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Abstract

We study the weighted partition function for lozenge tilings, with weights given
by multivariate rational functions originally defined in [MPP3] in the context of the
factorial Schur functions. We prove that this partition function is symmetric for large
families of regions. We employ both combinatorial and algebraic proofs.

Mathematics Subject Classifications: 05A19, 05E05

1 Introduction

Hidden symmetries are pervasive across the natural sciences, but are always a delight
whenever discovered. In Combinatorics, they are especially fascinating, as they point
towards both advantages and limitations of the tools, cf. §5.1. Roughly speaking, the
combinatorial approach strips away much of the structure, be it algebraic, geometric, etc.,
while allowing a direct investigation often resulting in an explicit resolution of a problem.
But this process comes at a cost — when the underlying structure is lost, some symmetries
become invisible, or “hidden”.

Occasionally this process runs in reverse. When a hidden symmetry is discovered for
a well-known combinatorial structure, it is as surprising as it is puzzling, since this points
to a rich structure which yet to be understood (sometimes uncovered many years later).
This is the situation of this paper.

We enumerate the (weighted) lozenge tilings of regions on a triangular lattice. These
tiling problems appear in a number of interrelated areas: from general tiling literature [Thu]
to combinatorics of plane partitions [Kra], to statistical physics of the dimer model [Gor].
First studied by MacMahon, Kasteleyn and Temperley–Fisher in other settings, these
lozenge tilings are now extremely well understood by tools of the determinant calculus,
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algebraic combinatorics and integrable probability (see Section 5). Yet our hidden sym-
metries appear to be new (see, however, §5.2).

The results of this paper are somewhat technical, but the backstory is quite interesting.
We start with a classical result of MacMahon: the number Pabc of plane partitions which
fit into [a× b× c] box is given by a product formula:

Pabc =
a∏

i=1

b∏

j=1

c∏

k=1

i+ j + k − 1

i+ j + k − 2
, (1.1)

If you think of these boxed plane partitions as 3-dimensional objects and squint your eyes,
you see that they are in natural bijection with lozenge tilings of the 〈a× b× c× a× b× c〉
hexagon H〈a, b, c〉, see Figure 1.

There are numerous extensions and generalizations of (1.1), and it is key to many recent
probabilistic studies. On a combinatorial side, there is a classical q-analogue Pabc(q) by
the “volume” of the tilings, which corresponds to the size of the plane partition. If one
views (1.1) as an evaluation of the Schur function, this q-analogue is given by

Pabc(q) = q−a(a+1)b/2 · s(ba)
(
1, q, . . . , qc−1

)
.

Φ

H〈5, 11, 4〉 [9× 12]

Figure 1: A lozenge tiling of H〈5, 11, 4〉 and the corresponding collection of non-intersecting
paths in [9× 12].

When the bottom rectangle (ba) is replaced by a Young diagram λ, there is Stanley’s
hook-content formula for sλ(1, q, . . . , q

c−1). There are many other exact product formulas
for various further extensions, some related to other root systems and symmetry classes
recently surveyed in [Kra], some with surprising coincidences and hidden symmetries [Ste].

On a probabilistic side, there is a celebrated Arctic circle phenomenon first discovered
in [CLP] for H〈n, n, n〉, and then extended to general regions in [CKP]. This work led to
an incredible wealth of results on the limit shapes and random surfaces, most of which goes
outside the scope of this paper, see an extensive survey [Gor]. Let us single out [BGR] which
gives a 5-parameter elliptic deformations (with one relation) of Pabc(q), and computed the
exact asymptotic formulas for the limit shape.

Our approach to a multivariate deformation of Pabc is based on the recent work [MPP3]
in Algebraic Combinatorics, in turn inspired by the extensive study of the (equivariant)
cohomology of the Grassmannian. To set this up, recall that the lozenge tilings of H〈a, b, c〉
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are in bijection with collections of non-intersecting paths in the rectangle, see Figure 1.
These lattice paths are in bijection with the excited diagrams, thus giving a connection to
the Naruse hook-length formula [MPP1, MPP2] the number of standard Young tableaux
of skew shapes.

In [MPP3], the authors introduce a multivariate deformation Fabc(x1, x2, . . . | y1, y2, . . .)
of Pabc with two sets of variables which play a superficially similar role:

Fabc(1, 1, . . . | 0, 0, . . .) = Fabc(0, 0, . . . | 1, 1, . . .) = Pa(b−1)c .

The key technical result in [MPP3] is the symmetry of Fabc.
Formally, the Morales–Pak–Panova (MPP–) Theorem 2.1, shows that Fabc(x |y) is

symmetric in the first set of variables x = (x1, x2, . . .), with the second set y = (y1, y2, . . .)
as parameters, and vice versa (see §5.6). This result is derived from the algebraic properties
of the factorial symmetric functions defined by Macdonald in one of his “variations” [Mac].
These symmetric functions were later studied by Molev–Sagan [MS], Ikeda–Naruse [IN],
and others, in connection with the equivariant Schubert calculus. The authors use a special
case of this hidden symmetry to give product formulas for the number of standard Young
tableaux SYT(λ/µ), for a 6-parameter family {λ/µ} of skew Young diagrams.

We obtain two generalizations and refinements of the MPP–theorem, to:

(1) trapezoid (sawtooth) regions obtained from H(a, b, c) by horizontal cuts,
(2) parallelogram regions obtained from H(a, b, c) by two vertical cuts.

Formally, for general regions Γ, we define a multivariate partition function F (x |y) by
summing over all lozenge tilings of Γ. In case (1), we show that F (x |y) is symmetric in x ,
and in case (2) we show that F (x |y) is symmetric in y . Both results generalize (two parts
of) the MPP–theorem, which until now had only a technical proof based on the properties
of factorial Schur functions. We then obtain a common generalization Main Theorem 3.2.
We leave open the problem of finding probabilistic and enumerative applications of these
general hidden symmetries.

The rest of the paper is structured as follows. We start by stating both the background
and the results in Section 2, followed by their lozenge tilings interpretation and quick point-
ers to the literature. In the following two sections (Section 3 and 4), we give completely
independent combinatorial and algebraic proofs of the results, including the proof of Main
Theorem 3.2. We conclude with final remarks and open problems in Section 5.

2 Main results

2.1 Known results

We start with the MPP–theorem mentioned in the introduction:

Theorem 2.1 (Morales–Pak–Panova [MPP3, Thm 3.10]). Define the following multivariate
rational function:

Fabc

(
x1, . . . , xa+c | y1, . . . , yb+c

)
:=

∑

Υ=(γ1,...,γc)
γk : (a+k,1)→(k,b+c)

c∏

k=1

∏

(i,j)∈γk

1

xi + yj
, (2.1)
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where the sum is over all collections Υ of non-intersecting lattice paths in the [(a+c)×(b+c)]
rectangle (see Figure 2). Then Fabc(x |y ) is symmetric in x = (x1, . . . , xa+c) and in
y = (y1, . . . , yb+c).

Strictly speaking, Theorem 2.1 follows from the proof of Thm 3.10 in [MPP3], but not
from the statement.

x

yx1
x2

y1y2

Υ0 Υ1 Υ2

A1

A1

A2

A2
A3
A4

B1

B1

B2

B2
B3
B4

Figure 2: Left: An example of a collection Υ of c paths as in Theorem 2.1, where a = 5,
b = 8, and c = 4. Right: An example of all three possible paths Υ0,Υ1,Υ2 for a = 1,
b = 1, and c = 2.

Here and everywhere below we adopt the coordinate system that is standard for matri-
ces: the first coordinate x is increasing downwards and the second coordinate y is increasing
from left to right (see Figure 2).

Example 2.2. Let a = 1, b = 1 and c = 2. We have A1 = (2, 1), A2 = (3, 1), B1 = (1, 3)
and B2 = (2, 3), and Υ = (γ1, γ2) are non-intersecting paths γ1 : A1 → B1 and γ2 : A2 →
B2 inside a 3× 3 square. There are three such Υ avoiding either (1, 1), or (2, 2), or (3, 3),
see Figure 2 (Right). For example, Υ0 = (γ1, γ2), where γ1 : A1 = (2, 1) → (2, 2) →
(1, 2) → (1, 3) = B1, and γ2 : A2 = (3, 1) → (3, 2) → (3, 3) → (2, 3) = B2, i.e., Υ0 is
avoiding (1, 1). We have:

F132(x |y) = w(Υ0)+w(Υ1)+w(Υ2) =
[
(x1+y1) + (x2+y2) + (x3+y3)

] 3∏

i=1

3∏

j=1

1

xi + yj
,

which is symmetric in x and in y (but not in both x and y).

Let us emphasize that although the symmetry in both sets of variables may seem to play
the same role, the result is not symmetric under the transposition giving x ↔ y . In fact,
these are fundamentally different symmetries: the one in x is both difficult and interesting,
while the one in y is relatively straightforward. As we mentioned in the introduction, the
two generalizations we present each retain only one of these symmetries.

2.2 New results

There is a natural way to generalize the setting of Theorem 2.1. Let [m × n] = {(p, q) ∈
N2, 1 6 p 6 m, 1 6 q 6 n}, A = (A1, . . . , Ak), B = (B1, . . . , Bk) be two k-tuples of points
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in [m×n]. Denote by Υ : A → B a collection (γ1, . . . , γk) of non-intersecting lattice paths
γi : Ai → Bi, and let N(A,B) := #{Υ : A → B} be the number of such collections.
Throughout the paper, unless stated otherwise, all paths will use only Up and Right steps,
where the coordinates are arranged as in Figure 2 (see also §5.9).

Note that for fixed A,B ⊂ N2, the set {Υ : A → B} is a classical combinatorial
object which generalizes Dyck paths, plane partitions, Young tableaux, etc. [GJ, Ch. 5].
Under mild conditions, the number N(A,B) has a determinant formula via the Lindström–

Gessel–Viennot (LGV–) lemma (see §4.2). As we discussed in the introduction, for A,B
as in Theorem 2.1, the number N(A,B) of non-intersecting collections of paths Υ : A → B
is equal to Pabc given by (1.1).

Define the weight of Υ as

w(Υ) :=

k∏

i=1

w(γi) , where w(γ) :=
∏

(i,j)∈γ

1

xi + yj
.

Let
FA,B

(
x1, . . . , xm | y1, . . . , yn

)
:=

∑

Υ:A→B

w(Υ). (2.2)

Note that F is not symmetric for general A,B. For example, let k = 2, A1 = B1 = (1, 1),
A2 = B2 = (2, 2). Then N(A,B) = 1, and

FA,B(x1, x2 | y1, y2) =
1

(x1 + y1)(x2 + y2)
,

which is not symmetric in either set of variables. Since there is no apparent action of
either symmetric group on the paths collections Υ in Theorem 2.1, the theorem represents
a hidden symmetry, and raises the following general question:

Question 1. Are there other sets A, B ⊂ [m × n], for which the multivariate generating
function FA,B(x |y) is symmetric in (x1, . . . , xm)?

We give two positive answers to this question, refining both symmetries in Theorem 2.1 :

Theorem 2.3 (Horizontal cut). Let m = a + k, A1 = (a + 1, 1), . . . , Ak = (m, 1), and
A = (A1, . . . , Ak). Similarly, let B1 = (1, b1), . . . , Bk = (1, bk), for some 1 6 b1 < b2 <
. . . < bk 6 n, and B = (B1, . . . , Bk). Then the multivariate function

FA,B

(
x1, . . . , xm | y1, . . . , yn

)

defined in (2.2), is symmetric in x = (x1, . . . , xm).

See Figure 3 for the explanation of the horizontal cut in the title. Let us show that
Theorem 2.3 implies the x -symmetry part of Theorem 2.1, for a > c. Apply Theorem 2.3
to two adjacent cuts: above and below row (a + 1), including the latter into both parts.
Of course, to apply Theorem 2.3 to the top part, rotate it 180 degrees. We obtain that
Fabc is symmetric in both (x1, . . . , xa+1) and in (xa+1, . . . , xa+c), implying the symmetry in
(x1, . . . , xa+c), for every fixed start/end points C in row (a+ 1). Summing over all such C,
we obtain Theorem 2.1.
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A1

A1 A2
A2

A3A3
A4A4

B1

B1

B2

B2 B3B3

B4

B4

Figure 3: Examples of paths collections in Theorems 2.3 and 2.4 and how they refine
Theorem 2.1.

Theorem 2.4 (Vertical double cut). Let A1 = (a1, 1), . . . , Ak = (ak, 1), for some 1 6 a1 <
a2 < . . . < ak 6 k + ℓ, and A = (A1, . . . , Ak). Similarly, let m > 1, B1 = (b1, m), . . . ,
Bk = (bk, m), for some 1 6 b1 < b2 < . . . < bk 6 k + ℓ, and B = (B1, . . . , Bk). Then the
multivariate function

FA,B

(
x1, . . . , xk+ℓ | y1, . . . , ym

)
,

defined in (2.2), is symmetric in y = (y1, . . . , ym).

In the theorem, one can assume that ai > bi for all i = 1, . . . , k, since otherwise there are
no collections of Up-Right paths Υ, and the claim is vacuously true (cf. §5.9). We should
mention that this generalization of the y -symmetry part of Theorem 2.1 is conceptually
more straightforward, as it both contains it as a special case and refines it, see Figure 3.

Remark 2.5. Darij Grinberg (private communication) suggested the following way to de-
duce Theorem 2.3 from Theorem 2.4. Denote Ci = (m, i) for i = 1, . . . , k, C = (C1, . . . , Ck).
There is a natural weight-preserving bijection between collections of paths Υa : A → B
and Υc : C → B: replace the horizontal initial segments [Ai, (a+ i, i)] in Υa to the vertical
initial segments [Ci, (a+ i, i)] in Υc.

2.3 Lozenge tilings formulation

Let us recall the bijection Φ in Figure 1 which allows us to translate the lattice paths
results into statements about lozenge tilings. Start with Υ = (γ1, . . . , γc) in the rectangle
S := [(a + c) × (b + c)]. Place points in the middle of edges of the opposite c edges in
H = H〈a, b− 1, c〉 as in the Figure 1. Think of paths γi in S in as a union of edges. Start
with vertices in the lower left edge of H as in the Figure. For every Right edge in γi, make
a Right edge through a light green lozenge in H. Similarly, for every Up edge in γi make
a Up-Right (diagonal) edge through a dark green lozenge in H. When all of Υ is mapped
onto H, we obtain a partial tiling of the hexagon with light and dark green lozenges. Fill
the remaining space with yellow lozenges. This completes the construction of Φ.

We refer to [MPP3, §7] for more details and properties of this bijection, reformulation
of Theorem 2.1 into the lozenge language and several applications. We should also mention
that our deformation Fabc(x |y) for xi = qi, yj = −q−j , is well-known as a q-Racah special
case studied in [BGR], see [MPP3, §9.6] for a detailed explanation.
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Now, consider the trapezoid (sawtooth) region Γ(c1, . . . , ck) defined as in Figure 4.
This region corresponds to Theorem 2.3 with a = 0 and b1 = 1 + c1, b2 = 1 + c1 + c2, . . . ,

c1 c2 c3 c4
x1

x2

y1 y2

Γ

Figure 4: Lozenge tiling of a trapezoid region Γ = Γ(1, 5, 3, 2) for k = 4.

bk = 1 + c1 + . . . + ck. For the example in Figure 4 the region Γ(1, 5, 3, 2) corresponds
to A = {(1, 1), (1, 2), (1, 3), (1, 4)} and B = {(1, 2), (1, 7), (1, 10), (1, 12)}, as in Figure 3
(left).

In fact, the lozenge tilings of regions Γ(c) are heavily studied in integrable probability,
see [Nov, Pet]. The total number N(λ) of such tilings is given by the formula

N(λ) = sλ(1
k) =

∏

16i<j6k

bj − bi
j − i

,

where λ = (λ1, . . . , λk), and λi = bk+1−i − k + i for all 1 6 i 6 k. We refer to [Gor, §19]
for an interesting discussion of this special case, further results and references.

Theorem 2.3 thus gives a multivariate deformation of N(λ). The weights 1/(xi + yj)
are assigned to light green lozenges and bottom halves of dark green lozenges as shown in
Figure 4. Yellow lozenges get weight 1. The weight of a tiling is then a product of weights
of all lozenges. The resulting partition function is then the sum of all weights of lozenge
tilings of fixed Γ as above. By Theorem 2.3, this function is symmetric.

a b

∆

m
x1
x2

y1 y2

Figure 5: Lozenge tiling of a parallelogram region ∆ = ∆(a , b, m), for k = 4, ℓ = m = 5.

Note that in every simply connected region tileable with lozenges, the boundary has
2k, 2ℓ and 2m edges in each of the three directions. A parallelogram region ∆ is defined to
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have two intervals of m consecutive (say, horizontal) edges. This condition automatically
implies that between the horizontal edges there are (k+ℓ) edges on each side, see Figure 5.
The region is thus encoded ∆ = ∆(a , b, m) by two increasing sequences a = (a1, . . . , ak)
and b = (b1, . . . , bk), where 1 6 ai, bi 6 k + ℓ .For example, for the region in the figure,
we have k = 4, ℓ = m = 5, and the sequences are a = (1, 2, 3, 5), and b = (2, 6, 7, 9).

In these notation, Theorem 2.4 proves the x -symmetry of the multivariate deformation
of the number N(a , b, m) of tilings of a parallelogram region ∆(a , b, m) defined above.
Here the weighting is similar to the previous case but somewhat more awkward, see Fig-
ure 5. While we do not know (or do not recognize) the number N(a , b, m), let us mention
that it has a determinant formula via the LGV–lemma, which is also the key to the proof
of Theorem 2.4.

3 Combinatorial proofs

3.1 The 2-symmetry case

We start with a special case a = c = 1 in Theorem 2.1 (cf. §5.7).

Lemma 2 (2-symmetry). Let A = (2, 1), B = (1, m), m > 1. Let

Fm(x1, x2 | y1, . . . , ym) :=
∑

γ:A→B

∏

(i,j)∈γ

1

xi + yj
.

Then Fm is symmetric in x = (x1, x2).

Figure 6: Five paths γ : (2, 1) → (1, 5) in the 2-symmetry Lemma 2.

Proof. There are m paths in this case, see Figure 6. We have:

Fm = Gm(x1, x2 |y1, . . . , ym)
2∏

i=1

m∏

j=1

1

xi + yj
,

where

Gm = (x1+y1) · · · (x1+ym−1)+(x1+y1) · · · (x1+ym−2)·(x2+ym)+. . .+(x2+y2) · · · (x2+ym).

The symmetry of Gm with respect to x1, x2 follows from the identity

(⋄) Gm =
(x1 + y1)(x1 + y2) . . . (x1 + ym)− (x2 + y1)(x2 + y2) . . . (x2 + ym)

x1 − x2

.
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Indeed, the identity (⋄) can be proved by a telescopic cancellation:

Gm · (x1 − x2) = (x1 + y1)(x1 + y2) . . . (x1 + ym−1)
[
(x1 + ym)− (x2 + ym)

]

+ (x1 + y1) · · · (x1 + ym−2)(x2 + ym)
[
(x1 + ym−1)− (x2 + ym−1)

]

+ . . . + (x2 + y2)(x2 + y3) · · · (x2 + ym)
[
(x1 + y1)− (x2 + y1)

]

= (x1 + y1)(x1 + y2) . . . (x1 + ym) − (x2 + y1)(x2 + y2) . . . (x2 + ym).

Another way to prove (⋄) is to note that both parts are multilinear polynomials with
respect to y1, . . . , ym and to check that they agree when yi ∈ {−x1,−x2} for all i.

3.2 Proof of Theorem 2.3

It suffices to show that FA,B is symmetric in (xi, xi+1), for all 1 6 i < m. Fix a collection
of paths Υ and consider only rows i and (i+ 1). Remove all columns where both squares
are in Υ but not connected by a path, and those columns where both squares are empty.
This results in several 2-row rectangles, each connected by a path from lower left corner to
upper right corner. Apply the 2-symmetry lemma to each non-empty rectangle to conclude
that the sum of all w(Υ) is symmetric in (xi, xi+1), as desired. �

A1
A2
A3
A4

B1 B2 B3 B4
x1
x2
x3
x4

Figure 7: Left: Using 2-symmetry to prove the symmetry of FA,B in (x2, x3). Right: Two
impossible configurations.

Remark 3.1. The proof above implicitly uses the claim that A and B are as in the
theorem. Indeed, otherwise we can have e.g. a rectangle with upper left square in A and
no point of A below it, or a point in B in the bottom row without the point of B above it
(see Figure 7).

3.3 Proof of Theorem 2.4

We follow the proof of Theorem 2.3 given above. First, switch the coordinates x ↔ y .
Then B is as in Theorem 2.3, while A are on the bottom row. We need to prove the
x -symmetry in this case. Apply the 2-symmetries in (xi, xi+1) in exactly the same way
and notice that the forbidden configuration as in the remark above do no appear. The
details are straightforward. �
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3.4 The ultimate generalization

The proofs above suggest a common generalization of Theorems 2.3 and 2.4. We chose to
postpone it until this point to avoid overwhelming the reader.

Theorem 3.2 (Main theorem). Let m,n, k > 1, a = (a1, . . . , an), b = (b1, . . . , bn), where

a1 + . . .+ an = b1 + . . .+ bn = k , where 0 6 ai, bi 6 m.

Let A be a collection of points A1, . . . , Ak ∈ [m× n], with exactly ai points on the bottom
of i-th column. Similarly, let B be a collection of points B1, . . . , Bk ∈ [m×n], with exactly
bi points on the top of i-th column. Here the order A and B is from left to right, and
within a column from top to bottom, see Figure 8. Then the multivariate function

FA,B

(
x1, . . . , xm | y1, . . . , yn

)
,

defined in (2.2), is symmetric in x = (x1, . . . , xm).

A1
A2

A3
A4

A5 A6 A7

B1 B2B3B4

B5
B6
B7

Figure 8: Left: Examples of a collection of points A,B, and non-intersecting paths in
Theorem 3.2, with a = (2, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0) and b = (0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 3).
Right: The corresponding lozenge tiling.

The theorem generalizes Theorem 2.3 in a straightforward way: take a = (k, 0, . . . , 0)
and b ∈ {0, 1}n, with k zeroes. It also generalizes Theorem 2.4 as follows: switch coordi-
nates x ↔ y , and take both a , b ∈ {0, 1}n, with k zeroes. Of course, Theorem 3.2 is much
more general, even if in some cases the result is vacuously true, as there are no possible
collections of non-intersecting Up-Right paths γi : Ai → Bi .

Proof of Theorem 3.2. The proof follows verbatim the proof of Theorem 2.3 given above.
We prove the x -symmetry via 2-symmetries in (xi, xi+1) in exactly the same way. Indeed,
notice that the forbidden configuration as in the remark above do no appear. The details
are straightforward.

4 Algebraic proofs

4.1 Preliminaries

Fix m,n > 1 and let

Pk(t) := (t+ y1)(t+ y2) · · · (t + yk), k = 0, . . . , n.
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For s = 1, . . . , m, and k = 1, . . . , n, define

Qs,k(t) :=
m∏

j=s

1

xj − t
mod Pk(t).

Note that this expression is well defined: the polynomials (xj − t) are invertible modulo
Pk(t) in the ring R[t], where R = C(x , y). In other words, R[t] is the ring of polynomials
in t with coefficients in the field of rational functions in xi’s and yj’s.

Denote
Fs,k :=

∑

γ: (m,1)→(s,k)

w(γ).

We use the following description of Fs,k which simultaneously proves a x -symmetry and
y -symmetry of Fs,k. This is the k = 1 case of Theorem 2.1 generalizing Lemma 2 to
all m > 2 (see also §5.7).
Lemma 3. For s = 1, . . . , m and k = 1, . . . , n, we have:

Fs,k = [tk−1]Qs,k(t).

In particular Fs,k is symmetric with respect to (xs, . . . , xm), and with respect to (y1, . . . , yk).

Proof. By definition,

Fm,1 =
1

xm + y1
= Qm,1(t).

Observe that

Fs,k =
1

xs + yk

(
Fs,k−1 + Fs+1,k

)
,

for s = 1, . . . , m, and k = 1, . . . , n, such that (s, k) 6= (m, 1). Here we use boundary
values Fm+1,k = Fs,0 = 0. Note that

(t+ yk)Qs,k(t) ≡ (t+ yk)Qs,k−1(t) mod Pk−1(t) and mod (t+ yk).

Thus, the congruence holds modulo Pk(t) :

(t+ yk)Qs,k(t) ≡ (t+ yk)Qs,k−1(t) mod Pk(t).

Similarly,
(xs − t)Qs,k(t) = Qs+1,k(t) mod Pk(t).

Adding these two congruences, we obtain

(xs + yk)Qs,k(t) ≡ Qs+1,k(t) + (t + yk)Qs,k−1(t) mod Pk(t).

Now observe that both the LHS and the RHS are polynomials of degree at most (k − 1)
in t. Thus we have an equation of polynomials:

(xs + yk)Qs,k(t) = Qs+1,k(t) + (t + yk)Qs,k−1(t).

Taking the coefficients of tk−1, we see that the double sequence
{
[tk−1]Qs,k

}

satisfies the same recurrence and initial conditions as Fs,k. This implies the result.
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4.2 Non-intersecting paths

We recall the Lindström—Gessel—Viennot lemma:

Theorem 4.1 (LGV–lemma). Let G = (V,E) be a finite acyclic directed graph. Fix k > 1.
Let A = {A1, . . . , Ak}, B = {B1, . . . , Bk} ⊂ V be two (not necessarily disjoint) sets of
vertices, such that |A| = |B| = k. Let R be a commutative ring, and let w : E → R be a
weight function. For a subset S ⊂ E, define a weight

w(S) :=
∏

e∈S

w(e), and w(∅) := 1.

Consider a matrix U = (uij)
k
i,j=1, where

uij :=
∑

γ:Ai→Bj

w(γ)

is the sum of weights of all paths from Ai to Bj. Then:

detU =
∑

π∈Sk

∑

Υ=(γ1,...,γk)
γi :Ai→Bπ(i)

sign(π) · w(Υ),

where the second sum is over all collections of vertex-disjoint paths γi from Ai to Bπ(i).

For the proof, see [GJ, §5.4], or [Tal] for a more general result. Below, we will use the
following “vertex version” of the LGV–lemma, which easily follows from the above edge
version. In this corollary, a path is defined to be a set of vertices.

Corollary 4.2 (vertex–LGV). Let G = (V,E) be a finite acyclic directed graph without
multiple edges. Fix k > 1. Let A = {A1, . . . , Ak},B = {B1, . . . , Bk} ⊂ V be two (not
necessarily disjoint) sets of vertices, such that |A| = |B| = k. Let R be a commutative
ring, and let w : V → R be a weight function. For a subset D ⊂ V , define a weight

w(D) :=
∏

v∈D

w(v), and w(∅) := 1.

Consider a matrix U = (uij)
k
i,j=1, where

uij :=
∑

γ:Ai→Bj

w(γ)

is the sum of weights of all paths γ from Ai to Bj . Then

detU =
∑

π∈Sk

∑

Υ=(γ1,...,γk)
γi :Ai→Bπ(i)

sign(π) · w(Υ),

where the sum is over all collections of vertex-disjoint paths γi from Ai to Bπ(i).
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Proof. Denote by Ĝ = (V̂ , Ê) the graph G = (V,E) with added new vertices C1, . . . , Ck

and directed edges (CiAi). For each edge (XY ) ∈ Ê, define its weight by w(XY ) := w(Y ).
Apply Theorem 4.1 for the sets C = {C1, . . . , Ck} and B = {B1, . . . , Bk}. Observe that

the weight of each path
(
CiAiX1X2 . . .XnBj

)
in Ĝ is the same as the weight of the path(

AiX1 . . .XnBj

)
in graph G. Similarly, the collections of vertex-disjoint paths from C to

B in Ĝ are in a natural correspondence with collections of vertex-disjoint paths from A to
B in G. This implies the result.

In many applications of the LGV–lemma, there is a unique permutation π for which
there exists a vertex-disjoint collection of paths, and this unique π is the identical permu-
tation, and the determinant equals to the weighted sum over collections of disjoint paths
from Ai to Bi. This also holds in the settings of Theorems 2.1, 2.3, 2.4 and 3.2.

4.3 Proof of Theorem 2.4

By the vertex version of the LGV–lemma in Corollary 4.2, the multivariate rational function
FA,B(x , y) is a determinant of a k × k matrix U in which every entry uij is a rational
function. By Lemma 3, these functions uij are y -symmetric. Thus the determinant is also
y -symmetric, which completes the proof. �

4.4 Proof of Theorem 2.3

In notation of Subsection 4.1, let R = C(x , y). Let I be the ideal generated by the poly-
nomials Pb1(t1), Pb2(t2), . . . , Pbk(tk). Consider the ring R = R[t1, . . . , tk]/I; each element
of this ring corresponds to a unique polynomial H(t1, . . . , tk) with degrees less than bj in
the variable tj , for all j = 1, . . . , k. For the elements of R, this allows us to define the
coefficients of the monomials ts11 . . . tskk , where 0 6 si < bi.

By the vertex version of the LGV–lemma in Corollary 4.2, we have:

FA,B = det
(
FAi,Bj

)k
i,j=1

.

Denote
ϕi(tj) := (xa+i+1 − tj)(xa+i+2 − tj) · · · (xa+k − tj),

and observe the Vandermonde-type determinant

(⊛) det(ϕi(tj))
k
i,j=1 =

∏

16i<j6k

(tj − ti).

The proof of (⊛) follows the same argument as the standard proof of the (usual) Vander-
monde determinant formula.

The elements (ti − xj) are invertible in R, and by Lemma 3 we have:

FAi,Bj
=

[
t
bj−1
j

] a+i∏

s=1

1

xs − tj
=

[
t
bj−1
j

]
ϕi(tj)

m∏

s=1

1

xs − tj
.
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Interchanging the coefficients-evaluating functional and the determinant sign and apply-
ing (⊛), we obtain:

FA,B =
[
tb1−1
1 . . . tbk−1

k

] k∏

j=1

m∏

s=1

1

xs − tj
det

(
ϕi(tj)

)k
i,j=1

=
[
tb1−1
1 . . . tbk−1

k

] ∏

16i<j6k

(tj − ti)
k∏

j=1

m∏

s=1

1

xs − tj
.

The RHS is certainly symmetric in x = (x1, . . . , xm). This completes the proof of the
theorem. �

5 Final remarks

5.1 Many hidden symmetries

As we mentioned in the introduction, hidden symmetries are a staple in Algebraic and
Enumerative Combinatorics. Without aiming to review even a fraction of the literature,
let us mention a few notable examples. First, the Littlewood–Richardson coefficients have a
number of hidden symmetries not reflected in their classical combinatorial interpretation.
While the BZ-triangles [BZ] combined with bijections in [PV1] explained some of the
symmetries, others remain unexplained, see [PV2, §6.6].

Another major appearance of the hidden symmetries is in connection with the al-

ternating sign matrices, which led to a conceptual proof by Kuperberg [Kup]. Further
symmetries of ASMs were discovered by Razumov–Stroganov [RS] (see also [Wie]), and
eventually proved by a technical argument in [CS].

Finally, in a fascinating study (completely unrelated to this work), Coxeter used the
symmetry of regular solids in R4 to evaluate special values of the dilogarithm [Cox]. The
following amazing identity coming from the 600-cell is a testament to the power of hidden
symmetries:

∞∑

n=1

φn

n2
cos

(
2πn

5

)
=

π2

100
, where φ =

√
5− 1

2
.

5.2 Yang–Baxter equations

Closer to the subject, Borodin in [Bor] initiated the study of symmetric rational functions
for the six-vertex model which are proved via the Yang–Baxter equations, see [Bax]. These
results were greatly extended in [BP2] (see also a survey [BP1]). These functions have
multiple families of parameters, but they do not specialize to our functions FA,B(x , y). To
see this, note that in our setting, the intersections are not allowed, making it a five-vertex

model, implying degeneration of many parameters.
In a parallel investigation, Bump, McNamara and Nakasuji [BMN] realized that the

factorial Schur functions can be expressed as the partition function of a six-vertex model
with certain particular multivariate parameters. When t = −1, the deformation in §4
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in their paper gives new solutions of the Yang–Baxter equations exactly with the same
parameters as are implicit in this paper. In particular, this gives a new proof of the
2-symmetry in Lemma 2, the fourth proof counting two proofs in this paper and one
in [MPP3], but perhaps the most conceptual one. We learned about [BMN] only after this
paper was written.

We should emphasize that a solution of the Yang–Baxter equations is not enough to
establish the symmetry, as one needs to check the boundary conditions. This is what makes
our Main Theorem 3.2 so surprising – it gives the most unusual boundary conditions for
which the symmetry holds.

5.3 Further symmetries

Let us mention some recent progress in this setting, the shift invariance for the six-vertex
model and polymers, discovered recently in [BGW]. It can be viewed as the new fundamen-
tal (multivariate) hidden symmetry for the number of certain lattice path configurations.
This shift invariance found a surprising application in [BGR1] to certain properties of
multi-particle generalization of TASEP, in turn related to the number of reduced factor-
izations of certain permutations in Sn. Most recently, [Gal] established a more general type
of symmetries called flip invariance, and gave them a conceptual algebraic explanation.
In a different direction, curious combinatorial implications of this and related symmetries
were found in [Dau].

5.4 Factorial Schur functions

In notation of §2.3, when a = 0 as in Figure 4, one can think of FA,B(x , |y) in Theorem 2.3
the multivariate deformation of N(λ). This deformation is different, but curiously similar
to the x -symmetric and y -parametrized factorial Schur functions sλ(x | −y), which forms
a basis in symmetric polynomials of x , see [Mac, §6]. This should not come as a surprise
as the proof in [MPP3] is based on combinatorics and algebra of factorial Schur functions.
It would be interesting to establish a formal connection in full generality.

5.5 Selberg integral

In [KO], the authors proved some of the corollaries of [MPP3]. The results follow from the
Selberg integral, another yet to be fully understood hidden symmetry, see [MPP3, §9.3-9.4].

5.6 Identities

Theorem 2.1 is stated in [MPP3, Thm 3.10] in a weaker form, but the result follows from
the proof. Of course, we both reprove and generalize it in this paper. Note, however, that
Thm 3.12 in the same paper gives a different hidden symmetry which does not follow from
this paper.

5.7 Evaluations

As suggested by both our combinatorial and algebraic proofs, Theorem 2.1 is not obvious
already for k = 1. Even the special case k = 1, xi = i and yj = b− j + 1, is already quite
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interesting [MPP3, Cor. 3.11].

5.8 Generalizations

The combinatorial proof in Section 3 may appear to be more flexible, as it leads to the
proof of our Main Theorem 3.2. However, the algebraic proofs tend to be more powerful
and amenable to generalizations of different kind. For example, it would be interesting if
the results generalize to three and higher dimensions as we seem to have exhausted the
planar version. In a different direction, the determinant style proofs as in Section 4, suggest
possibility of non-commutative generalization, cf. [GR]. Finding a proper q-analogue (or
quantum analogue?) would be especially interesting.

5.9 Up-Right condition

Theorem 2.4 remains true even when the assumption that all paths are required to be
Up-Right is removed. This leads to a somewhat stronger but less natural result. We
leave the proof to the reader. Let us note, however, that while the Up-Right condition is
vacuous for Theorem 2.3, it is necessary for our Main Theorem 3.2.
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