut(Fk(i))→ GLk(Z)

)
,

which is a lattice in Ñk(i). Let Nk(i) be the Zariski closure of Mk(i) in Ñk(i). One
can prove by induction on the dimension of a nilpotent unipotent group that every
subgroup of a lattice is a lattice in its Zariski closure. Hence Mk(i) is a lattice in
Nk(i).

The image of Ak(i) in SL±k (R) is SLk(Z) which is Zariski dense in SLk(R), and
since Ak(i) normalizes Mk(i), SLk(R) normalizes Nk(i). We can summarize:

Proposition 4.1. The group Ak(i) is a lattice in the Lie group Gk(i) = Nk(i) o
SLk(R).

Proposition 4.2. For k ≥ 3 and i ≥ 1, the Lie group Gk(i) = Nk(i)oSLk(R) has
property (T). Moreover, if (Q, ε) is a Kazhdan constant for SLk(R), then (Q, ε) is
a Kazhdan constant for Gk(i) (and thus independent of i).

Proof. It follows from [W] (see also [Sh3]) that a group like Gk(i), i.e. a semidirect
product of a nilpotent unipotent group and a connected non-compact semisimple
Lie group with property (T), has Kazhdan’s property (T) if and only if Gk(i) =
[Gk(i), Gk(i)]. Now, since Ak(i) is Zariski dense in Gk(i) it therefore suffices to
show that [Ak(i), Ak(i)] is of finite index in Ak(i). To see this it is enough to show
that [A,A] is of finite index in A, where A = A+(Fk). In fact [A,A] is equal to
A as can be seen from the explicit presentation for A given by Gersten [Ge]. The
second statement of the Proposition, follows from a more general result:

Proposition 4.3. Let G = N o H be a semidirect product of a connected non-
compact semisimple Lie group H without compact factors and a unipotent Lie group
N . Assume G has property (T) (this happens if and only if H has (T) and [N,H ] =
N). Let (Q, ε) be a Kazhdan constant for H. Then (Q, ε) is a Kazhdan constant
also for G.

Proof. Let us first observe that for every representation σ of G without a G-
invariant vector, all matrix coefficients g → 〈σ(g) v, u〉 go to zero as g goes to infinity
along H . Indeed, let us first prove this when σ is irreducible. Then K = Ker(σ)
is a normal subgroup of G. If K contains H , then by condition of the theorem we
have:

K > [K,N ] > [H,N ] = N

and so K also contains N . This implies that K = G and σ is the trivial represen-
tation, which is a contradiction. Now, if K does not contain H , then K ∩H is a
proper subgroup ofH , and hence the image ofH inG/K is non-compact. Moreover,
it is also non-compact in (G/K)/Z(G/K) since H has no infinite abelian normal
subgroups. Our claim (for irreducible representations) now follows from the Howe-
Moore Theorem for groups with radical ([HM], Theorem 6.1, p. 86.) The general
case follows from a standard direct integral argument (cf. [Z], Proposition 2.3.2),
after observing that by the assumption on σ almost every irreducible representation
which appears in a decomposition of σ into irreducibles is non-trivial.

Now let (V, ρ) be a unitary representation of G on a Hilbert space V , and assume
that V has a (Q, ε)-invariant vector, i.e. a unit vector v with ‖ρ(q)v − v‖ ≤ ε for
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every q ∈ Q. We need to prove that V has a G-invariant vector. By the assumption,
V has an H-invariant unit vector w. If V does not contain a G-invariant vector,
then by the previous observation, the matrix coefficient 〈ρ(g)w,w〉 must go to 0
as g goes to ∞ along H . But this is a contradiction since 〈ρ(g)w,w〉 = ‖w‖2 for
g ∈ H . This finishes the proof.

Proof of Theorem 3.8. By Proposition 4.1, Ak(i) is a lattice in Gk(i), and by
Proposition 4.2, Gk(i) has property (T). It is well known (see [K]) that a lattice in
a locally compact group with (T) has (T) as well. This completes the proof.

5. Concluding remarks

While our results show the relevance of Kazhdan’s property (T) to the analysis
of the product replacement algorithm, it is not easy to apply property (T) to get
quantitative estimates on the mixing time. The reason is the difficulty in estimating
Kazhdan constants (cf. [Bu]). Even when one can get estimates on Kazhdan
constants, they are not necessarily for the desired finite (or compact) set.

Recently Shalom made a breakthrough in the study of explicit Kazhdan con-
stants. In [Sh1] he showed that for G = SLk(R) the set Q of the two matrices(

1 2
0 1

)
and

(
1 0
2 1

)
embedded in the upper 2 × 2 left corner of SLk(R) form a

Kazhdan constant with ε =
√

2−
√

3 (≈ .51). So, by Proposition 4.2 the same
holds for the groups Gk(i) there, independent of k and i.

Unfortunately, knowing Kazhdan constants for a Lie group is only part of the
work (in fact, a small part) of computing Kazhdan constants for a lattice.

Let us remark first that having Kazhdan constants for the Gk(i)’s independent
of i does not give any indication that the same holds for Ak(i). For example, look at
the groupsHm = (R3)moSL3(R), where SL3(R) acts as a standard module on each
copy of R3. By Proposition 4.3 the groupsHm have Kazhdan constants independent
of m, but it is not difficult to see that this is not the case for (Z3)moSL3(Z), which
is a lattice in Hm.

In [Sh1] Shalom showed a general method of how to pass from a Kazhdan con-
stant (a compact set Q and a number ε) of a Lie group G to a Kazhdan constant
(a finite set and a number) for a lattice Γ in it. In principle, one might be able
to apply it to our case to get explicit Kazhdan constants for Ak(i), but the best
bound one could possibly obtain by this approach will decrease exponentially in i.

Note also that Shalom’s method in [Sh1] gives an explicit number, but with
respect to a subset of Γ on which there is only a partial knowledge. In our case we
will also have to replace the set of generators obtained by Shalom’s method with
the set of Nielsen’s generators, paying an additional price on the estimate.

In [Sh2], Shalom presented a completely different method to compute directly
the Kazhdan constant of SLk(Z) with respect to the elementary matrices E±i,j .
These are exactly the Nielsen generators for the group Ak(1) ! He showed that the
Kazhdan constant is at least Ω(1/k2) (and at most O(1/

√
k)). We have already

used this remarkable result in Theorem 3.4. Again, it seems his method can work
also for Ak(i), but will give Kazhdan constants which will decrease exponentially
(as a function of the class i and k). Definitely, these results are far from satisfactory.
We hope that our work will provide an additional motivation for the ongoing efforts
to improve estimates of Kazhdan constants.
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Let us make a remark about Open Problem 3.2. It follows from [Gi] that the
infinitely many alternating groups are quotients of A+(Fk). Therefore if Aut(Fk)
(or equivalently A+(Fk)) has Kazhdan’s property (T), then one can make Cayley
graphs on the symmetric (alternating) groups into a sequence of expanders. This
would solve positively Open Problem 10.3.4 and negatively Open Problem 10.3.2
in [Lu1].

Finally, we present a few remarks regarding the product replacement algorithm.
Let us first note that the actual implementation uses only moves L+

i,j and R+
i,j (see

[CLMNO]). In this paper we add the moves L−i,j and R−i,j to simplify the analysis.
Observe that the resulting Markov chain is then reversible. It is worth mentioning
that, as shown in [DS2], the original version can be analyzed as well by reducing
to a reversible version. We leave it to the reader whether a similar reduction can
be done in this case.

Another variant of the product replacement random walk, using only L±i,j, was
studied in [DS2]. It might be helpful to note that in the case of nilpotent groups
this is the same walk, so our analysis holds. We do not know whether there is a
difference in the general case (cf. [P1]).

Let us note that the connectivity problem was successfully removed by the second
author [P2] who showed that in a few interesting cases the graphs Γk(G) have a
large connected component and thus the random walk on such a component outputs
a (nearly) uniform generating k-tuple.

In a different direction, we should warn the reader that the ability to sample
a uniform generating k-tuple does not necessarily give a way to generate random
elements in the group. In particular, the distribution of components of random
elements (g) ∈ Γk(G) can have a strong bias, sometimes even detectable by a short
line program. We refer to a recent result [BP] of Babai and the second named
author for details.
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