
LINEAR EXTENSIONS OF FINITE POSETS

SWEE HONG CHAN AND IGOR PAK

Abstract. We give a broad survey of inequalities for the number of linear extensions of
finite posets. We review many examples, discuss open problems, and present recent results
on the subject. We emphasize the bounds, the equality conditions of the inequalities, and the
computational complexity aspects of the results.

1. Introduction

1.1. Foreword. The world of linear extensions of finite posets is a microcosm of contradictions.
Although the counting problem is #P-hard in general, it is polynomially easy in many special
cases (see §12.1). Although posets themselves do not have a geometric structure, the number
of linear extensions is given by the volume of two different polytopes with distinct geometric
applications (see §14.5 and §14.6). Finally, although there is a large number of correlation
inequalities that hold in full generality, direct injective proofs are rare and difficult to construct,
sometimes provably so.

We straddle the boundary between inequalities which hold for general posets and specialized
inequalities for classes of posets, with the emphasis on the former. There is a dearth of powerful
tools for study of linear extensions, and yet the sheer volume of results continues to astonish us.
This is hardly reflected in our presentation style which continues the dry tradition of stating
results and letting the reader judge for themselves. But please be assured — many results in
this survey are extremely surprising and worthy of elaboration, reflection and contemplation.

1.2. Content. In this paper we give a broad survey of inequalities for the number of linear
extensions of finite posets, both as a function of the poset and when closely related posets are
compared. We also discuss several closely related inequalities for the order polynomial, and
correlation inequalities for probabilities of various events associated with linear extensions.

Of the ocean of inequalities for linear extensions, we single out several key inequalities which
are treated in separate sections along with their many extensions and variations:

◦ Sidorenko’s inequality, see Section 5,

◦ Björner–Wachs inequality, see Section 6,

◦ Fishburn’s inequality, see Section 7,

◦ XYZ inequality, see Section 8,

◦ Stanley’s inequality, see Sections 9, 10 and 15.

We emphasise the equality conditions of the inequalities, so e.g. Section 10 is dedicated to
equality conditions of Stanley type inequalities. Examples of various families of posets are
given in Section 11. We discuss various computational complexity aspects around the numbers
of linear extension in Section 12.

In our presentation we aim to be as complete as possible, but for reasons of space and
readability we abandoned the hope to include any proofs (with few exceptions, see Section 15).
Instead, we include Section 14 with some vague ideas on what is going on, and some additional
references. We conclude with final remarks in Section 16.
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2. Definitions and notation

We start by introducing basic definitions and notations which appear throughout the survey.
We also include many references to monographs, surveys and other background reading on the
subject.

2.1. General notation. Let [n] = {1, . . . , n}, N = {0, 1, 2, . . .} and R+ = {x ≥ 0}. For a
subset S ⊆ X and element x ∈ X, we write S + x := S ∪ {x} and S − x := S ∖ {x}.

For a sequence a = (a1, . . . , am), denote |a | := a1 + . . .+ am . This sequence is unimodal if
a1 ≤ a2 ≤ . . . ≤ aℓ ≥ aℓ+1 ≥ . . . am for some ℓ. Sequence a is log-concave if a2i ≥ ai−1ai+1 for
all 1 < i < m. We refer to [Brä15, Bre89, Sta89b] for many examples of log-concave sequences
in Algebraic and Enumerative Combinatorics.

We use the q-analogues (n)q := 1 + q + . . .+ qn−1, n!q := (1)q · · · (n)q and(
n

k

)
q

:=
n!q

k!q (n− k)!q
.

These can be viewed either polynomials in N[q], or as real numbers for a fixed q ∈ R.
For an inequality f ⩾ g, the difference (f − g) is called the defect. For polynomials f, g ∈

R[z1, . . . , zn], we write f(z ) ≥ g(z ) for the inequality between the values at a given z =
(z1, . . . , zn) ∈ Rn, and f ⩾z g for the stronger inequality which holds coefficient-wise.

2.2. Posets. Suppose P = (X,≺) and Q = (Y,≺′) are two posets on sets X ⊆ Y , such that
x ≺′ y implies x ≺ y. Then we say that P is a subposet of Q. If x ≺′ y ⇔ x ≺ y, we say
that P is an induced subposet of Q. For a poset P = (X,≺) and a subset A ⊆ X, denote by
P |A := (A,≺) the induced subposet of P .

We use (P − z) to denote a subposet P |X−z , where z ∈ X. Element x ∈ X is minimal
in P , if there exists no element y ∈ X−x such that y ≺ x. Define maximal elements similarly.
Denote by min(P ) and max(P ) the set of minimal and maximal elements in P , respectively.

When P has a unique minimal element, we use 0̂ to denote it. Similarly, when P has a
unique maximal element, we use 1̂ to denote it. Element x ∈ X is said to cover y ∈ X, if
y ≺ x and there are no elements z ∈ X such that y ≺ z ≺ x. For two subsets A,B ⊆ X,
A ∩B = ∅, we write A ≺ B if x ≺ y for all x ∈ A and y ∈ B.

A subset A ⊆ X is an upper ideal if x ∈ A and y ≻ x implies y ∈ A. Similarly, a subset
A ⊆ X is a lower ideal if x ∈ A and y ≺ x implies y ∈ A. Denote by x↓ := {y ∈ X : y ≼ x}
and x ↑ := {y ∈ X : y ≽ x} the lower and upper order ideals generated by x, respectively.
Similarly, for a subset B ⊆ X, denote by B ↓ := ∪b∈B b↓ and B ↑ := ∪b∈B b↑ the lower and
upper closure of B, respectively. We use α(x) := |x↓|, β(x) := |x↑|, α(B) := |B ↓| and
β(x) := |B ↑|, to denote their sizes.

In a poset P = (X,≺), elements x, y ∈ X are called parallel or incomparable if x ̸≺ y and
y ̸≺ x. We write x ∥ y in this case. Denote by comp(x) := {y ∈ X : x ≺ y or x ≻ y} the
set of elements y ∈ X comparable to x. Comparability graph Γ(P ) = (X,E) is a graph on X
with edges E = {(x, y) : x ≺ y or x ≻ y}.

A chain is a subset C ⊂ X of pairwise comparable elements. Let C(P ) denote the set of
chains in P . The height of poset P = (X,≺) is the maximum size |C| of a chain C ∈ C(P ).
Chain C ∈ C(P ) is called maximal if there is no chain C ′ ∈ C(P ) such that C ⊂ C ′.

An antichain is a subset A ⊂ X of pairwise incomparable elements. Let A(P ) denote the
set of antichains in P . The width of poset P = (X,≺) is the maximal size |A| of a antichain
A ∈ A(P ). Antichain A is called maximal if there is no antichain A′ ∈ C(P ) such that A ⊂ A′.

A dual poset is a poset P ∗ = (X,≺∗), where x ≺∗ y if and only if y ≺ x. A product
P × Q of posets P = (X,≺) and Q = (Y,≺◦) is a poset (X × Y,≺⋄ ), where the relation
(x, y) ≼⋄ (x′, y′) if and only if x ≼ x′ and y ≼◦ y′, for all x, x′ ∈ X and y, y′ ∈ Y .
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A disjoint sum P +Q of posets P = (X,≺) and Q = (Y,≺′) is a poset (X ∪ Y,≺⋄ ), where
the relation ≺⋄ coincides with ≺ and ≺′ on X and Y , and x ∥ y for all x ∈ X, y ∈ Y . A linear
sum P ⊕Q of posets P = (X,≺) and Q = (Y,≺′) is a poset (X ∪ Y,≺⋄ ), where the relation
≺⋄ coincides with ≺ and ≺′ on X and Y , and x ≺⋄ y for all x ∈ X, y ∈ Y .

Posets constructed from one-element posets by recursively taking disjoint and linear sums
are called series-parallel. Both n-chain Cn and n-antichain An are examples of series-parallel
posets. These posets can be characterized by not having poset N = {x ≺ y ≻ z ≺ w} as
induced subposet (thus they are also called N -free). Forest is a series-parallel poset formed by
recursively taking disjoint sums (as before), and linear sums with one element: C1 ⊕ P .

Let P = (X,≺) and P ′ = (X,≺′) be two posets on the same ground set. We say that P
and P ′ are consistent if there are no elements x, y ∈ X, s.t. x ≺ y and y ≺′ x. For consistent
posets, the intersection P ∩ P ′ = (X,≺⋄ ) is the poset with the union of the relations: x ≺ y
if x ≺ y or x ≺′ y.

Poset P = (X,≺) is graded if there is a rank function ρ : X → N such that ρ(x) ≤ ρ(y)
for all x ≺ y, and ρ(y) = ρ(x) + 1 for all covers y of x. If P and Q are graded, then so are
P +Q, P ⊕Q and P ×Q. Boolean algebra Bm := C2 × · · · ×C2 (m times) and the grid poset
Gkℓ := Ck × Cℓ are examples of graded posets.

Let P = (X,≺) be a poset. For elements x, y ∈ X, the greatest lower bound x ∧ y is an
element s.t. z ≺ x, z ≺ y ⇒ z ≺ (x ∧ y). Similarly, the least upper bound x ∨ y is an element
s.t. z ≻ x, z ≻ y ⇒ z ≻ (x ∧ y). Poset P is a lattice if x ∧ y and x ∨ y are well defined
for all x, y ∈ X. We use L = (X,∨,∧) notation in this case. Lattice L is distributive if
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ X (note that the dual identity follows). Both
Bm and Gkℓ are examples of distributive lattices.

We refer to [Sta99, Ch. 3] and [West21, Ch. 12] for accessible textbook introductions to
posets, to surveys [BW00, Tro95] for further definitions and standard results, and to [CLM12]
for a recent monograph.1

2.3. Linear extensions and order polynomial. Let P = (X,≺) be a poset with |X| = n
elements. Denote [n] := {1, . . . , n}. A linear extension of P is a bijection f : X → [n], such
that f(x) < f(y) for all x ≺ y. Denote by E(P ) the set of linear extensions of P , and let
e(P ) := | E(P )|.

For an integer t ≥ 1, denote by Ω(P, t) the number of order preserving maps g : X → [t],
i.e. maps which satisfy g(x) ≤ g(y) for all x ≺ y. This is the order polynomial corresponding
to poset P .

Let P = (X,≺), where X = {x1, . . . , xn}. We will always assume that X has a natural
labeling, i.e. f : xi → i is a linear extension. A P -partition is an order preserving map
h : X → N, i.e. maps which satisfies h(x) ≤ h(y) for all x ≺ y. Denote by P(P ) the set of
P -partitions and let P(P, t) be the set of P -partitions with values at most t.2

Let

(2.1) Ωq(P) :=
∑

h∈P(P )

qh(x1) + ...+ h(xn) and Ωq(P, t) :=
∑

h∈P(P,t)

qh(x1) + ...+ h(xn) .

Stanley showed, see [Sta99, Thm 3.15.7], that there is a statistics maj : E(P)→ N, such that

(2.2) Ωq(P ) =
eq(P )

(1− q)(1− q2) · · · (1− qn)
,

1See also w.wiki/7Yy6 for a quick guide to the terminology.
2In [Sta72, Sta99], Stanley uses P -partitions to denote order-reversing rather than order-preserving maps.

https://en.wikipedia.org/wiki/Glossary_of_order_theory
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where

(2.3) eq(P ) :=
∑

f ∈E(P )

qmaj(f) .

More generally, let

(2.4) Ωq (P, t) :=
∑

h∈P(P,t)

q
h(x1)
1 · · · qh(xn)

n .

We call this GF the multivariate order polynomial. Note that Stanley gave a generalization of
(2.2) and (2.3) for Ωq (P), see [Sta99, Thm 3.15.5]. Finally, for integer t ≥ 0, define

(2.5) Φz (P, t) :=
∑

h∈P(P,t)

z
m0(h)
0 z

m1(h)
1 · · · zmt(h)

t ,

where mi(h) := |h−1(i)| is the number of values i in the P -partition h. Clearly,

(2.6) Φz (P, t) = Ωq(P, t), where z = (1, q, q2, . . . , qt).

Finally, for a fixed linear ordering X = {x1, . . . , xn}, denote by sign(f) the sign of f ∈ E(P )
viewed as a permutation in Sn . Define the sign-imbalance:

(2.7) SI(P ) := |Σ(P )|, where Σ(P ) :=
∑

f∈E(P )

sign(f).

Clearly, the sign-imbalance #P(P ) is independent of the ordering of X. Poset P is called
sign-balanced if #P(P ) = 0. We refer to [Sta05] for the introduction to sign-(im)balance.

2.4. Poset polytopes. Let P = (X,≺) be a poset with |X| = n elements. The order polytope
OP ⊂ Rn is defined as

(2.8) 0 ≤ αx ≤ 1 for all x ∈ X, αx ≤ αy for all x ≺ y, x, y ∈ X.

Similarly, the chain polytope (also known as the stable set polytope) SP ⊂ Rn is defined as

(2.9) βx ≥ 0 for all x ∈ X , βx + βy + . . . ≤ 1 for all C = {x ≺ y ≺ · · · } ∈ C(P ).

In [Sta86], Stanley computed the volume of both polytopes:

(2.10) Vol(OP ) = Vol(SP ) =
e(P )

n!
.

This connection is the key to many applications of geometry to poset theory and vice versa.
Stanley also computed the Ehrhart polynomial

(2.11)
∣∣t · OP ∩ Zn

∣∣ =
∣∣t · SP ∩ Zn

∣∣ = Ω(P, t+ 1) .

Note that (2.10) and (2.11) give:

(2.12) Ω(P, t) ∼ e(P ) tn

n!
as t→∞.
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2.5. Complexity. We assume that the reader is familiar with basic notions and results in
computational complexity and only recall a few definitions. We use standard complexity
classes: P, FP, NP, coNP, #P, Σp

m and PH. The notation {a =? b} is used to denote the
decision problem whether a = b. We use the oracle notation RS for two complexity classes R,
S ⊆ PH, and the polynomial closure ⟨A⟩ for a problem A ∈ PSPACE. We will also use less
common classes

GapP := {f − g | f, g ∈ #P} and C=P := {f(x) =? g(y) | f, g ∈ #P}.

Note that coNP ⊆ C=P.
We also assume that the reader is familiar with standard decision and counting problems:

3SAT, #3SAT and PERMANENT. Denote by #LE the problem of computing the number
e(P ) of linear extensions. For a counting function f ∈ #P, the coincidence problem is defined
as:

Cf :=
{
f(x) =? f(y)

}
.

Note the difference with the equality verification problem:

Ef−g :=
{
f(x) =? g(x)

}
,

where f, g ∈ #P are counting functions and x ∈ X is an input. Clearly, we have both
Ef−g ∈ C=P and Cf ∈ C=P. Note also that C#3SAT is both C=P-complete and coNP-hard.

The distinction between binary and unary presentation will also be important. We refer
to [GJ78] and [GJ79, §4.2] for the corresponding notions of NP-completeness and strong NP-
completeness. Unless stated otherwise, we use the word “reduction” to mean the polynomial
Turing reduction.

We refer to [AB09, Gol08, Pap94b] for definitions and standard results in computational
complexity, and to [Aar16, Wig19] for extensive surveys of computational complexity applica-
tions in mathematics. See [GJ79] for the classical introduction and a long list of NP-complete
problems. See also [Pak22, §13] for a recent overview of #P-complete problems in combina-
torics.

3. Basic inequalities for the numbers linear extensions

Here by basic inequalities we mean inequalities for e(P ) in terms of various poset parameters.
The inequalities themselves range from elementary to highly nontrivial.

3.1. Induced subsets. Let P = (X,≺) be a finite poset. Denote by k(P ) the number of
incomparable pairs of elements: x∥y, where x, y ∈ X. Equivalently, k(P ) is the number of
induced subposets isomorphic to A2 . Similarly, denote by ℓ(P ) and m(P ) the number of
induced subposets isomorphic to A3 and (C2 + C1), respectively.

Proposition 3.1 (Ewacha, Rival and Zaguia [ERZ97]). Let P = (X,≺) be a finite poset, and
let k = k(P ), ℓ = ℓ(P ) and m = m(P ) defined as above. Then:

(3.1) 2k
(
3
4

)ℓ+m ≤ e(P ) ≤ 2k.

The upper bound is trivial and tight for linear sums of A2 and C1 . The lower bound is
tight for linear sums of A3 and (C2 + C1) and is weak when (ℓ + m) is large. The authors
have conjectured further inequalities of this type.
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3.2. Partitions into chains and antichains. Suppose P = (X,≺) is a subposet of Q =
(X,≺′), i.e., we have x ≺′ y implies x ≺ y. Clearly, we have e(P ) ≤ e(Q). The following easy
consequence is especially notable:

Proposition 3.2. Let P = (X,≺) be a poset with |X| = n elements, and let X = C1∪ . . .∪Cℓ

be a partition into disjoint chains of sizes c1, . . . , cℓ . Then we have:

(3.2) e(P ) ≤
(

n
c1 , ... ,cℓ

)
.

We also have the following antichain version, straight by definition.

Proposition 3.3. Let P = (X,≺), and let X = A1 ∪ . . . ∪ Am be a partition into disjoint
antichains of sizes a1, . . . , am , such that A1 ≺ . . . ≺ Am . Then we have:

(3.3) e(P ) ≥ a1! · · · am!

The following is a surprising generalization that extends this to all partitions into antichains.

Theorem 3.4 (Bochkov and Petrov [BP21, Cor. 6]). Let P = (X,≺) be a poset, and let
X = A1 ∪ . . . ∪Am be a partition into disjoint antichains of sizes a1, . . . , am . Then we have:

(3.4) e(P ) ≥ a1! · · · am!

In [BP21, Thm 1], both the upper bound (3.2) and the lower bound (3.3) are extended to
the Greene–Kleitman–Fomin parameters, see e.g. [BF01, GK78].

3.3. Recursion over antichains. The following result follows directly from the definition:

Proposition 3.5. Let min(P ) be the set of minimal elements of P = (X,≺). We have:

(3.5) e(P ) =
∑

x∈min(P )

e(P − x).

By induction, this gives the following upper bound:

Corollary 3.6. Let P = (X,≺) be a poset of width w with |X| = n elements. Then we have:
e(P ) ≤ wn.

The following inequality is a surprising generalization of the proposition:

Theorem 3.7 (Edelman–Hibi–Stanley [EHS89] and Stachowiak [Sta89a]). Let A be an an-
tichain in P = (X,≺). We have:

(3.6) e(P ) ≥
∑
x∈A

e(P − x).

Moreover, this inequality is an equality if and only if A intersects every maximal chain, i.e.
|C ∩A| = 1 for all C ∈ C(P ). Additionally, the defect of (3.6) is in #P.

Clearly, the set of minimal elements min(P ) satisfies contains an element from every max-
imal chain, so Theorem 3.7 implies Proposition 3.5. Note that not every maximal antichain
satisfies this condition. For example, take chains C2 on {1, 2} and C3 on {1′, 2′, 3′}, and let
P = C2 × C3. Consider an antichain A =

{
(1, 3′), (2, 1′)

}
in P . Now note that a maximal

chain C =
{
(1, 1′), (1, 2′), (2, 2′), (2, 3′)

}
does not contain elements in A.

Note that the original proof of Theorem 3.7 in [EHS89] is combinatorial and uses promotion
operators (see §14.1). We refer to [CPP23b, Cor. 8.2] for a proof using Sidorenko’s flow
(see §14.5). The proof in [Sta89a] uses a simple induction, and the theorem is applied to
obtain the following result:
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Theorem 3.8 (Stachowiak [Sta89a]). Let P = (X,≺) and Q = (X,≺′) be two posets on the
same ground set, such that their comparability graphs satisfy: Γ(P ) ⊇ Γ(Q). Then e(P ) ≤
e(Q). In particular, e(P ) depends only on Γ(P ). Additionally, if e(P ) = e(Q), then P = Q.

For posets of height two, Theorem 3.8 was proved in an earlier paper [Sta88]. That e(P )
depends only on the comparability graph Γ(P ) was also proved in [EHS89], and extended to
the order polynomial. Note that Theorem 3.8 follows easily from the volume formula (2.10)
and geometric description of vertices of the chains polytope CP (P ), see below. We refer to
[Sta86] for the introduction, and to [Iri17] for a recent exploration of the connection between
e(P ) and orientations of Γ(P ).

Corollary 3.9. Let P = (X,≺) be a poset with |X| = n elements, and let x ∈ X. Then:
e(P ) ≤ ne(P − x).

This follows immediately from Theorem 3.8 by taking Q := (P − x) + C1 and noting that
Γ(P ) ⊇ Γ(Q), e(Q) = ne(P − x).

3.4. Weighted chains. There is a better way to give an upper bound for e(P ), by assigning
weights to elements of antichains.

Proposition 3.10. Let ξ : X → R>0 be a positive function s.t.

(3.7)
∑
x∈A

ξ(x) ≤ 1 for all A ∈ A(P ).

Then:

(3.8) e(P ) ≤
∏
x∈X

1

ξ(x)
.

For example, ξ(x) := 1/w gives Corollary 3.6. The following construction shows how this
bound can be improved. For x ∈ X, denote by Cx(P ) ⊆ C(P ) the subset of chains in P which
contain x. Let v : C(P )→ R≥0 be a probability distribution on chains in P . Denote

cx :=
∑

C∈Cx(P )

v(C).

Corollary 3.11. Suppose cx > 0 for all x ∈ X. Then:

(3.9) e(P ) ≤
∏
x∈X

1

cx
.

Proof. Take ξ(x) := cx. Observe that condition (3.7) holds trivially for every chain C ∈ C(P ),
and thus for every probability distribution v on C(P ). Thus, (3.9) follows from (3.8). □

3.5. LYM property. Let P = (X,≺) be graded poset with the rank function ρ : X →
{0, . . . , ℓ}. Denote by Xr the set of elements of rank r, i.e. Xr = ρ−1(r), and let nr := |Xr|
for all 1 ≤ r ≤ ℓ. Clearly, nr ≤ w, where w is the width of P .

We say that P has LYM property if for every antichain A ∈ A(P ) we have:

(LYM)
∑
x∈A

1

nρ(x)
≤ 1.

In particular, the width w = maxr nr . Such posets are called LYM posets.
Let G be a subgroup of Aut(P ) which acts transitively on the set Cmax of maximal chains

in P . Let v be a uniform distribution on Cmax. By transitivity, cx = 1
nr

where r = ρ(x). Since

Cx ∩ Cy = ∅ for all x, y ∈ A, we have (LYM). We can now use (3.9) to conclude:
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Corollary 3.12 ([SK87]). Let P = (X,≺) be a graded poset with nr elements of rank r, and
with a transitive action on the set of maximal chains in P . Then P is a LYM poset, and

(3.10) e(P ) ≤
ℓ∏

r=0

(nr)
nr .

Note the sequence of implications here: transitive action implies (LYM) and the upper
bound in (3.10). The following result proves the implication directly.

Theorem 3.13 (Brightwell–Tetali [BT03, Thm 5.1]). Let P = (X,≺) be a graded LYM poset
with nr elements of rank r, 0 ≤ r ≤ ℓ. Then:

(3.11)
ℓ∏

r=0

(nr)! ≤ e(P ) ≤
ℓ∏

r=0

(nr)
nr .

Here the lower bound is given by (3.3). The upper bound is an improvement over the
e(P ) ≤ wn bound in Corollary 3.6. Corollary 3.12 was extended to all graded posets with
LYM property. See also [Sha98] for the same result with slightly stronger assumptions. We
refer to [GK76, GK78, Kle74] for equivalent definitions of LYM posets, and to [West21, §12.2]
for further applications of (LYM).

Example 3.14 (Boolean algebra). Let Bk be the poset of all subsets of [k] by inclusion, so
n = 2k and ℓ = k. Observe that the symmetric group Sk acts transitively on C(Bk), and thus
Bk has the LYM property. In particular, this implies Sperner’s theorem:

w := width(Bk) =
(

k
⌊k/2⌋

)
.

Now both Sha–Kleitman inequality (3.10) and Brightwell–Tetali inequality (3.11) give:

(3.12)
k∏

r=0

(
k
r

)
! ≤ e(Bk) ≤

k∏
r=0

(
k
r

)(k
r

)
≤

(
k

⌊k/2⌋
)2k

.

Lower bound and either upper bound give correct two leading terms of the asymptotics:

log2 e(Bk)

2k
= log2

(
k

⌊k/2⌋
)
+ Θ(1) = k − 1

2 log2 k + Θ(1),

see e.g. [Coo09] for a careful calculation. In [BT03], it was shown that the lower bound in (3.12)
gives the exact value of the constant implied by the Θ(1) notation.

Example 3.15 (Products of LYM posets). Let P,Q be LYM posets with log-concave rank
numbers. It was shown in [Har74, HK73], that the product P×Q satisfies the same properties.
In particular, this implies that the product of chains Cp×Cq× . . . are also LYM posets. Thus,
the bound in Theorem 3.13 applies and generalized the bounds in (3.12). Note that there is
no transitive action on maximal chains in this case.

3.6. Entropy bounds. For a poset P = (X,≺) on |X| = n elements, define the entropy

(3.13) H(P ) := min
β∈SP

(
− 1

n

∑
x∈X

log βx

)
,

where the minimum is over all vectors β : X → R>0 in the chain polytope SP .

Theorem 3.16 (Kahn–Kim [KK95]). We have:

(3.14) n log2 n − n ·H(P ) ≥ log2 e(P ) ≥ 0.09
(
n log2 n − n ·H(P )

)
.

Additionally,

(3.15) log2 e(P ) ≥ log2 n! − n ·H(P ) ≥ n log2 n − (log2 e)n − n ·H(P ).
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Since the entropy on convex bodies can be approximated in polynomial time, this result can
be viewed as a deterministic approximation algorithm for e(P ).

3.7. Height two posets. Let P = (X,≺) be a poset of height two with n = |X| elements.
Let X = Y ∪Z be a partition into two antichains Y,Z ∈ A(P ) corresponding to rank 0 and 1,
respectively.

Theorem 3.17 (Brightwell–Tetali [BT03, Thm 1.4]). Suppose there exist integers a, b ∈ N,
such that α(z) = a and β(y) = b, for all y ∈ Y and z ∈ Z. Then:

(3.16) e(P ) ≤ n!
(
a+b
a

)−n/(a+b)
.

This inequality is sharp for k := n/(a+ b) ∈ N, as can be seen for a disjoint sum of k copies
of poset Kab := Ab ⊕ Aa . Curiously, (3.16) fails if we instead use α(x) ≥ a and β(y) ≥ b,
see [BT03]. The authors deduce Theorem 3.17 form the following result and the asymptotic
formula (2.12).

Theorem 3.18 (Brightwell–Tetali [BT03, Thm 3.2]). In conditions of Theorem 3.17, for all
t ≥ 1 we have:

(3.17) Ω(P, t) ≤ Ω(Kab, t)
n/(a+b).

The authors prove the result using technical entropy computations.

4. Basic inequalities for order polynomials

Order polynomial is just as fundamental object as the number of linear extensions, and in
many cases easier to work with. Additionally, it has a clear geometric interpretation as the
Ehrhart polynomial for poset polytopes, see (2.11).

4.1. Explicit lower bound. The following inequality extends the asymptotic formula (2.12):

Theorem 4.1 ([CPP23b, Thm 1.4, Cor 6.3]). Let P = (X,≺) be a poset with |X| = n
elements. Then, for all integer t ≥ 1, we have:

(4.1) Ω(P, t) ≥ e(P ) tn

n!
.

Moreover, the equality holds for a given t ≥ 1 if and only if P = An is an antichain. Addi-
tionally, we have:

Ω(P, t) · n! − e(P ) tn ∈ #P.

Note that (4.1) improves upon a straightforward inequality Ω(P, t) ≥ e(P )
(
t
n

)
, where t ≥ n.

The authors prove the inequality by an explicit injection.

4.2. Log-concavity. Evaluations of the order polynomial have additional properties:

Theorem 4.2 (log-concavity, Brenti [Bre89, Thm 7.6.5]). Let P = (X,≺) be a poset with
|X| = n elements. Then, for all integer t ≥ 2, we have:

(4.2) Ω(P, t)2 ≥ Ω(P, t+ 1) Ω(P, t− 1).

In other words, (4.2) gives log-concavity of values of the order polynomial. This inequality
is always strict:

Theorem 4.3 ([CPP23b, Thm 4.8]). Let P = (X,≺) be a poset with |X| = n elements.
Then, for all integer t ≥ 2, we have:

(4.3) Ω(P, t)2 ≥
(
1 +

1

(t+ 1)n+1

)
Ω(P, t+ 1) Ω(P, t− 1).
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Note that the 1
(t+1)n+1 term is far from optimal, see [CPP23b, Rem. 4.11]. We refer to

[FH23] for the background on log-concavity of the Ehrhart polynomials of integral polytopes.
Let us emphasize that although the original proof of Theorem 4.2 is via direct injection, this
approach does not extend to Theorem 4.3 which is proved using the FKG inequality (see §14.4).
Note that another direct combinatorial proof of (4.2) is given in [DDP84, Thm 5] (see also
[Day84, §4.4]).

Theorem 4.4 (q-log-concavity [CPP23b, Thm 1.5]). Let P = (X,≺) be a poset with |X| = n
elements. Then, for every integer t ≥ 2, we have:

(4.4) Ωq(P, t)
2 ⩾q Ωq(P, t+ 1) · Ωq(P, t− 1),

where the inequality holds coefficient-wise as a polynomial in q.

We also have a multivariate version of this result:

Theorem 4.5 (q-log-concavity [CP23a, Cor. 9.5]). Let P = (X,≺) be a poset with |X| = n
elements. Then, for every integer t ≥ 2, we have:

(4.5) Ωq(P, t)
2 ⩾q Ωq(P, t+ 1) · Ωq(P, t− 1),

where the inequality holds coefficient-wise as a polynomial in q = (q1, . . . , qn).

Again, the proof of both theorems uses the FKG inequality (see §14.4). We conclude
with a special case of an open problem by Ferroni and Higashitani stated in the language
of Ehrhart polynomials of integral polytopes [FH23, Question 5.10], which asks if negative
values of Ehrhart polynomials of integral polytopes are log-concave.

Theorem 4.6 (negative log-concavity [DDP84, Thm 3]). Let P = (X,≺) be a poset with
|X| = n elements. Then, for all integer t ≤ −2, we have:

(4.6) Ω(P, t)2 ≥ Ω(P, t+ 1) Ω(P, t− 1).

Note that for negative t ∈ Z, the number |Ω(P, t)| counts the number of integral points
in the relative interior of the expansion of the order polytope O(P ). We refer to [BS18] and
[Sta99, §4.6] for an extensive discussion of this connection.

4.3. Monotonicity. The following conjecture is mentioned in the solution to Exc. 3.163(b)
in [Sta99], see also [CPP23b, Conj. 4.12].

Conjecture 4.7 (Kahn–Saks monotonicity conjecture). Let P = (X,≺) be a poset with |X| =
n elements. Then, for all integer t ≥ 1, we have:

(4.7)
Ω(P, t)

tn
≥ Ω(P, t+ 1)

(t+ 1)n
.

The conjecture holds trivially when Ω(P, t) has positive coefficients. We refer to [LT19] for
some explicit examples of order polynomials with negative coefficients. Stanley noted that the
conjecture holds for t large enough, since the coefficient [tn−1] Ω(P, t) > 0. The proof is based
on an elegant direct injection. The following result lend further support of the conjecture:

Proposition 4.8 ([CPP23b, Prop. 4.14]). Let P = (X,≺) be a poset with |X| = n elements.
Then, for all integer k, t ≥ 1, we have:

1

tn
Ω(P, t) ≥ 1

(kt)n
Ω(P, kt).

Moreover, we have:
Ω(P, t)kn − Ω(P, kt) ∈ #P.
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Here the proof is elementary, via direct injection, and does not extend to k /∈ N. One
way to approach the Kahn–Saks monotonicity conjecture is to prove the following inductive
inequality:

Conjecture 4.9 ([CPP23b, Conj. 4.17]). Let P = (X,≺) be a finite poset, and let t ≥ k ≥ 1
be positive integers. Then there exists x ∈ X, such that

(4.8)
Ω(P, k)

Ω(P, t)
≥ kΩ(P − x, k)

tΩ(P − x, t)
.

Proposition 4.10 ([CPP23b, Prop. 4.18]). Conjecture 4.9 implies Conjecture 4.7.

We conclude with a curious counterpart of (4.7):

Theorem 4.11 ([CPP23b, Thm 4.8]). Let P = (X,≺) be a finite poset of width w. Then,
for all integer t ≥ 1, we have:

(4.9)
Ω(P, t)

tw
≤ Ω(P, t+ 1)

(t+ 1)w
.

This is asymptotically trivial, but not obvious for small t and large w ≤ n. When w = n,
we have P = An , Ω(P, t) = tn, and both (4.7) and (4.9) are equalities. We note that proofs of
both Proposition 4.10 and Theorem 4.11 use the FKG inequality (see §14.4).

Conjecture 4.12 (Chan–Panova, 2023). Let P = (X,≺) be a finite poset that is not a chain.
Then, there exists elements x, y ∈ X, s.t. y covers x, and for all positive integers t ≥ k ≥ 1,
we have:

(4.10)
Ω(Q, k)

Ω(P, k)
≤ Ω(Q, t)

Ω(P, t)
.

where Q = (X,≺′) is a poset obtained from P by removing {x ≺ y}.

By analogy with Proposition 4.10, Conjecture 4.12 implies Conjecture 4.7.

5. Sidorenko type inequalities

5.1. Sidorenko inequality. The following result is a poset theoretic version of polyhedral
duality.

Theorem 5.1 (Sidorenko inequality [Sid91, Thm 11]). Let P = (X,≺) and Q = (X,≺′) be
two posets on the same set with |X| = n elements. Suppose

(5.1)
∣∣C ∩ C ′∣∣ ≤ 1 for all C ∈ C(P ), C ′ ∈ C(Q).

Then:

(Sid) e(P ) e(Q) ≥ n!

Moreover, (Sid) is an equality if and only if P is series-parallel.

The assumption (5.1) can also be written in terms of comparability graphs: Γ(P ) ⊆ Γ(Q),
see §11.5 for examples. Note that testing if a poset is series-parallel is in P since they areN -free,
see also [VTL82]. There are several proofs of Theorem 5.1. The original proof uses combinato-
rial optimization (see §14.5). More recent proofs use direct surjection [GG20] (cf. [MPP18c]),
and injection [CPP23b, GG22]. In particular, we have the following:

Theorem 5.2 ([CPP23b, Thm 1.14] and [GG22, Thm 3.8]). The defect of the Sidorenko
inequality (Sid) is in #P.
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Remark 5.3 ([BBS99]). In condition of Theorem 5.1, suppose Γ(P ) = Γ(Q). Then one
can view Sidorenko’s inequality (Sid) as a negative correlation result for uniform bijections
g : X → [n]. Indeed, note that e(P ∩Q) = 1. Thus, we have:

P
(
g ∈ E(P ) ∩ E(Q)

)
=

1

n!
≤ e(P ) · e(Q)

(n!)2
= P

(
g ∈ E(P )

)
· P

(
g ∈ E(Q)

)
.

5.2. Generalizations of the Sidorenko inequality. The assumption (5.1) in the theorem
can be relaxed to give the following result.

Theorem 5.4 ([CPP23b, Thm 1.7]). Let P = (X,≺) and Q = (X,≺′) be two posets on the
same set with |X| = n elements. Suppose∣∣C ∩ C ′∣∣ ≤ k for all C ∈ C(P ), C ′ ∈ C(Q).

Then:

(5.2) e(P ) e(Q) ≥ n!

kn−k k!
.

The following result is a natural generalization of the Sidorenko inequality.

Theorem 5.5 (Sidorenko [Sid91, Thm 14]). Let P1 = (X,≺1), . . . , Pk = (X,≺k) and
Q = (X,≺′) be posets on the same set. Suppose

(5.3)

k⋂
i=1

Γ(Pi) ⊆ Γ(Q).

Then:

(5.4) e(P1) · · · e(Pk) ≥ e(Q).

For example, take posets P1, P2 which satisfy Γ(P1) ⊆ Γ(P2). and let Q← An . Then (5.3)
gives e(P1) e(P2) ≥ e(Q) = n!. In other words, Theorem 5.5 implies Theorem 5.1.

5.3. Reverse Sidorenko inequality. It may come as a surprise that the lower bound in the
Sidorenko inequality is always sharp up to a simple exponential factor. Formally, we have the
following:

Theorem 5.6 (Reverse Sidorenko inequality [BBS99]). Let P = (X,≺) and Q = (X,≺′) be

two posets on the same set with |X| = n elements which satisfy Γ(P ) = Γ(Q). Denote by
ωn := vol(Bn) be the volume of a unit ball in Rn. Then:

(5.5) e(P ) e(Q) ≤ (n!ωn)
2

4n
.

The Stirling formula and the asymptotics for ωn show that the Sidorenko inequality is
asymptotically sharp:

(5.6) n! ≤ e(P ) e(Q) ≤ n!
(
π
2

)n
O
(

1√
n

)
.

Question 5.7. Denote by µ(n) the maximal value of the product e(P ) e(Q) over all posets
P,Q on n elements which satisfy (5.1). In [BBS99], the authors ask to determine

κ := lim sup
n→∞

(
µ(n)

n!

)1/n

.

They observe that κ > 1.123 and conjecture that κ < 1.2. The upper bound κ ≤ π
2 ≈ 1.571

given by (5.6), remains the best known asymptotic upper bound.
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Remark 5.8. Mixed Sidorenko inequality is another generalization of Sidorenko’s inequality
to double posets is given in [AASS20, Thm 6.2]. It would be interesting to see if this inequality
has a direct injective proof.

6. Björner–Wachs type inequalities

6.1. Björner–Wachs inequality. The following inequality is elementary, but surprisingly
rich in generalizations and applications:

Theorem 6.1 (Björner–Wachs inequality [BW89, Thm 6.3]). Let P = (X,≺) be a poset with
|X| = n elements. We have:

(BW) e(P ) ≥ n! ·
∏
x∈X

1

β(x)
.

Moreover, the equality holds if and only if P is a forest. Additionally, the defect of the (BW)
is in #P.

The original proof uses a direct injection. This inequality was popularized by Stanley,
who stated it without proof or a reference in [Sta99, Exc. 3.57].3 Unaware of the provenance,
in [HP08], Hammett and Pittel gave a laborious proof in the language of geometric probability.
Note that (BW) is asymmetric, i.e. not invariant under poset duality, leading to the following:

Corollary 6.2. Let P = (X,≺) be a forest. Then:

(6.1)
∏
x∈X

α(x) ≥
∏
x∈X

β(x).

This inequality follows immediately from Theorem 6.1, since α(x) and β(x) switch role in
dual posets: ∏

x∈X
β(x) =

n!

e(P )
=

n!

e(P ∗)
≤

∏
x∈X

α(x) .

The corollary was also proved combinatorially and generalized in [PPS20]. The proof uses
Karamata’s inequality, which does not lead to an injection (cf. [IP22, §7.5]).

Remark 6.3. Theorem 6.1 is a correlation inequality in the following sense. Let Σ(X) denote
the set of bijections σ : X → [n]. By definition, we have:

P
(
σ(x) < σ(y) ∀x, y ∈ X, x ≺ y

)
=

e(P )

n!
,

where P is a uniform measure on Σ(X). Denote by Ax ⊆ Σ(X) the event that σ(x) ≤ σ(y)
for all x ≺ y. Then (BW) says that every collection of Ax is mutually positively correlated.
The second part implies that for forests these events are mutually independent.

3Richard Stanley informed us that he indeed took it from [BW89] (personal communication, March 27, 2022).
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6.2. Reiner’s inequality. The following result is a natural q-analogue of the Björner–Wachs
inequality (BW), but was discovered only recently:

Theorem 6.4 (Reiner’s inequality [CPP23b, Thm 5.1] and [BW89, Thm 6.2]). Let P = (X,≺)
be a poset with |X| = n elements. Then:

(6.2) Ωq(P ) ⩾q

∏
x∈X

1

1− qβ(x)
,

where the inequality between two power series is coefficient-wise. Moreover, this inequality is
an equality if and only if P is a forest. Additionally, the coefficient [qm] of the defect of this
inequality is in #P, where m is given in binary.

Reiner’s inequality (6.2) was proved by Reiner by remarkably short and direct proof, see
below. It was published by the authors in [CPP23b]. The equality part was proved in the
original Björner–Wachs paper. Multiplying both sides of (6.2) by (1 − q)(1 − q2) · · · (1 − qn)
and using the equality (2.2), we conclude:

Corollary 6.5. For all 0 < q < 1, we have:

(6.3) eq(P ) ≥ (1− q)(1− q2) · · · (1− qn)
∏
x∈X

1

1− qβ(x)
.

Taking the limit q → 1−, gives the Björner–Wachs inequality (BW). This is probably the
shortest and the most conceptual proof of (BW).

Proof of Theorem 6.4. Interpret the RHS of (6.2) as the GF for maps g ∈ P(P ) which are
obtained as a nonnegative integer linear combination of characteristic functions of upper order
ideals in poset P :

g =
∑
x∈X

m(x)χ(x↑) , where m(x) ∈ N for all x ∈ X.

Note that characteristic functions χ(x↑) are linearly independent because in the standard basis
{χ(y) : y ∈ X}, the transition matrix is unitriangular. Since

∑
x∈X g(x) =

∑
x∈X m(x)β(x),

the result follows immediately from (2.1). □

6.3. Order polynomials version. The following is the extension of the Björner–Wachs in-
equality for order polytopes:

Theorem 6.6 ([CPP23b, Thm 1.2]). Let P = (X,≺) be a poset with |X| = n elements, and
let r = |min(P )| be the number of minimal elements. Then, for all t ∈ N, we have:

(6.4) Ω(P, t) ≥ tr (t+ 1)n−r
∏
x∈X

1

β(x)
.

By (2.12), the inequality (6.4) implies (BW). The following result shows that (6.4) can be
slightly improved if Conjecture 4.7 holds:

Theorem 6.7 ([CPP23b, Thm 4.13]). Let P = (X,≺), let min(P ) ⊆ X be the subset of
maximal elements, and let r := |min(P )| be the number of maximal elements. If Conjecture 4.7
holds, then we have:

(6.5) Ω(P, t) ≥ tr
∏

x∈X∖min(P )

(
t

β(x)
+

1

2

)
.

It would be interesting to find an unconditional proof of this inequality. Both Theorems 6.6
and 6.7 were proved using the FKG inequality (see §14.4).
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7. Fishburn type inequalities

7.1. Two minimal elements. We start with the following special case which is already
interesting and hard to prove.

Theorem 7.1 (see [CP22b, Thm 1.1]). Let P = (X,≺) be a poset with |X| = n > 2 elements.
Let x, y ∈ min(X) be distinct minimal elements of P . Then:

(7.1)
n

n− 1
≤ e(P ) · e(P − x− y)

e(P − x) · e(P − y)
≤ 2.

This correlation inequality is the most natural and the simplest to state. The lower bound
in (7.1) is a special case of the Fishburn’s inequality (7.3) below, while the upper bound is a
special case of (8.13) below. Note that the lower bound is tight for P = An and the upper
bounds is tight for the linear sum P = A2 ⊕ Cn−2 .

Remark 7.2. Correlation inequalities are best understood in probabilistic notations. The
inequality (7.1) can be rewritten as

(7.2)
n

n− 1
≤ P[f(x) = 1, f(y) = 2]

P[f(x) = 1] · P[f(y) = 1]
≤ 2,

where the probability P is over the uniform random linear extension f ∈ E(P ). The asymmetry
in the numerator is an illusion, since P[f(x) = 1, f(y) = 2] = P[f(x) = 2, f(y) = 1].

Open Problem 7.3. For many examples of large posets, the lower bound in (7.1) is tight.
Can one improve the upper bound for a large natural class of posets?

7.2. Fishburn’s inequality. Let P = (X,≺) be a poset with |X| = n elements. Denote

ε(P ) :=
e(P )

n!
= P

(
f ∈ E(P )

)
,

where the probability is over uniform bijections f : X → [n].
Let A ⊆ X be a subset of the ground set. By a small abuse of notation, denote by e(A)

the number of linear extensions of the induced subposet P |A = (A,≺).

Theorem 7.4 (Fishburn’s inequality [Fis84, Lemma, p. 130]). Let P = (X,≺) be a finite
poset, and let A,B ⊆ X be lower ideals of P . Then:

(7.3) ε(A ∪B) · ε(A ∩B) ≥ ε(A) · ε(B).

Taking A := X −x and B := X − y gives (7.1). The original proof of Fishburn’s inequality
uses the AD inequality (see §14.4). The following is a self-dual generalization.

Theorem 7.5 (generalized Fishburn’s inequality [CP23a, Thm 3.4]). Let P = (X,≺) be a
finite poset. Let A,B ⊆ X be lower ideals, and let C,D ⊆ X be upper ideals of P , such that
A ∩ C = B ∩D = ∅. Then:

(7.4) ε(X − V ) · ε(X −W ) ≥ ε(X −A− C) · ε(X −B −D),

where V := (A ∩B) ∪ (C ∪D) and W := (A ∪B) ∪ (C ∩D).

The proof of this generalization also uses the AD inequality.
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7.3. Lam–Pylyavskyy extension. To simplify the notation, denote by Ω(A, t) the order
polynomial of the induced subposet P |A . Define Ωq(A, t), Ωq (A, t) and Φz (A, t) in a similar
way.

Theorem 7.6 (Lam–Pylyavskyy [LP07, Thm 3.6]). Let P = (X,≺) be a finite poset, and let
A,B ⊆ X be lower ideals of P . Then, for all integer t ≥ 1, we have:

(7.5) Ω(A ∪B, t) · Ω(A ∩B, t) ≥ Ω(A, t) · Ω(B, t).

Additionally, the defect of this inequality is in #P.

The authors proved this result by an explicit injection, which they generalize in several
different ways. Some of these generalization are natural from the algebraic combinatorics
point of view, but some are natural and apply to all posets.

Theorem 7.7 (Lam–Pylyavskyy [LP07, Prop. 3.7]). Let P = (X,≺) be a finite poset, and let
A,B ⊆ X be lower ideals of P . Then, for all integer t ≥ 1, we have:

(7.6) Ωq(A ∪B, t) · Ωq(A ∩B, t) ⩾q Ωq(A, t) · Ωq(B, t),

where the inequality holds coefficient-wise as a polynomial in q. Moreover, we have:

(7.7) Φz(A ∪B, t) · Φz(A ∩B, t) ⩾z Φz(A, t) · Φz(B, t),

where the inequality holds coefficient-wise as a polynomial in z = (z0, z1, . . .). Additionally,
the defect of this inequality is in #P.

Here the second part (7.7) implies the first part (7.6) by the substitution in (2.6). Letting
t→∞, using the equality (2.2), and multiplying both sides by an appropriate product of the
type (1−q)(1−q2) · · · gives a q-analogue of Fishburn’s inequality in the style of Corollary 6.5:

Corollary 7.8 (q-Fishburn’s inequality). Let P = (X,≺) be a finite poset, and let A,B ⊆ X
be lower ideals of P . Then, for all 0 < q < 1, we have:

(7.8)
eq(A ∪B) · eq(A ∩B)

eq(A) · eq(B)
≥ |A ∪B|!q · |A ∩B|!q

|A|!q · |B|!q
.

Taking the limit q → 1− gives back Fishburn’s inequality (7.3). The original proof of
Theorem 7.7 uses an explicit injection. The proof in [CP23a] uses generalizations of the
AD inequality (see §14.4).

7.4. Self-dual extension of Fishburn’s inequality. Note that Fishburn’s inequality is
defined to be asymmetric up to duality. The following generalization is self-dual.

Theorem 7.9 ([CP23a, Thm 3.4]). Let P = (X,≺) be a finite poset. Let A,B ⊆ X be lower
ideals, and let C,D ⊆ X be upper ideals of P , such that A ∩ C = B ∩D = ∅. Then:

(7.9) ε(X − V ) · ε(X −W ) ≥ ε(X −A− C) · ε(X −B −D) .

where V := (A ∩B) ∪ (C ∪D) and W := (A ∪B) ∪ (C ∩D).

Fishburn’s inequality (7.3) is a special case of the theorem when C = D = ∅. Curiously,
we are able to prove both multivariate analogues in this setting:

Theorem 7.10 ([CP23a, Thms 4.9 and 4.10]). Let P = (X,≺) be a finite poset. Let A,B ⊆ X
be lower ideals, and let C,D ⊆ X be upper ideals of P, such that A ∩ C = B ∩D = ∅. Fix
and integer t ≥ 1. Then:

(7.10) Ωq(X − V, t) · Ωq(X −W, t) ⩾q Ωq(X −A− C, t) · Ωq(X −B −D, t),
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where V := (A ∩ B) ∪ (C ∪ D) and W := (A ∪ B) ∪ (C ∩ D), and the inequality holds
coefficient-wise as a polynomial in q = (q1, q2, . . .). Similarly, we have:

(7.11) Φz(X − V, t) · Φz(X −W, t) ⩾z Φz(X −A− C, t) · Φz(X −B −D, t),

and the inequality holds coefficient-wise as a polynomial in z = (z0, z1, . . .).

The proof of Theorems 7.9 and 7.10 also uses generalizations of the AD inequality (see §14.4),
and thus fundamentally non-injective. This leaves open whether Lam–Pylyavskyy injective
arguments can be modified to answer the following:

Question 7.11. Is the deficit of inequalities (7.10) and (7.11) in #P?

8. Correlation inequalities

8.1. GYY inequality. Let P = C + C ′ be a disjoint sum of two chains with ℓ and (n − ℓ)
elements, respectively, where C = {u1 ≺ . . . ≺ uℓ} and C ′ = {v1 ≺ . . . ≺ vn−ℓ}.

Denote Λ := [ℓ] × [n − ℓ]. For all S ⊆ Λ, let AS := (X,≺S) be a poset with the relations
ui ≺S vj for all (i, j) ∈ S. Note that posets AS , AT are consistent with each other and with P ,
for all S, T ⊆ Λ.

Theorem 8.1 (Graham–Yao–Yao inequality [GYY80, Thm 1]). Let S, T ⊆ Λ. Then:

(GYY) e(P ∩AS ∩AT ) e(P ) ≥ e(P ∩AS) e(P ∩AT ).

Additionally, the defect of this inequality is in #P.

The theorem was originally proved by Graham, Yao and Yao in [GYY80] using a lattice
paths argument (see §14.3). A proof using the FKG inequality was given in [KS81], and soon
after in [She80], see the generalization below.

Remark 8.2. The result simplifies in a probabilistic setting. Denote by AS ⊆ E(P ) the event
that a linear extension f ∈ E(P ) satisfies relations in ≺S . Then (GYY) can be rewritten as a
positive correlation:

(8.1) P(AS ∩ AT ) ≥ P(AS)P(AT ),

where P is the uniform measure on E(P ). Note that P(AS) = 0 if AS and P are inconsistent.

8.2. Shepp’s inequality. Let P = Q + Q′, where Q = (U,≺) and Q = (V,≺′). Denote by
U = {u1, . . . , uℓ} and V = {v1, . . . , vn−ℓ} the elements in these two posets.

Theorem 8.3 (Shepp’s inequality [She80, Thm 2]). Let S, T ⊆ Λ. Then:

(8.2) e(P ∩AS ∩AT ) e(P ) ≥ e(P ∩AS) e(P ∩AT ).

Similarly,

(8.3) e(P ∩AS ∩A∗
T ) e(P ) ≤ e(P ∩AS) e(P ∩A∗

T ),

where we use the notation e(P ∩R) = 0 if posets P and R are not consistent.

This inequality was conjectured in [GYY80, p. 252], which also mentioned that it becomes
false if P has even one relation of the form ui ≺ vj . In a note added in proof, the authors
wrote that Theorem 8.3 was proved by Shepp [She80] using “an ingenious application of the
FKG inequalities” [GYY80, p. 258].

Open Problem 8.4. Prove of disprove: the defect of inequality (8.2) is in #P.

If true, this would extend the second part of Theorem 8.1.
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Theorem 8.5 (Shepp’s inequality for order polynomials [She80, Eq. (2.12)]). Let S, T ⊆ Λ.
Then, for every integer t ≥ 1, we have:

(8.4) Ω(P ∩AS ∩AT , t) · Ω(P, t) ≥ Ω(P ∩AS , t) · Ω(P ∩AT , t).

Similarly,

(8.5) Ω(P ∩AS ∩A∗
T , t) · Ω(P, t) ≤ Ω(P ∩AS , t) · Ω(P ∩AT , t),

where we use the notation Ω(P ∩R, t) = 0 if posets P and R are not consistent.

By (2.12), this theorem implies Shepp’s inequality (Theorem 8.3). The following q-analogue
is the most general result in this direction.

Theorem 8.6 (q-analogue of Shepp’s inequality [CPP23b, Thm 5.4]). Let S, T ⊆ Λ. Then we
have:

(8.6) Ωq(P ∩AS ∩AT ) · Ωq(P ) ⩾q Ωq(P ∩AS) · Ωq(P ∩AT ),

where the inequality holds coefficient-wise as a polynomial in q. More generally, for every
integer t ≥ 1, we have:

(8.7) Ωq(P ∩AS ∩AT , t) · Ωq(P, t) ⩾q Ωq(P ∩AS , t) · Ωq(P ∩AT , t).

The negative correlation version can be obtained in a similar way. Theorem 8.6 is proved
using Björner’s q-FKG inequality (see §14.4).

8.3. XYZ inequality. The following result is perhaps the most celebrated correlation inequal-
ity for linear extensions:

Theorem 8.7 (XYZ inequality [She82]). Let P = (X,≺) be a finite poset, and let x, y, z ∈ X
be incomparable elements. Denote Pxy := P ∩ {x ≺ y}, Pxz := P ∩ {x ≺ z} and Pxyz :=
P ∩ {x ≺ y, x ≺ z}. Then:

(XYZ) e(P ) e(Pxyz) ≥ e(Pxy) e(Pxz).

Moreover, for all integer t ≥ 1, we have:

(8.8) Ω(P, t) · Ω(Pxyz, t) ≥ Ω(Pxy, t) · Ω(Pxz, t).

Inequality (XYZ) was first conjectured by Ivan Rival and Bill Sands [Riv82, p. 806]. Shepp’s
original proof of (XYZ) used the FKG inequality and goes through (8.8). It was proved
by Fishburn [Fis84], that (XYZ) is always strict. A combinatorial (but not fully injective)
argument was given in [BT02].

Conjecture 8.8 ([Pak22, Conj. 6.4]). The defect of (XYZ) is not in #P.

Remark 8.9. As with other correlation inequalities, the XYZ inequality is easier to understand
in terms of uniform random linear extensions f ∈ E(P ). For incomparable elements u, v ∈ X,
denote Euv := E(Puv) ⊂ E(P ). Then:

(8.9) P(Exy ∩ Exz) ≥ P(Exy) · P(Exz).
To simplify the notation, we write A △ B if the events A and B have positive correlation:

P(A∩ B) ≥ P(A) ·P(B). Similarly, we write A▽B if these events have negative correlation:
P(A∩B) ≤ P(A)·P(B). In this notation, (8.9) can be written as (Exy) △ (Exz), or, equivalently,
as (Exy)▽ (Eyz).

In [Bri85], Brightwell described all collections of inequalities for which we have the analogue
of (8.9). Typical examples include:

(Exy ∩Euv) △ (Exv ∩Euy), (Exz ∩Eyz)▽ (Ezu ∩Ezv) and (Exw ∩Eyw ∩Ezu ∩Ezv)▽ (Ewz).
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This resolved Colin McDiarmid’s question and negatively resolved a conjecture of Kahn and
Saks, see e.g. [Win86, p. 168]. For the GYY inequality (GYY), the corresponding result was
obtained by Winkler in [Win83]. See also an extensive discussion in [Bri85, Day84, Fis92].

8.4. Average height. The average height of an element x in poset P , is defined as

h(P, x) := E[f(x)] =
1

e(P )

∑
f ∈E(P )

f(x).

Theorem 8.10 (Winkler [Win82]). Let P = (X,≺) be a poset, and let x, y ∈ X be incompa-
rable elements. Then:

(8.10) h(P, x) ≥ h(Pxy, x).

Moreover, for all k ∈ N, we have:

(8.11) P
(
f(x) > k

)
≥ P

(
f(x) > k | f(x) < f(y)

)
.

The proof follows easily from Shepp’s proof of the XYZ inequality (Theorem 8.7). Now, for
a subset S ⊆ X, denote

h(S) := E
[
min
x∈S

f(x)
]
.

In particular, h(S) = h(P, x) for S = {x}, and h(X) = 1.

Theorem 8.11 (Winkler [Win82, Thm 4]). Let P = (X,≺) be a poset, and let U, V ⊂ X
such that U ∪ V = X. Then:

(8.12) h(U) · h(V ) ≤ h(U) + h(V ).

The proof of (8.12) is another elementary probabilistic application of the XYZ inequality.

Corollary 8.12. Let x, y ∈ X be the only two minimal elements in P . Then h(P, x)·h(P, y) ≤
h(P, x) + h(P, y). In particular, either h(P, x) ≤ 2 or h(P, y) ≤ 2.

Note that this is tight, since for P = Cℓ + Cℓ and x ∈ min(P ), we have h(P, x) → 2 as
ℓ→∞.

Proof. Let U := x ↑ and V := y ↑. Observe that U ∪ V = X. By definition, we also have
h(P, x) = h(U) and h(P, y) = h(V ). The result now follows from (8.12). □

8.5. Deletion correlations. Let P = (X,≺) be a poset with |X| = n elements, let z ∈ X
and a ∈ [n]. Let E(P, z, a) be the set of linear extensions f ∈ E(P ), such that f(z) = a.
Denote by N(P, z, a) :=

∣∣E(P, z, a)∣∣ the number of such linear extensions.

Theorem 8.13 ([CP22b, Thm 6.3]). Let P = (X,≺) be a poset with |X| = n > 2 elements.
Fix an element z ∈ X and integer 1 ≤ a ≤ n − 2. Then, for all distinct minimal elements
x, y ∈ min(X − z), we have:

(8.13) N(P, z, a) ·N(P − x− y, z, a) ≤ 2N(P − x, z, a) ·N(P − y, z, a).

Taking a disjoint sum P ← P + z and a = 1, we get a special case of the upper bound
in (7.1), a counterpart to the corollary of Fishburn’s inequality. The original proof uses the
combinatorial atlas (see §14.7). The same holds for results for the rest of the section.
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8.6. Subsets. Fix a nonempty subset A ⊆ X. For a linear extension f ∈ E(P ), define

(8.14) f(A) :=
{
f(x) : x ∈ A

}
and fmin(A) := min f(A).

Note that fmin(A) = f(x) for all singletons A = {x}, where x ∈ X. The following result is
more natural in probabilistic notation:

Theorem 8.14. Let P = (X,≺) be a poset on |X| ≥ 2 elements. Fix a nonempty subset
A ⊆ X. Then:

(8.15) P[1, 2 /∈ f(A)] ≤ P[1 /∈ f(A)]2 and

(8.16) P[1 ∈ f(A)] · P[1 /∈ f(A)] ≤ P[1 /∈ f(A), 2 ∈ f(A)],

We return to this result in §9.9. The following corollary is an easy consequence of Theo-
rem 8.14.

Corollary 8.15 ([CP22b, Cor. 1.7]). Let P = (X,≺) be a poset on |X| ≥ 2 elements, and let
A ⊆ X be a nonempty subset of elements. Then:

(8.17) P[1, 2 ∈ f(A)] · P[1, 2 /∈ f(A)] ≤ P[1 ∈ f(A), 2 /∈ f(A)]2.

Proof. Multiply (8.15) for subsets A and X ∖A. Then use (8.16). □

Note that A is an arbitrary nonempty subset of the ground set X. For a subset W ⊆ E(P ),
we write N

(
P, z, a |W

)
to denote the number of linear extensions f ∈ N(P, z, a) which satisfy

condition W. The following result is a generalization of Corollary 8.15.

Theorem 8.16 ([CP22b, Lem. 6.4]). Let P = (X,≺) be a poset on |X| = n ≥ 3 elements,
let z ∈ X, a ∈ {3, . . . , n}, and let A ⊆ X − z be a nonempty subset. Then:

(8.18)
N
(
P, z, a | 1 ∈ f(A), 2 ∈ f(A↑)

)
· N(P, z, a | 1, 2 /∈ f(A))

≤ N
(
P, z, a | 1 ∈ f(A), 2 /∈ f(A)

)2
.

Taking a disjoint sum P ← P + z and a = n implies (8.17). Note also that

N
(
P, z, a | 1 ∈ f(A), 2 ∈ f(A)

)
≤ N

(
P, z, a | 1 ∈ f(A), 2 ∈ f(A↑)

)
,

so (8.18) gives a stronger inequality.

8.7. Covariance inequalities. The following theorem gives a similar upper bound for the
covariances:

Theorem 8.17 ([CP22b, Thm 1.2]). Let P = (X,≺) be a finite poset, and let x, y ∈ X be
fixed poset elements. Then:

(8.19)
E[f(x)f(y)] + E

[
min{f(x), f(y)}

]
E[f(x)] · E[f(y)]

≤ 2.

The following result generalized this to subsets:

Theorem 8.18 ([CP22b, Thm 1.8]). Let P = (X,≺) be a finite poset, and let A,B ⊆ X be
nonempty subsets. Then:

(8.20)
E
[
fmin(A)fmin(B)

]
+ E

[
fmin(A ∪B)

]
E
[
fmin(A)

]
· E

[
fmin(B)

] ≤ 2.

Let us emphasize that here A and B are arbitrary subsets of the ground set X. Recall that
B ↑ := ∪b∈B b ↑ denotes the upper closure of a subset B ⊆ X. The following is a symmetric
generalization of Theorem 8.16 to two disjoint subsets of minimal elements:
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Theorem 8.19 ([CP22b, Thm 1.9]). Let P = (X,≺) be a finite poset, and let A,B ⊂ min(P )
be disjoint nonempty subsets of minimal elements. Then:

(8.21) P
[
1 ∈ f(A), 2 ∈ f(A↑)

]
· P

[
1 ∈ f(B), 2 ∈ f(B ↑)

]
≤ P

[
1 ∈ f(A), 2 ∈ f(B)

]2
.

See also [CP22b, Thm 1.10], for a three element generalization of this inequality.

8.8. Unique covers. Let P = (X,≺) be a poset, and let x, y ∈ X. Recall that element y
covers x, if x ≺ y, and there is no v ∈ X s.t. x ≺ v ≺ y. For elements x ≺ y in X, we say
that y is a unique cover of x, if y covers x and does not cover any other elements in X.

Theorem 8.20 ([CP22b, Cor. 3.10]). Let P = (X,≺) be a finite poset, and let x, y ∈ min(P )
be distinct minimal elements. Suppose element v ∈ X is a unique cover of x, and w ∈ X is a
unique cover of y. Then:

(8.22) e(P − x− y)2 ≥ e(P − x− v) · e(P − y − w).

This inequality is derived from (8.21) for A = {x} and B = {y}. We conclude with the
following four element inequality.

Theorem 8.21 ([CP22b, Cor. 3.11]). Let P = (X,≺) be a finite poset, and let x, y, z ∈ min(P )
be distinct minimal elements. Suppose element u ∈ X is a unique cover of z. Then:

(8.23) e(P − u− z) · e(P − x− y) ≤ 2 e(P − x− z) · e(P − y − z).

This is a direct corollary of a three element generalization of Theorem 8.19 mentioned above.

9. Stanley type inequalities

In this section we present a collection of Stanley type inequalities. In the next section, we
discuss various equality conditions for some of these inequalities.

9.1. Stanley inequality. Let P = (X,≺) be a poset with |X| = n elements, let x ∈ X
and a ∈ [n]. Recall that E(P, x, a) denotes the set of linear extensions f ∈ E(P ), such that
f(x) = a, and that N(P, x, a) :=

∣∣Ezc(P, x, a)∣∣. Stanley’s inequality states that
{
N(P, x, a)

}
is log-concave:

Theorem 9.1 (Stanley’s inequality [Sta81, Thm 3.2]). We have:

(Sta) N(P, x, a)2 ≥ N(P, x, a+ 1) · N(P, x, a− 1).

The unimodality of
{
N(P, x, a)

}
was conjectured by Kislitsyn [Kis68, §4.4] and later in-

dependently by Rivest. The log-concavity was conjectured by Chung, Fishburn and Graham
[CFG80], who established both conjectures for posets of width two. The authors of [CFG80]
called Rivest’s conjecture “tantalizing” and add a note characterizing Stanley’s then forthcom-
ing proof using the Alexandrov–Fenchel inequality as “very ingenious” (see §14.6).

Conjecture 9.2 ([Pak22, Conj. 6.3]). The defect of Stanley’s inequality (Sta) is not in #P.

In [CPP23b, §9.12], we wrote “At this point, it is even hard to guess which way the answer
would go. While some of us believe the answer should be negative, others disagree.” We have
stronger convictions now.
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9.2. Kahn–Saks inequality. Let P = (X,≺) be a poset with |X| = n elements, let x, y ∈
X and a ∈ [n]. Denote by F(P, x, y, a) the set of linear extensions f ∈ E(P ), such that
f(y)− f(x) = a. Let F(P, x, y, a) :=

∣∣F(P, x, y, a)∣∣.
Theorem 9.3 (Kahn–Saks inequality [KS84, Thm 2.5]). We have:

(KS) F(P, x, y, a)2 ≥ F(P, x, y, a+ 1) · F(P, x, y, a− 1).

It is easy to see that (KS) implies (Sta) by taking x ← 0̂, y ← x, and a ← a + 1. The
theorem is proved using the Alexandrov–Fenchel inequality again (see §14.6).

9.3. q-Stanley and q-KS inequalities. Let P = (X,≺) be a poset of width two with
|X| = n elements. Fix a partition X = C ⊔ C ′ into two chains, where C = {u1 ≺ . . . ≺ uℓ},
and C ′ = {v1 ≺ . . . ≺ vn−ℓ}.

Let q := (q1, . . . , qℓ) be formal variables. Define the q-weight of N(P, x, a) and F(P, x, y, a)
as follows:

Nq (a) :=
∑

f ∈E(P,x,a)

qf and Fq (a) :=
∑

f ∈F(P,x,y,a)

qf ,

where qf := q
f(u1)
1 · · · qf(uℓ)

ℓ .

Theorem 9.4 (q-Stanley inequality [CPP23a, Thm 7.1]). In notation above, let x ∈ C and
a ∈ [n]. Then:

(9.1) Nq(P, x, a)
2 ⩾q Nq(P, x, a+ 1) · Nq(P, x, a− 1),

where the inequality between polynomials is coefficient-wise.

More generally, we have:

Theorem 9.5 (q-KS inequality [CPP23a, Thm 7.2]). In notation above, let x, y ∈ C be distinct
elements, and let a ∈ [n]. Then:

(9.2) Fq(P, x, y, a)
2 ⩾q Fq(P, x, y, a+ 1) · Fq(P, x, y, a− 1),

where the inequality between polynomials is coefficient-wise.

Note that (9.2) implies (9.1) in a similar way that (KS) implies (Sta). Taking all qi ← 1 in
these two inequalities gives (Sta) and (KS), respectively. Explicit equality conditions for both
inequalities are given in [CPP23a, Thm 1.6] and [CPP23a, Thm 1.7]. Theorems 9.4 and 9.5
are proved by an explicit injection.

9.4. Weighted Stanley inequality. Let ω : X → R>0 be a positive weight function on X.
We say that ω is order-reversing if it satisfies

(9.3) u ≼ v ⇒ ω(u) ≥ ω(v),

for all u, v ∈ X. Define

(9.4) Nω(P, x, a) :=
∑

f ∈E(P,x,a)

ω(f, x) , where ω(f, x) :=
∏

y∈X : f(y)<f(x)

ω(y).

Theorem 9.6 (weighted Stanley inequality, [CP21, Thm 1.35]). For every order-reversing
weight function ω, we have:

(9.5) Nω(P, x, a)
2 ≥ Nω(P, x, a) · Nω(P, x, a),

where Nω(P, x, a) is defined by (9.4).

Taking all ω(x)← 1 in the inequality (9.5) gives (Sta). Explicit equality conditions for (9.5)
are given in [CP21, Thm 1.40], generalizing Theorem 10.2. Theorem 9.6 is proved by using a
combinatorial atlas (see §14.7).
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9.5. Generalized Stanley inequality. Let x, z1, . . . , zk ∈ X and a, c1, . . . , ck ∈ [n]; we
write z = (z1, . . . , zk) and c = (c1, . . . , ck), and assume that c1 < · · · < ck .

Let Ezc(P ) be the set of linear extensions f ∈ E(P ), such that f(zi) = ci for all 1 ≤ i ≤ k.
Similarly, let Ezc(P, x, a) be the set of linear extensions f ∈ Ezc(P ), such that f(x) = a.
Denote by Nzc(P ) :=

∣∣Ezc(P )
∣∣ and Nzc(P, x, a) :=

∣∣Ezc(P, x, a)∣∣ the number of such linear

extensions. The following result states that the sequence
{
Nzc(P, x, a), a ∈ [n]

}
is log-concave:

Theorem 9.7 (generalized Stanley inequality [Sta81, Thm 3.2]). In notation above, for all
k ≥ 0, we have:

(9.6) Nzc(P, x, a)
2 ≥ Nzc(P, x, a+ 1) · Nzc(P, x, a− 1).

The theorem is proved using the Alexandrov–Fenchel inequality (see §14.6).

Open Problem 9.8. Find a weighted version of Theorem 9.7, i.e. a common generalization
of Theorems 9.4 and 9.7.

9.6. Order polynomial version of Stanley inequality. The following is a natural gen-
eralization of Brenti’s log-concavity for the order polynomial (4.2) to the setting of Stanley
inequality (Sta).

Theorem 9.9 (Daykin–Daykin–Paterson inequality [DDP84, Thm 4]). Let P = (X,≺) be
a finite poset, and let x ∈ X. Denote by Ω(P, t; x, a) the number of order preserving maps
h : X → [t], such that h(x) = a. Then, for all integer t > a > 1, we have:

(9.7) Ω(P, t; x, a)2 ≥ Ω(P, t; x, a+ 1) · Ω(P, t; x, a− 1).

Additionally, the defect of this inequality is in #P.

The inequality (9.7) was conjectured by Graham [Gra83, p. 129], by analogy with Stanley’s
inequality (Sta). The proof in [DDP84] uses an explicit injection. The authors prove, in fact,
a stronger result, in the style of the generalized Stanley inequality (9.6).

Theorem 9.10 (generalized DDP inequality [DDP84, Thm 4]). Let P = (X,≺) be a finite
poset, let x ∈ X. Fix k ∈ N and let z ∈ Xk. Denote by Ω(P, t; z, c; x, a) the number of order
preserving maps h : X → [t], such that h(x) = a, and h(zi) = ci for all 1 ≤ i ≤ k. Then, for
all integer t > a > 1, we have:

(9.8) Ω(P, t; z, c; x, a)2 ≥ Ω(P, t; z, c; x, a+ 1) · Ω(P, t; z, c; x, a− 1).

Additionally, the defect of this inequality is in #P.

Graham believed that there should exist a proof based on the FKG or AD inequalities.
He lamented: “such a proof has up to now successfully eluded all attempts to find it” [Gra83,
p. 129]. Such proof was given in [CP22b], which also gave a generalization of the q-log-concavity
(4.4) and q -log-concavity (4.5) to this setting:

Theorem 9.11 (q–DDP inequality [CP22b, Thm 9.3]). Let P = (X,≺) be a finite poset, let
t ∈ N, and let x ∈ X. Then, for every t > a > 1, we have:

(9.9) Ωq(P, t; x, a)
2 ⩾q Ωq(P, t; x, a+ 1) · Ωq(P, t;x, a− 1),

where the inequality holds coefficient-wise as a polynomial in q = (q1, . . . , qn).
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9.7. Cross-product conjecture. Let P = (X,≺) be a poset with |X| = n elements. Fix
distinct elements x, y, z ∈ X. For a, b ≥ 1, let Fxyz(P, a, b) := F(P, x, y, a) ∩ F(P, y, z, b).
Equivalently,

Fxyz(P, a, b) :=
{
f ∈ E(P ) : f(y)− f(x) = a, f(z)− f(y) = b

}
.

Denote Fxyz(P, a, b) :=
∣∣Fxyz(P, a, b)

∣∣. By Theorem 10.9, we have
{
Fxyz(P, a, b) =

? 0
}
∈ P,

since there are at most n choices for f(x), which then determine f(y) and f(z).

Conjecture 9.12 (Cross–product conjecture, Felsner–Trotter [FT93, Conj. 8.3]). We have:

(CPC) Fxyz(P, a+ 1, b) · Fxyz(P, a, b+ 1) ≥ Fxyz(P, a, b) · Fxyz(P, a+ 1, b+ 1).

The following result give a summary of known special cases

Theorem 9.13. Conjecture 9.12 holds in the following cases:

(1) a = b = 1, see [BFT95, Thm 3.2],
(2) width(P ) = 2, see [CPP22a, Thm 1.4],
(3) Fxyz(P, a, b+2) = Fxyz(P, a+2, b) = 0, Fxyz(P, a, b) > 0 and Fxyz(P, a+1, b+1) > 0,

see [CPP23c, Thm 1.2].

The proof of (1) is based on the AD inequality (see §14.4). The authors lamented: “some-
thing more powerful seems to be needed” to prove the general form of (CPC).

Note that (CPC) easily implies (KS), by taking y ← z and P ← P + y, see e.g. [CPP22a,
§3.1]. In fact, (GYY) also follows from (CPC), by a more involved argument (ibid., §3.4). Of
course, the value of these implications is low given that (CPC) remains an open problem.

For posets of width two, the q-analogue of (CPC) and the equality conditions are given in
[CPP22a, Thm 1.7 and 1.8]. In fact, a stronger inequality holds in this case:

(9.10) Fxyz(P, a, b) · Fxyz(P, c, d) ≤ Fxyz(P, c, b) · Fxyz(P, a, d), for all a ≤ c and b ≤ d,

see [CPP22a, Thm 1.6]. For c = a+ 1 and d = b+ 1, where a, b ≥ 1, this gives (CPC). The
inequality (9.10) fails already for posets of width three [CPP23c, Thm 1.6].

When Fxyz(P, a, b) ·Fxyz(P, a+1, b+1) = 0, the inequality (CPC) holds trivially. Note that
this assumption as well as the assumptions in (3) can be verified in polynomial time. For the
remaining possible cases, we have the following weak version of Conjecture 9.12.

Theorem 9.14 ([CPP23c, Thm 1.2]). Let P = (X,≺) be a poset on |X| = n elements. Fix
distinct elements x, y, z ∈ X. Suppose that Fxyz(P, a, b+ 2)Fxyz(P, a+ 2, b) > 0. Then:

(9.11) Fxyz(P, a+ 1, b) Fxyz(P, a, b+ 1) ≥
(
1
2 + 1

4n
√
ab

)
Fxyz(P, a, b) Fxyz(P, a+ 1, b+ 1).

Alternatively, suppose that Fxyz(P, a, b+ 2) = 0 and Fxyz(P, a+ 2, b) > 0. Then:

(9.12) Fxyz(P, a+ 1, b) Fxyz(P, a, b+ 1) ≥
(
1
2 + 1

16nab2

)
Fxyz(P, a, b) Fxyz(P, a+ 1, b+ 1).

Finally, suppose that Fxyz(P, a, b+ 2)Fxyz(P, a+ 2, b) = 0. Then:

(9.13) Fxyz(P, a, b) Fxyz(P, a+ 1, b+ 1) = 0.

Note that (9.13) implies part (3) in Theorem 9.13. The theorem is proved using geometric
inequalities (see §14.6).



LINEAR EXTENSIONS OF FINITE POSETS 25

9.8. Order polynomial version of CPC. The following is a natural generalization of the
DDP inequality (9.7) to the setting of CPC (Sta).

Let P = (X,≺) be a poset on |X| = n elements, and let X = {x1, . . . , xn}. Fix t ≥ 0 and
distinct elements x, y, z ∈ X. For integers a, b ≥ 0, let

P(P, t; x, y, z ; a, b) :=
{
h ∈ P(P, t) : h(y)− h(x) = a and h(z)− h(y) = b

}
.

Denote
Λ(P, t; x, y, z ; a, b) :=

∣∣P(P, t; x, y, z ; a, b)∣∣, and

Λq (P, t; x, y, z ; a, b) :=
∑

f ∈P(P,t ; x,y,z ; a,b)

q
f(x1)
1 · · · qf(xn)

n .

Theorem 9.15 (Cross-product inequality for P -partitions [CP23a, Thm 9.3]). Let P = (X,≺)
be a finite poset, let x, y, z ∈ P, and let t ≥ 1 be a positive integer. Then, for every a, b ≥ 0,
we have:

(9.14)
Λ(P, t; x, y, z ; a+ 1, b) · Λ(P, t; x, y, z ; a, b+ 1)

≥ Λ(P, t; x, y, z ; a, b) · Λ(P, t; x, y, z ; a+ 1, b+ 1).

More generally:

(9.15)
Λq(P, t; x, y, z ; a+ 1, b) · Λq(P, t; x, y, z ; a, b+ 1)

⩾q Λq(P, t; x, y, z ; a, b) · Λq(P, t; x, y, z ; a+ 1, b+ 1).

The proof uses a generalization of the AD inequality (see §14.4).

9.9. Conjectural generalization. Recall (8.14), that fmin(A) := min{f(x) : x ∈ A}. The
following is the natural generalization of Stanley’s inequality (Sta).

Conjecture 9.16 (extended Stanley inequality [CP22b, Conj. 1.5]). Let P = (X,≺) be a poset
with |X| = n elements. Fix a nonempty subset A ⊆ X, and let 2 ≤ k ≤ n− 1. Then:

(9.16) P[fmin(A) = k]2 ≥ P[fmin(A) = k + 1] · P[fmin(A) = k − 1].

This conjecture also implies Theorem 8.14, see [CP22b, §7.1].

9.10. Second moment conjecture. In Theorem 8.17, letting y = x gives the following
curious bound on the second moment:

Corollary 9.17 (second moment inequality [CP22b, Cor. 3.5]). Let P = (X,≺) be a finite
poset, and let x ∈ X be a fixed element. Then:

(9.17) 1 ≤ E[f(x)2]

E[f(x)]2
< 2.

The lower bound is trivial and holds for every random variable. The (non-strict) upper
bound also follows from Stanley’s inequality, since for every log-concave random variable Z,
we have: E[Z2] ≤ 2E[Z]2, see [CP22b, Prop. 3.7]. The following conjecture improves upon
the upper bound in (9.17).

Conjecture 9.18 (second moment conjecture [CP22b, Conj. 3.8]). Let P = (X,≺) be a finite
poset, and let x ∈ X be a fixed element. Then:

(9.18)
E[f(x)2]

E[f(x)]2
≤ 4

3
.

In fact, the inequality is probably always strict as the following example suggests.
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Example 9.19. Let P := Cn−1 + {x} be a disjoint sum of two chains. We have:

E[f(x)2]

E[f(x)]2
=

1
n

∑n
k=1 k2(

1
n

∑n
k=1 k

)2 =
4n+ 2

3n+ 3
→ 4

3
as n→∞.

Thus, the constant in the upper bound (9.18) must be at least 4/3.

10. Equality conditions of Stanley type inequalities

10.1. Stanley inequality. Recall that α(x) := |x↓| and β(x) := |x↑| denote the sizes of the
lower and upper order ideals, respectively.

Theorem 10.1 (vanishing conditions, Daykin and Daykin [DD85, Thm 8.2]). Let P = (X,≺)
be a poset with |X| = n elements, let x ∈ X and a ∈ [n]. Then N(P, x, a) > 0 if and only if

α(x) ≤ a and β(x) ≤ n− a+ 1.

Moreover, if N(P, x, a) > 0, then a linear extension f ∈ E(P, x, a) can be found in polynomial
time.

The original proof uses promotion/demotion operators (under a different name, cf. §14.2),
This results was rediscovered in [SvH23, Lem. 15.2]. By Theorem 9.1, Stanley’s inequality (Sta)
is an equality whenever N(P, x, a) = 0. The other equality cases are given by the following
result:

Theorem 10.2 (equality conditions, Shenfeld and van Handel [SvH23, Thm 15.3]). Let P =
(X,≺) be a poset with |X| = n elements, let x ∈ X and a ∈ [n]. Suppose that N(P, x, a) > 0.
The following are equivalent:

(1) N(P, x, a)2 = N(P, x, a+ 1) · N(P, x, a− 1),
(2) N(P, x, a+ 1) = N(P, x, a) = N(P, x, a− 1),
(3) we have α(y) > a for all y ≻ x, and β(y) > n− a+ 1 for all y ≺ x.

The original proof uses a technical geometric argument (see §14.6). The result was reproved
in [CP21, Thm 1.39] using the combinatorial atlas technology, and extended to equality con-
ditions of the weighted Stanley inequality (9.5).

Corollary 10.3. The equality of Stanley’s inequality (Sta) can be verified in polynomial time:{
N(P, x, a)2 =? N(P, x, a+ 1) ·N(P, x, a− 1)} ∈ P.

This follows from Theorem 10.1 in the vanishing case, since the equality always holds, and
from (1)⇔ (3) in Theorem 10.2 in the nonvanishing cases.

10.2. CPC implies equality conditions. We start with the following surprising inequality:

Conjecture 10.4. Let P = (X,≺) be a poset on |X| = n elements. Fix an element z ∈ X.
Then, for all integer a, i ≥ 1, we have:

(10.1)
(a+ i− 1)N(P, z, a+ i− 1) ·N(P, z, a)
≥ (a− 1)N(P, z, a− 1) · N(P, z, a+ i) + iN(P, z, a+ i) · N(P, z, a).

The following results were left on the cutting floor from [CPP23c]:

Theorem 10.5 (Chan–Pak–Panova, see §15.1). The Cross–product Conjecture 9.12 implies
Conjecture 10.4.

Proposition 10.6 (Chan–Pak–Panova, see §15.1). Inequality (10.1) implies that (1) ⇔ (2)
in Theorem 10.2. Additionally, inequality (10.1) implies Stanley’s inequality (Sta).
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Combined, these two result show that Conjecture 9.12 implies the first part of the equality
conditions of Stanley’s inequality (Sta) given in Theorem 10.2. Since the only known proofs
of the latter are rather difficult (using either convex geometry or the combinatorial atlas tech-
nology), this suggests that Conjecture 9.12 is also very difficult to prove. Another possibility
is that Conjecture 9.12 is false for posets of large width (cf. §16.3).

10.3. Kahn–Saks inequality. Denote γ(u, v) := #{y ∈ X, s.t. u ≺ y ≺ v}.

Theorem 10.7 (vanishing conditions [CPP23b, Thm 8.5]). Let P = (X,≺) be a poset with
|X| = n elements, let x, y ∈ X and a ∈ [n]. We have: F(P, x, y, a) > 0 if and only if

γ(x, y) < a < n − α(x) − β(y).

Moreover, if F(P, x, y, a) > 0, then a linear extension f ∈ F(P, x, y, a) can be found in
polynomial time.

The original proof uses a variation on promotion/demotion operators (see §14.2). See also
[vHYZ23] for an alternative proof of Theorem 10.7. The equality conditions for the Kahn–Saks
inequality (KS) were completely resolved in [vHYZ23], but too cumbersome to state here. The
following theorem is a compilation of several results in that paper.

Theorem 10.8 (equality conditions, van Handel, Yan and Zeng [vHYZ23]). Let P = (X,≺)
be a poset with |X| = n elements, let x, y ∈ X and a ∈ [n]. Suppose that F(P, x, y, a) > 0.
Then

(10.2) F(P, x, y, a)2 = F(P, x, y, a+ 1) · F(P, x, y, a− 1)

if and only if

either F(P, x, y, a+ 1) = F(P, x, y, a) = F(P, x, y, a− 1)

or F(P, x, y, a+ 1) = 2 · F(P, x, y, a) = 4 · F(P, x, y, a− 1).

Additionally, the equality (10.2) can be verified in polynomial time.

Note the asymmetric structure of the three-term geometric progression with ratio 2, a phe-
nomenon which does not occur for the Stanley inequality (Theorem 10.2). Nor does it oc-
cur for posets of width two when the equality conditions are especially simple, see [CPP23a,
Thm 1.7 and §8.4]. Two equivalent conjectural characterizations of the first part (the complete
equality) were given in [CPP23a, Conj. 8.7 and Thm 8.9].

10.4. Vanishing conditions. The following result generalizes Theorem 10.1 to vanishing con-
ditions of the generalized Stanley inequality (9.6).

Theorem 10.9 (vanishing conditions, Daykin and Daykin [DD85, Thm 8.2]). Let P = (X,≺)
be a poset with |X| = n elements. Let z = (z1, . . . , zk) ∈ Xk, c = (c1, . . . , ck) ∈ [n]k, and
assume that c1 < · · · < ck . Let Ezc(P ) denotes the set of linear extensions f ∈ E(P ), s.t.
f(zi) = ci for all 1 ≤ i ≤ k. We have Nzc(P ) > 0 if and only if

(10.3)
α(zi) ≤ ci , β(zi) ≤ n− ci + 1 , for all 1 ≤ i ≤ k, and

cj − ci > γ(zi, zj) for all 1 ≤ i < j ≤ k.

Consequently, the vanishing problem
{
Nzc(P ) =? 0

}
∈ P. Moreover, if Nzc(P ) > 0, then a

linear extension f ∈ Ezc(P ) can be found in polynomial time.

The original proof used promotion/demotion operators (see §14.2). This result was redis-
covered in [CPP23b, Thm 1.11] and [MS22, Thm 5.3], where the latter used a geometric
argument.
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10.5. Uniqueness conditions. The uniqueness conditions of the generalized Stanley inequal-
ity (9.6) provide another special case of a polynomial time decision problem.

Let vi := f−1(ci − 1) and wi := f−1(ci + 1) for 1 ≤ i ≤ k. We adopt the convention that

v1 = 0̂ if c1 = 1, and wk = 1̂ if ck = n. For 1 ≤ i ≤ j ≤ n, let

f−1[i, j] :=
{
f−1(i) , . . . , f−1(j)

}
.

Theorem 10.10 (uniqueness conditions, [CPP23b, Thm 7.5]). Let f ∈ Ezc(P ). Then we have
Nzc(P ) = 1 if and only if the following conditions hold:

(1) f−1[ci + 1, ci+1 − 1] forms a chain in P for every 1 ≤ i ≤ k, and

(2) there are no 1 ≤ i ≤ j ≤ k , such that {vi, wj} ∥ f−1[ci, cj ].

Consequently, the uniqueness problem
{
Nzc(P ) =? 1

}
∈ P.

The first part is proved using promotion/demotion operators (see §14.2). The last part
follows form the first part of the theorem, since by Theorem 10.9, a linear extension f ∈ Ezc(P )
can be found in polynomial time.

Conjecture 10.11. For every fixed integer m ∈ N, the decision problem
{
Nzc(P ) =? m

}
∈ P.

10.6. Equality conditions, positive results. In contrast with equality conditions for the
Kahn–Saks inequality (Theorem 10.8), the equivalence of (1)⇔ (2) in Theorem 10.2 general-
izes to all k ≥ 0.

Theorem 10.12 (complete equality property, Ma–Shenfeld [MS22, Thm 1.3 and 1.5]). Let
P = (X,≺) be a poset with |X| = n elements, let x, z1, . . . , zk ∈ X and a, c1, . . . , ck ∈ [n].
We have

(10.4) Nzc(P, x, a)
2 = Nzc(P, x, a+ 1) · Nzc(P, x, a− 1)

if and only if

(10.5) Nzc(P, x, a+ 1) = Nzc(P, x, a) = Nzc(P, x, a− 1).

For k = 1, the equality cases of (10.4) are given by the following result:

Theorem 10.13 ([CP23c, §9.1]). Let P = (X,≺) be a poset on n = |X| elements, let
x, z ∈ X, and a, c ∈ [n]. Then

Nz c(P, x, a)
2 = Nz c(P, x, a+ 1) ·Nz c(P, x, a− 1).

if and only if

(10.6) Nzy,cb′(P, x, a
′) = 0 for all y ∈ comp(x) and a′, b′ ∈ {a− 1, a, a+ 1}.

Since checking (10.6) can be done in polynomial time by Theorem 10.9, we easily have:

Corollary 10.14 ([CP23c, Thm 1.4]). For k = 1, the equality verification of the generalized
Stanley inequality (10.4) can be done in polynomial time:{

Nz c(P, x, a)
2 =? Nz c(P, x, a+ 1) ·Nz c(P, x, a− 1)} ∈ P.

Corollary 10.14 trivially implies Corollary 10.3.
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10.7. Equality conditions, Ma–Shenfeld theory. Let x, z1, . . . , zk ∈ X and a, c1, . . . , ck ∈
[n]; we write z = (z1, . . . , zk) and c = (c1, . . . , ck). Throughout the section, we assume that

x ≺ z1 ≺ . . . ≺ zk and c1 < · · · < ck . Suppose poset P has elements z0 = 0̂ and zk+1 = 1̂.
Denote

Λ :=
{
(r, s) : 0 ≤ r < s ≤ k + 1, cr < a < cs , (r, s) ̸= (0, k + 1)

}
.

Pairs (r, s) ∈ Λ are called splitting pairs.4

Definition/Lemma 10.15. Suppose that

Nzc(P, x, a− 1), Nzc(P, x, a), Nzc(P, x, a+ 1) > 0 and n > k + 3.(10.7)

We say that (P, x, a, z, c) is subcritical, critical, and supercritical if and only if for every
splitting pair (r, s) ∈ Λ, we have, respectively:

(subcrit) γ(zr, zs) ≤ cs − cr − 1,

(crit) γ(zr, zs) ≤ cs − cr − 2,

(supercrit) γ(zr, zs) ≤ cs − cr − 3.

In particular, each membership problem is in P.

The definition in [MS22] is cumbersome, so we use this definition which is more transparent.
We prove that it is equivalent to the original definition in §15.2. By Definition 10.15, we have:

{subcritical} ⊇ {critical} ⊇ {supercritical}.

Note that (10.7) implies (subcrit), since for every f ∈ Nzc(P, x, a) and (r, s) ∈ Λ, we have:

(10.8) γ(zr, zs) ≤
∣∣{f−1(i) : cr < i < cs

}∣∣ = cs − cr − 1.

Note also that for k = 0, every quintuple (P, x, a, z , c) is supercritical, since Λ = ∅.

Theorem 10.16 ([MS22, Thm 1.3, Rem. 1.6]). Suppose the positivity conditions (10.7) hold
and that quintuple (P, x, a, z, c) is supercritical. Then the equality (10.4) holds if and only if

(10.9)

{
∀ y ∈ x↑ ∃ r ∈ {0, . . . , k + 1} s.t. y ≻ zr and γ(zr, y) > a − cr

∀ y ∈ x↓ ∃ s ∈ {0, . . . , k + 1} s.t. y ≺ zs and γ(y, zs) > cs − a

Additionally, verifying (10.9) is in P.

Theorem 10.16 shows that deciding whether a supercritical quintuple gives the equality case
for the generalized Stanley inequality (9.6) can be done is polynomial time. Note that this
generalizes Theorem 10.2, but not Theorem 10.13 since there are critical cases for k = 1 as
the following example shows.

Example 10.17. Let k = 1. Consider a poset P = (X,≺), where X := {x, y1, . . . , yn−2, z},
and z ≺ x, z ≺ yn−2 are the only relations. Let a := n− 1, b := n− 3. We have:

Nz b(P, x, a) = Nz b(P, x, a+ 1) = Nz b(P, x, a− 1) = 2 (n− 3)!,

so (9.6) is an equality. Note that (P, z, a, z, b) is critical but not supercritical. Indeed, in this
case we have Λ = {(1, 2)}, c1 = b, c2 = n+ 1, and

γ(z, 1̂) =
∣∣{x, yn−2}

∣∣ = 2 = (n+ 1) − (n− 3) − 2 = c2 − c1 − 2.

4In [MS22, Def. 5.2], these are called ℓ-splitting pairs, which are instead written as (r + 1, s).
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10.8. Equality conditions, negative results. Corollary 10.14 is in sharp contrast with the
following result:

Theorem 10.18 ([CP23c, Thm 1.3]). Fix k ≥ 2. Then the equality verification of the general-
ized Stanley inequality (9.6) is not in the polynomial hierarchy unless the polynomial hierarchy
collapses to a finite level:{

Nzc(P, x, a)
2 =? Nzc(P, x, a+ 1) ·Nzc(P, x, a− 1)} ∈ PH =⇒ PH = Σp

m for some m.

The proof is based on the following result of independent interest.

Theorem 10.19.
{
N(P, x, a) =? N(P, x, a+ 1)

}
∈ PH =⇒ PH = Σp

m for some m.

Compare this with the following consequence of (2)⇔ (3) in Theorem 10.2 :

Corollary 10.20. Deciding whether the following holds is in P:

N(P, x, a− 1) = N(P, x, a) = N(P, x, a+ 1).

In particular, deciding if the distribution
{
N(P, x, a)

}
has a unique mode is not in PH,

unless PH collapses.

11. Examples and applications

In this section, we present a selection of poset classes for which the number of linear ex-
tensions is interesting either because it is easy to compute, or because it is provably hard to
compute.

11.1. Bounded width. Posets P = (X,≺) of bounded width are especially elegant and
have many properties that general posets do not have. In this case computing the number of
linear extensions #LE ∈ FP via dynamic programming. Young diagrams of bounded height
represent especially nice examples of posets of bounded width, see below.

For posets of width two with a fixed partition of P into two chains, the number e(P ) of linear
extensions can be viewed as the number of certain grid walks (lattice paths) in Z2, see §14.3.
For posets of width three, beside Young diagrams (see below), there is an interesting Kreweras–
Niederhausen poset (A2⊕C1)×Cn [KN81, HR22]. This poset has a Kreweras number of linear
extensions, see also [OEIS, A006335].

11.2. Series-parallel and N-free posets. The class of SP posets generalizes forests, and
has an extremely easy structure. Given the SP decomposition, one can the following formulas
to compute the number of linear extensions:

e
(
P ⊕Q

)
= e(P ) e(Q) and e

(
P +Q

)
=

(
m+n
m

)
e(P ) e(Q),

where P and Q have m and n elements, respectively. Given a SP poset, the SP decomposition
can be found in polynomial time [VTL82].

Recall that SP posets can be characterized by not having poset N as an induced subposet
(see §2.2). There is a closely related class of N -free posets whose cover graph does not con-
tainN . There is a more general notion of decomposition in this case. We refer to [HJ85, Möh89]
for the introduction to this class of posets. See [FM14] for bounds on the numbers of linear
extensions and a simple dynamic programming algorithm.

http://oeis.org/A006335
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11.3. Young diagrams. For a subset S ⊂ N2, denote by PS := (S,≼), where (i, j) ≼ (i′, j′)
if and only if i ≤ i′ and j ≤ j′. Let λ = (λ1, . . . , λℓ) be a partition of n, i.e. λ1 ≥ . . . ≥ λℓ > 0,
|λ| := λ1+ . . .+λℓ = n. Young diagram is a subset Sλ := {(i, j) ∈ N2 : 1 ≤ i ≤ ℓ, 1 ≤ j ≤ λi}.
Let Pλ := (Sλ,≼). For example, Catalan poset Catm corresponds to the partition λ = (m,m),

with n = 2m. Famously, e(Catm) = 1
m+1

(
2m
m

)
in the Catalan number, see e.g. [Sta99, §6.2]

and [Sta15].
Linear extensions of Pλ/µ are called standard Young tableaux of shape λ/µ. We use

e(λ/µ) := e(Pλ/µ) to simplify the notation. The hook-length formula by Frame, Robinson
and Thrall [FRT54], states:

(11.1) e(λ) = n!
∏

(i,j)∈λ

1

hλ(i, j)
,

where hλ(i, j) = λi + λ′
j − i− j + 1 is the hook-length in λ. This implies that #LE ∈ FP for

Young diagram shapes. See [Pak22, §11.2] for a list of different proofs.
More generally, skew Young diagram λ/µ is a pair of partitions with Sµ ⊆ Sλ . We use

Sλ/µ := Sλ ∖ Sµ. Denote by Pλ/µ := (Sλ/µ,≼) the corresponding subposet of Pλ , and let
|λ/µ| := |Sλ/µ|. The Aitken–Feit determinant formula [Ait43, Feit53], states:

(11.2) e(λ/µ) = n! det

(
1

(λi − µj − i+ j)!

)ℓ

i,j=1

.

This implies that #LE ∈ FP for skew Young diagram shapes as well.
There are several notable positive summation formulas for e(Pλ/µ), called the Naruse hook-

length formula (NHLF), see [Kon20, MPP17, MPP18a], Okounkov–Olshanski formula [MZ22,
OO98], and the flipped hook-length formula [Pak21, §9.1]. Among the implications let us single
out two inequalities:

(11.3) e(λ/µ) ≥ n!
∏

(i,j)∈λ

1

hλ(i, j)
and

∏
(i,j)∈λ

hλ(i, j) ≤
∏

(i,j)∈λ

hλ∗(i, j),

where hλ∗(i, j) := i+ j − 1 denotes the dual hook-length (hook-length in a skew shape rotated
180◦, corresponding to the dual poset). The first inequality in (11.3) is a strong improvement
over (BW) in this case [MPP18b]. The second follows from the first, and is a variation on (6.1)
in the case of Young diagrams, see [MPP18b, §12.1] and [PPS20].

Many inequalities for the numbers of linear extensions become surprising in the language of
standard Young tableaux. For example, Fishburn’s inequality (7.3) in this case states:

(11.4) e(λ) · e(µ) ≤ e(λ ∪ µ) · e(λ ∩ µ).

See [Bjö11] for a direct proof based on the HLF (11.1). Similarly, the generalized Fishburn
inequality (7.4) in this case is due to Lam–Pylyavskyy [LP07], and states:

(11.5) e(λ/α) · e(µ/β) ≤ e
(
(λ ∪ µ)/(α ∪ β)

)
· e
(
(λ ∩ µ)/(α ∩ β)

)
.

Let us single out the following immediate corollary from Theorem 8.20. For a partition λ,
a conjugate partition λ′ is obtained by reflection of Sλ across the i = j line. We say that λ is
a self-conjugate partition, if λ = λ′.

Corollary 11.1 ([CP22b, Cor. 4.1]). Let λ/µ be a skew shape, let x, y ∈ Sλ/µ be corners, and
let v, w ∈ Sλ/µ be a boundary square adjacent to x and y, respectively. Then we have:

(11.6) e
(
λ/µ− x− y

)2 ≥ e
(
λ/µ− x− v

)
· e

(
λ/µ− y − w

)
.

In particular, when λ and µ are self-conjugate, x = (i, j) and y = (j, i), we have:

(11.7) e
(
λ/µ− x− y

)
≥ e

(
λ/µ− x− v

)
.
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Special cases of (11.6) when dominos (x, v) and (y, w) are in the same directions also follow
from the Schur function inequalities in [LP07], but (11.7) does not extend to a Schur functions.
We refer to [CP22b, §4] for further applications of poset inequalities to the number of standard
Young tableaux.

Remark 11.2. We also have product formulas for the order polynomial and for the GF for
P -partitions:

(11.8) Ω(Pλ, t) =
∏

(i,j)∈λ

t+ i− j

hλ(i, j)
and Ωq(Pλ) =

∏
(i,j)∈λ

1

1− qhλ(i,j)
.

Both formulas are special cases of Stanley’s hook-content formula for Ωq(Pλ, t), see [Sta99,
§7.21]. We refer to [HG76, Kra99, Pak01] for bijective proofs of these formulas, and to [Hop20]
for other product formulas for the order polynomial. Note that the NHLF was extended
to Ωq(Pλ/µ) in [MPP18a]. Finally, both (11.4) and (11.5) extend to inequalities for Schur
functions, see [CP23a, LP07, LPP07].

Remark 11.3. Define shifted Young diagrams as posets given by intersections of the usual
Young diagrams and cone i ≤ j. Much of the work on the (usual) Young diagrams and
standard Young tableaux directly translates to this case. We refer to [Sta99, §7.20] as the
starting point and further references.

11.4. Ribbon posets. Let Zm := Pλ/µ be a height two poset with n = 2m − 1 elements,
corresponding to the skew Young diagram λ/µ := δm/δm−2 , where δm := (m, . . . , 2, 1). These
are called zigzag posets. Linear extensions of Zm are in bijection with alternating permutations
σ ∈ S2m−1 s.t. σ(1) > σ(2) < σ(3) > σ(4) < . . . Then e(Zm) = E2m−1 are the Euler numbers,
see e.g. [OEIS, A000111] and [Sta10].

In the context of Sidorenko’s inequality (5.4), it is easy to see that there is a width two

poset Qm such that Γ(Qm) = Γ(Zm) and e(Qm) = Fn is the Fibonacci number. Now (5.4)
gives En · Fn ≥ n! in this case [MPP18c]. Moreover, this inequality was proved in [MPP18c,
Lem 4] by an explicit surjection.

Fix x := (m, 1). It is easy to see that triangle of numbers a(m, k) := N(Zm, x, k) are
Entringer numbers [OEIS, A008282]. Stanley’s inequality (Sta) proves their log-concavity:

(11.9) a(m, k)2 ≥ a(m, k + 1) · a(m, k − 1) for 1 ≤ k ≤ 2m− 2.

See [CP21, Ex. 1.38] for a q-analogue of this example in the style of Theorem 9.6; see also
[B+19, GHMY23] for other generalizations.

We note that zigzag posets are special cases of ribbon posets Pλ/µ, which correspond to skew
shapes λ/µ with at most one square in every diagonal. Linear extensions of such Pλ/µ are in
bijection with permutations which have a given set of descents, so e(λ/µ) satisfies MacMahon’s
determinant formula, see e.g. [Sta99, §2.2.4]. This formula was further generalized to mobile
posets defined in [GGMM21]. Note also that among all ribbon posets, zigzag posets maximize
the number of linear extensions [Sta99, Cor. 1.6.5]. This result is due to Niven (1968) and
de Bruijn (1970), further generalized in [Sta88, Iri17].

11.5. Permutation posets. Fix σ ∈ Sn. The permutation poset Pσ = ([n],≺) is defined as:

i ≼ j ⇔ i ≤ j and σ(i) ≤ σ(j).

Permutation posets are also called two-dimensional posets in the literature, see e.g. [Tro95,
West21]. This class includes all posets Pλ/µ and all posets of width two. Note that the height
and the width in Pσ are longest increasing and the longest decreasing subsequence in σ, which

http://oeis.org/A000111
http://oeis.org/A008282
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are extremely well studied, see e.g. [Rom15]. It is known that #LE is #P-complete in this
case [DP18].

The (weak) Bruhat order Bn = (Sn,◁) is defined as follows: τ ⊴ π if and only if τ · υ = π
for some υ ∈ Sn such that inv(τ) + inv(υ) = inv(π). It is known that as a subset of Sn ,
the set of linear extensions E(Pσ) is the lower ideal σ ↓ in Bn , see [FW97, Lem. 5] (see also
[BW91a, Reu96]).

Denote by σ :=
(
σ(n), . . . , σ(1)

)
the reverse permutation. Note that Pσ and Pσ satisfy

condition (5.1) of the Sidorenko inequality (Sid), which gives:

(11.10) e
(
Pσ

)
· e

(
Pσ

)
≥ n!.

To generalize this, denote by

INV(σ) :=
{
(i, j) : σ(i) > σ(j), 1 ≤ i < j ≤ n

}
the set of inversions of σ, so inv(σ) = | INV(σ)|. Suppose that

INV(τ) ∩ INV(υ) = ∅ and INV(τ) ∪ INV(υ) = INV(π).

Taking i← 2, P1 ← Pτ , P2 ← Pυ and Q← Pπ gives conditions (5.3) of Theorem 5.5. Then
(5.2) gives

(11.11) e
(
Pτ

)
· e

(
Pυ

)
≥ e

(
Pπ

)
.

Inequality (11.11) can be interpreted as defining a metric on the set of permutation [Ilo08,
§9.3], see also [BT06, Cor. 8.7.2].

11.6. Interval orders and semiorders. Let X be a collection of n intervals I1, . . . , In ⊂ R.
Define P = (X,≺), where Ii ≺ Ij if x < y for all x ∈ Ii and y ∈ Ij . Such posets are called
interval orders. They are characterized by not having (C2+C2) as an induced subposet which
implies that the recognition problem of interval orders is in P, see e.g. [Möh89, §6].

Additionally, if all intervals have unit lengths, such posets are called semiorders and unit
interval orders, see e.g. [Sta96]. They characterized by not having (C2 + C2) and (C3 + C1)
as induced subposets (Scott and Suppes, 1958). We refer to [Fis85] for a thorough treatment
and further references.

Let P = (X,≺) be a poset on |X| = n elements. Let γ(P ) := |{(x, y) : x ≺ y, x, y ∈ X}|
denote the number of comparable pairs in P . Finally, let e(n, k) be the maximal number of
linear extensions among all posets P on n elements with γ(P ) = k.

Proposition 11.4 (Fishburn–Trotter [FT92]). Let P = (X,≺) be a poset on |X| = n elements
such that γ(P ) = k and e(P ) = e(n, k). Then P is a semiorder.

See also [Tro95, Thm 8.7] for a short proof, and [MPI18] for the asymptotic analysis of num-
bers e(n, k). This is a rare extremal result on linear extensions of finite posets. Finally, a larger
class of (C3 +C1)-free posets is of interest in both Enumerative and Algebraic Combinatorics,
see e.g. [GMR14].

11.7. Random posets. There are several interesting models of random finite posets studied
in the literature, neither of which is especially satisfactory, at least when compared to random
graph models. We refer to [Bri93] for a survey with many helpful references.

First, one can consider uniform (unlabeled) posets of n elements. Kleitman and Rothschild
[KR75] gave a sharp asymptotic estimate on the number p(n) of such posets

(11.12) log2 p(n) = n2

4 + 3n
2 + O(log n),

see also [OEIS, A000112]. It follows from the proof that uniform random posets have height
three and can be partitioned into three antichains of sizes roughly n

4 ,
n
2 and n

4 , respectively.

http://oeis.org/A000112
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The number of linear extensions is very large in this case and concentrated around (n2 )!(
n
4 )!

2,

cf. (3.3). The number of pairs (x, y) ∈ X2 such that P
(
f(x) < f(y)

)
∼ 1

2 is asymptotically
3n2

16 [Kor94]. A major disadvantage of this model is the difficulty of sampling uniform posets
(either labeled or unlabeled).

Next, one can consider random posets from families where the sampling is easy. These
include random bipartite posets, defined as posets of height two with relations given by a
random bipartite graph. Similarly, one can consider random permutation posets Pσ , or random
semiorders (there are Catalan number of them, see e.g. [Sta15, §3.180] and references therein).
A curious model is given by the transitive closure of a random subset of relations i ≺ j on [n],
where 1 ≤ i < j ≤ n, see an extensive discussion in [Bri93].

Finally, one can consider random posets Pλ corresponding to Young diagrams of size n.
The problem of determining e(Pλ) is well-studied and is especially important in combinatorial
representation theory and again closely related to the study of longest increasing subsequences,
see e.g. [Rom15]. Finally, see [MPI18] for the asymptotics of random interval orders.

12. Computational aspects

12.1. Counting complexity. In [BW91b], Brightwell and Winkler showed that computing
the number of linear extensions is #P-complete. This was refined to posets of height two,
posets of dimension two, and to incidence posets in [DP18]. In [Sta97], Stachowiak proved that
computing sign-imbalance of posets of height two is #P-hard, by giving a simple parsimonious
reduction to computing e(P ).

Additionally, Dittmer showed that the parity of the number of linear extensions is ⊕P -
complete for posets of dimension two [Dit19, Thm 1.1.2]. Combined with Stachowiak’s proof
above implies that the parity of e(P ) is ⊕P -complete for height two posets. This is in contrast
with Soukup’s theorem that deciding whether poset P is sign-balanced is in P, see [Sou23+].

In the opposite direction, the are several classes of posets where the number of linear exten-
sions can be computed in polynomial time.

Theorem 12.1. #LE is in FP for:

(1) bounded width posets,
(2) skew Young diagrams, see (11.2),
(3) series-parallel posets, see §11.2 and [VTL82],
(4) posets with bounded decomposition diameter [HM87],
(5) posets whose covering graphs have disjoint cycles [Atk89] (e.g. trees [Atk90]),
(6) N -free posets with bounded activity [FM14],
(7) posets with bounded treewidth [EGKO16],
(8) mobile posets [GGMM21].

In contrast with (6), for general N -free posets, the problem #LE is conjectured to be #P-
complete. We are not aware if the number of linear extension of interval order has been studied
or conjectured to be #P-complete.

For the order polynomial, the coefficient [t2] Ω(P, t) is the number of (lower) order ideals
in P , which is #P-complete [PB83]. We refer to [FS86] for more on complexity of computing
Ω(P, t). Finally, we note that the probability P

(
f(x) < f(y)

)
and the average height h(P, x)

are #P-hard [BW91b, §5].

12.2. Random generation and approximate counting. The problem of random genera-
tion of linear extensions f ∈ E(P ) is closely related to approximate counting, i.e. computing
the (1±ϵ) approximation of e(P ). The key is the self-reducibility property: if one can obtain a
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strong approximation of the ratio e(P )/e(P ∩{x ≺ y}), taking the product of these ratios gives
an approximation for e(P ). We refer to [Vaz01, §28] for the introduction to this technology.

The first FPRAS for #LE was obtained by Matthews [Mat91] using a geometric random
walk on the order polytope OP , based on a Markov chain (MC) with the mixing time upper
bound mix = O

(
n8(log n)3

)
. There are now several rapidly mixing Markov chains on E(P )

worth discussing. All Markov chains start at f ∈ E(P ), but have different steps described as
follows.

(1) Choose uniform k ∈ [n − 1], and switch the values k ↔ (k + 1) in f if possible. This
MC was introduced by Karzanov and Khachiyan [KK91] who proved mix = O(n6 log n) bound
using conductance estimates. This bound was steadily improved down to O(n3 log n) [Wil04].
Furthermore, Wilson showed (ibid.), that for some posets this bound cannot be improved.

(1′) Choose k ∈ [n − 1] with probability proportional to k(n − k). Proceed as in (1). This
modification is due to Bubley and Dyer [BD99], who proved the mix = O(n3 log n) bound
using a coupling argument.

(2) Choose uniform x ∈ X, and take a partial promotion to x in f . This MC was introduced
by Ayyer, Klee and Schilling [AKS14a], who gave a bound mix = O(n3) in [AKS14b]. A better
bound a mix = O(n2) was obtained in [PS18].

(3) Choose uniform i < j. For all k ∈ {i, . . . , j−1} in this order, switch the values k ↔ (k+1)
in f if possible. This MC was introduced by Ayyer, Schilling and Thiéry [AST17], who proved
the mix = O(n2 log n) upper bound and conjecture that mix = O(n log n).

For posets of height two, a conjectured rapidly mixing MC was given in [CRS09]. A closely
related MC was analyzed in [Hub14]. Let us also mention Huber’s algorithm [Hub06] for perfect
sampling of linear extensions of general posets.

Finally, the problem of (exact) uniform generation is also of interest in both Combinatorics
[NW78] and Theoretical Computer Science [JVV86]. For classes of posets where the counting
problem is polynomial, i.e. #LE ∈ FP, the self-reducibility gives a polynomial time algorithms
for the uniform generation. Faster algorithms exists for Young diagrams [GNW79, NPS97]
(see also [SS17]), special skew Young diagrams [H+23, §5.6], and for series-parallel posets
[BDGP17].

12.3. Graph of linear extensions. A common consequence of the Markov chains discussed
above, is the following basic result:

Proposition 12.2 (folklore). Let P = (X,≺) be finite poset, and let f, g ∈ E(P ) be linear
extensions. Then f and g are connected by a sequence of k ↔ (k + 1) switches, 1 ≤ k < n.

The proposition is a folklore result repeatedly rediscovered in different contexts. For a brief
overview of generalizations and further references, we refer to the discussion which follows
[DK21, Prop. 1.2].

Consider a graph G(P ) with vertices E(P ), and with edges corresponding to switches, see
e.g. [Mas09]. The proposition above proves connectivity of G(P ). In fact, the distance between
any two linear extensions can be computed in polynomial time, see [BW91a, §6] and [Naa00,
Prop. 2.2]. On the other hand, the diameter of G(P ) is NP-hard to compute [BM13, Thm 5].

Suppose e(P ) is even. Ruskey noted [Rus92], that if G(P ) has a Hamiltonian path, then P
is sign-balanced (see §2.3). Motivated by the problem of listing all linear extensions, he stated:

Conjecture 12.3 (Ruskey [Rus92, §5]). Let P be a finite sign-balanced poset. Then G(P )
has a Hamiltonian path.

We refer to [Rus03, §5.10] for the introduction, to [CW95] for algorithmic aspects of this
problem, and to a recent survey [Müt23, §5.5] for further references.
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12.4. Coincidence problem and concise functions. Following [CP23b], consider the co-
incidence problem:

Ce :=
{
e(P ) =? e(Q)

}
.

We conjecture that this problem is C=P-complete under Turing reductions.

Theorem 12.4 ([CP23b, Thm 1.4]). Ce ∈ PH =⇒ PH = Σp
m for some m ≥ 1.

Moreover, this holds when e is restricted to permutation posets.

A key lemma in the proof is the following result of independent interest.

Theorem 12.5 ([KS21, Thm 1.1]). Let

Te(n) :=
{
e(P ) : P = (X,≺), |X| = n, width(P ) = 2

}
.

Then:

(12.1) Te(n) ⊇
{
1, . . . , cn/(logn)

}
for some c > 1.

The authors conjecture that the upper end in (12.1) can be improved to cn [KS21, Conj. 7.4].
The following conjecture implies that Theorem 12.4 holds for posets of height two, see [CP23b,
Prop. 5.18].

Conjecture 12.6 ([CP23b, Conj 5.17]). For all sufficiently large m, there is a poset P of
height two, such that e(P ) = m.

12.5. Combinatorial interpretation. For every inequality f ⩾ g where f, g ∈ #P are
counting functions, one can ask if the defect (f − g) is in #P. Informally, this is a question
whether (f − g) has a combinatorial interpretation. For example, the proof of Theorem 12.4
implies that (

e(P ) − e(Q)
)2

/∈ #P unless PH = Σp
2 .

We refer to [Pak19] for the introduction to the problem of combinatorial interpretation, to
[Sta00] for a review of open problems on combinatorial interpretation in Algebraic Combina-
torics, to [IP22] for a careful treatment of polynomial inequalities, and to [Pak22] for a detailed
survey.

13. Sorting probability

In this section we summarize partial results and several variations on the 1
3 −

2
3 Conjecture.

13.1. The 1
3 −

2
3 Conjecture. The following conjecture remains a major challenge in the

area. It was originally stated by Kislitsyn [Kis68], and independently by Fredman [Fre75].

Conjecture 13.1 ( 1
3 −

2
3 conjecture). In every finite poset P = (X,≺) that is not a chain,

there exist two elements x, y ∈ X, such that

(13.1)
1

3
≤ P

[
f(x) < f(y)

]
≤ 2

3
,

where the probability is over uniform random f ∈ E(P ).

Note that the constant ε = 1
3 is optimal for P = C2 + C1 . A poset P = (X,≺) on n

elements is called k-thin if α(x)+β(x) > n−k, for all x ∈ X. In the opposite direction, poset
P is called (ϵ, δ)-dense if there is Y ⊂ X, |Y | ≥ ϵn, s.t. α(x) + β(x) < δn, for all x ∈ Y .

Theorem 13.2. Conjecture 13.1 holds for the following posets with n elements:

(1) width two posets [Lin84],
(2) posets with a symmetry [GHP87],
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(3) semiorders [Bri89] (a concise proof was given in [Bri99, Thm. 2.3]),
(4) height two posets [TGF92],
(5) posets with |min(P )| > C

√
n for some C > 0 [Fri93],

(6) posets with no chains of length > 2 log2 log n− C, ibid.
(7) (ϵ, δ)-dense posets, for all ϵ > 0 and some δ = δ(ϵ) > 0, ibid.
(8) 6-thin posets [Pec08] (a weaker 5-thin version was given in [BW92]),
(9) series-parallel and N -free posets [Zag12],
(10) skew Young diagram posets Pλ/µ [OS18],
(11) posets whose cover graph is a forest [Zag19].

Note that these classes are not completely disjoint. For example, for sufficiently large n,
parts (5), (6) and (7) imply (4). Part (4) is proved via Komlós theorem (see below). Parts
(5)− (7) are proved using geometric tools. An alternative proof of (10) given in [CPP21a, §3]
uses the Naruse hook-length formula (cf. §11.3). We refer to [Bri99] for a well-written survey
of early results and ideas.

13.2. Weaker general bounds. Currently, the best general bound is given by the following
result:

Theorem 13.3 (Brightwell–Felsner–Trotter [BFT95]). In every finite poset P = (X,≺) that
is not a chain, there exist two elements x, y ∈ X, such that

(13.2)
1

2
− 1

2
√
5
≤ P

[
f(x) < f(y)

]
≤ 1

2
+

1

2
√
5
,

where the probability is over uniform random f ∈ E(P ).

Here the lower bound is ε ≈ 0.2764, just shy of 1
3 . This is a small improvement over

the first bound of the type ε ≤ P[f(x) < f(y)] ≤ 1 − ε proved by Kahn and Saks [KS84],
with ε = 3

11 ≈ 0.2727. The latter result uses the Kahn–Saks inequality (KS), applied to two
elements x, y ∈ X with a small difference of average heights: |h(P, x)− h(P, y)| < 1, cf. §8.4.
The proof in [BFT95] uses the a = b = 1 case of the cross-product conjecture (Theorem 9.13),
and builds on [KS84].

We note that an easier proof of a weaker bound with ε = 1
2e ≈ 0.1840, was obtained by Kahn

and Linial in [KL91], using a variation on Grünbaum’s theorem (1960), which in turn is proved
using the Brunn–Minkowski inequality (rather than the Alexandrov–Fenchel inequality used in
the proof of the Kahn–Saks inequality). We refer to [Mat02, §12.3] for a clean presentation of
this proof, and to [C+13] for a survey of algorithmic applications of the sorting probability.

13.3. Stronger specialized bounds. For a poset P = (X,≺), the sorting probability is
defined as

(13.3) δ(P ) := min
x,y∈X

∣∣P(
f(x) < f(y)

)
− P

(
f(x) > f(y)

)∣∣.
In this notation, the 1

3−
2
3 Conjecture 13.1 claims that the sorting probability δ(P ) ≤ 1

3 unless

P is a chain, while the bound (13.2) gives δ(P ) ≤ 1√
5
. In the cases when the conjecture is

established, one can ask for better bounds. For example, Friedman showed that for all ϵ > 0
and C = C(ϵ), we have δ(P ) <

(
1 − 2

e + ϵ
)
in the cases (5)− (7) in Theorem 13.2.

Conjecture 13.4 (Kahn–Saks [KS84]). We have:

(13.4) δ(P )→ 0 as width(P )→∞.
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Informally, this conjecture says that the sorting probability is small for all posets of suffi-
ciently large width. Beside common sense, there is relatively small evidence in favor of this
conjecture. Saks [Saks85] suggests that δ(P ) ≤ 14

39 when width(P ) ≥ 3, and gives an example
where this bound is tight. Komlós [Kom90] proved that δ(P )→ 0, for |min(P )| = n/s(n) and
some s(n) = ω(1).

Curiously, it is known that δ(P ) → 0 for several large posets of bounded width, such as
several families of skew Young diagrams [CPP21a]. For example, Panova and the authors
proved δ(Pλ) = Oϵ(1/

√
n) for λ = (λ1, . . . , λℓ) with ℓ fixed and λℓ > ϵn [CPP21a, Thm 1.3].

For posets of width two which cannot be written as a linear sum of chains and posets
(C2 + C1), Sah [Sah21] improved Linial’s δ(P ) ≤ 1

3 upper bound to δ(P ) < 0.3225. Sah
also conjectured in [Sah21, Conj. 5.3], that this approach extends to general posets (of any
width), i.e. under mild assumptions Conjecture 13.1 can be made strict: δ(P ) < 1

3 − ε for
some constant ε > 0.

Finally, for the extremely well studied Catalan poset Catn of width two (see §11.3), Panova
and the authors showed in [CPP21b], that δ(Catn) = O(n−5/4), where the constant 5/4 is
conjectured to be sharp.

13.4. Gaps between heights. For a poset P = (X,≺) on |X| = n elements, let

η(P ) := min
x |y

∣∣h(P, x) − h(P, y)
∣∣

denote the smallest gap between heights of incomparable elements in P . As we mentioned
earlier, the proof by Kahn–Saks of δ(P ) ≤ 5

11 follows from the observation that η(P ) < 1.
Improving the latter bound directly translates to a sharper for the sorting probability δ(P ).

Unfortunately, there is a limit for this approach. Let

ϑ :=
1

4

∞∏
k=1

(
1− 1

2k

)−1

≈ 0.8657 .

Saks in [Saks85], gives a construction of posets Pn such that η(Pn)→ ϑ. He conjectures that
this example is optimal:

Conjecture 13.5 ([Saks85]). For every poset P that is not a chain, we have η(P ) ≤ ϑ.

13.5. Voting preferences. Let P = (X,≺) be a poset on n = |X| elements and let P be
defined over uniform f ∈ E(P ). One can think of the average height h(P, x) a way to rank all
elements in X (possibly, with ties). This is not the only natural approach, of course.

For elements x, y ∈ X, we write x 7→ y if P
(
f(x) < f(y)

)
> 1

2 . Heuristically, this means
of the random linear ordering of X which respects partial order “≺”, element y typically has
a smaller rank than x. In [Kis68, §4.2], Kislitsyn speculated that “7→” is transitive. This was
disproved by Fishburn soon after:5

Proposition 13.6 (Fishburn [Fis74b]). Relation “7→” is not transitive, i.e. there exist a finite
poset P = (X,≺) and three elements x, y, z ∈ X, s.t. x 7→ y, y 7→ z, and z 7→ x.

The original example by Fishburn has n = 31 elements. It was shown in [FG90], that the
smallest such poset has n = 9 elements. See also [EFG90] for an example of a poset of height
two with n = 15 elements. Below is a quantitative version of this problem:

5Fishburn was unaware of [Kis68] and independently discovered the problem motivated by voting paradoxes.
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Theorem 13.7 (Fishburn [Fis86] and Kahn–Yu [KY98]). Let P = (X,≺) be a finite poset,
and let x 7→ y, y 7→ z for some x, y, z ∈ X. Then:

(13.5) P
(
f(x) < f(z)

)
> 1

4 .

On the other hand, the constant 1
4 in the RHS cannot be replaced with 1

e .

Here the second part is due to Fishburn. The bound (13.5) is due to Kahn–Yu, who write
that Fishburn’s 1

e is “likely to be the correct value” to appear in (13.5).

Question 13.8. What is the optimal constant in the RHS of (13.5)?

We conclude with a weaker notion of the preference order which happens to be transitive.
For elements x, y ∈ X and ρ ≥ 1

2 we write x 7→ρ y if P
(
f(x) < f(y)

)
> ρ.

Theorem 13.9 (Yu [Yu98]). Fix ρ > 0.78005. Let P = (X,≺) be a finite poset, and let
x 7→ρ y, y 7→ρ z for some x, y, z ∈ X. Then x 7→ρ z.

Let us also mention Friedman’s observation [Fri93, §2], that there always exist a linear
extension g ∈ E(P ) such that P

(
f(x) < f(y)

)
≥ 1

2 for all g(x) = k, g(y) = k + 1, 1 ≤ k < n.
This follows from the fact that every tournament has a Hamiltonian path.

Remark 13.10. Fishburn’s original motivation for Proposition 13.6 comes from voting para-
doxes, see [Fis74a, Geh06]. There is also a parallel study of intransitive dice which exhibits
similar phenomena and has been studied quantitatively in recent years, see [HMRZ20, Poly22]
and references therein.

14. Tools and ideas

14.1. Direct injections. In contrast with many objects in enumerative and algebraic com-
binatorics, posets inequalities are incredibly difficult to prove by a direct combinatorial ar-
guments. There are essentially two main tools: lattice paths for posets of width two and
promotion/demotion maps for general posets (see below). Here is a quick list of ad hoc direct
injections uses in the proof of results in this survey:

• Theorem 4.1 with a lower bound for the values of the order polynomials,
• Theorem 4.1 with Brenti’s log-concavity for the order polynomials,
• Gaetz–Gao surjection in [GG20] proving Theorem 5.1 (but not Theorem 5.2),
• Proposition 4.8 proving a weak version of the Kahn–Saks Conjecture 4.7,
• The original proof of the Björner–Wachs inequality (Theorem 6.1),
• Reiner’s proof of the q-BW inequality (Theorem 6.2),
• Lam—Pylyavskyy generalizations of Fishburn inequalities (see Theorems 7.6 and 7.7).

Let us emphasize that these injections are relatively straightforward and completely explicit,
so the defect of the corresponding inequalities are all in #P.

14.2. Promotion and demotion. Let X = (X,≺) be a poset on |X| = n elements. Pro-
motion is a bijection ∂ : E(P ) → E(P ), which we denote using the operator notation ∂ :
f → ∂f . For f ∈ E(P ), let x1 ≺ . . . ≺ xℓ be a maximal chain in P such that the sequence
f(x1), . . . , f(xℓ) is lexicographically smallest. Equivalently, we have f(x1) = 1, element x2 is
smallest cover of x1, element x3 is smallest cover of x2, etc. Define ∂f ∈ E(P ) as

(14.1) ∂f (z) :=


f(xi+1)− 1 if z = xi for some i < ℓ ,

n if z = xℓ ,

f(z)− 1 otherwise.
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Partial promotion ∂i is defined as the promotion on a poset obtained by restriction to elements
with f -values 1, . . . , i, so that ∂n = ∂ and ∂1 = 1. Demotion and partial demotions are defined
as inverse bijections.

These operators were introduced and initially studies by Schützenberger in [Schü72]. For
standard Young tableaux (linear extensions of Young diagram posets), the promotion is called
the jeu-de-taquin, and is fundamental in the whole of Algebraic Combinatorics (see e.g. [Sag01,
Sta99]). It is closely related to the Robinson–Schensted–Knuth (RSK) correspondence (ibid.),
the Edelman–Greene bijection [EG87], and the NPS algorithm [NPS97]. For increasing trees
(connected forest posets), the enumerative applications were given in [KPP94, §6].

Partial promotion operators have algebraic relations which were investigated by Lascoux and
Schützenberger for Young tableaux. In full generality, they were studied by Haiman [Hai92]
and Malvenuto–Reutenauer [MR94]. See [Sta09] for an extensive survey.

The results in this survey whose proofs use explicit applications of the promotion and de-
motion operators include:
• Theorem 3.7 proving the summation inequality for antichains,
• Theorems 9.9 and 9.10 proving the DDP log-concave inequality for the order polynomial,
• Theorem 9.14 proving weak quantitative version of (CPC),
• Theorems 10.1, 10.7, 10.9 and 10.10, proving various vanishing and uniqueness conditions
for Stanley type inequalities, and
• Theorem 10.13 proving equality conditions for the k = 1 case of the generalized Stanley
inequality (9.6).

For the first two items, because the promotion/demotion proofs are completely explicit, the
defect of the corresponding inequalities are all in #P. For the last three items, the correspond-
ing decision problems are in P.

14.3. Lattice paths. Let P = (X,≺) be a poset of width two with |X| = n elements. Fix a
partition X = C ⊔C ′ into two chains, where C = {u1 ≺ . . . ≺ uk}, and C ′ = {v1 ≺ . . . ≺ vℓ},
where n = k + ℓ. Denote by h, h′ ∈ E(P ) lexicographically minimal and maximal linear
extensions in P , respectively.

For a linear extension f ∈ E(P ), denote by γ(f) a lattice path in N2, defined as follows. Let
γ(f) : (0, 0) → (k, ℓ) start at (0, 0), end at (k, ℓ), and take Up steps for elements in C, and
Right steps for elements in C ′. Consider a region Γ(P ) ⊂ N2 enclosed between paths γ(h) and
γ(h′). It is easy to see that all Up-Right paths γ : (0, 0) → (k, ℓ) are in bijection with E(P ),
i.e. γ = γ(f) for some f ∈ E(f).

This connection has been frequently used to give estimates and prove inequalities for width
two posets, see e.g. [BG96, CPP22a, CPP23a, CFG80, GYY80]. It is worth noting that in
[CPP22b] the injective proof of Stanley’s inequality (Sta) for width two posets was extended to
log-concavity of hitting probabilities of general walks in the plane. These walks can be viewed as
“oscillating linear extensions”, generalizing oscillating Young tableaux, see e.g. [PP96, Sag90].

For posets of larger (bounded) width, in principle the same general approach, but direct
injective arguments are harder to obtain. We are aware of only [CPP21a] which was able to
combine it with anti-concentration inequalities to obtain sharp bounds for the sorting proba-
bilities of (skew) Young diagrams (see §13.3).

The results in this survey whose proofs employ lattice paths, include:

• Theorem 8.1 proving (GYY) inequality,
• Special case of Theorem 9.1 proving (Sta) inequality for width two posets,
• Theorems 9.4 and 9.5 with q-analogues of (Sta) and (KS),
• Theorem 9.13 (2), proving (CPC) for width two posets.
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Let us emphasize that because lattice walks based proofs are completely explicit, the defect
of the corresponding inequalities are all in #P.

14.4. Correlation inequalities. Let A be a collection of subsets of [n]. We say that A is
closed upward, if B ∈ A for every B ⊇ A and A ∈ A. Similarly, A is closed downward, if
B ∈ A for every B ⊆ A and A ∈ A. The notions are easiest to understand when A is a graph
property, i.e. a collection of (spanning) subgraphs of a complete graph. Then, for example,
connectivity, Hamiltonicity, having all degrees at least ∆, non-planarity, non-k-colorability, or
containing an r-clique Kr are upward closed properties. The negations, such as k-colorability,
planarity or disconnectivity are downward closed properties.

The Harris–Kleitman inequality [Har60, Kle66], states that for the upward closed collections

A,B ⊆ 2[n], we have positive correlation:

(14.2) |A ∩ B| · 2n ≥ |A| · |B|.

Similarly, for A ⊆ 2[n] upward closed and B ⊆ 2[n] downward closed, we have negative corre-
lation:

|A ∩ B| · 2n ≤ |A| · |B|.
These inequalities have a clear probabilistic meaning, e.g. (14.2) can be rewritten as

(14.3) P(A ∈ A ∩ B) ≥ P(A ∈ A) · P(A ∈ B),

where the probability is over uniform A ⊆ [n].
The Harris–Kleitman inequality had a series of generalizations, including the celebrated FKG

inequality by Fortuin, Kasteleyn and Ginibre [FKG71]. Here we only present the AD inequality
that is aptly called the four functions theorem in [AS16], and which implies the FKG inequality.
For every ρ : Z → R+ and every X ⊆ Z, denote

(14.4) ρ(X) :=
∑
x∈X

ρ(x).

Theorem 14.1 (Ahlswede–Daykin inequality [AD78]). Let L = (L,∨,∧) be a finite distributive
lattice on the ground set L, and let α, β, γ, δ : L→ R+ be nonnegative functions on L. Suppose
we have:

(14.5) α(x) · β(y) ≤ γ(x ∨ y) · δ(x ∧ y) for every x, y ∈ L.

Then:

(14.6) α(X) · β(Y ) ≤ γ(X ∨ Y ) · δ(X ∧ Y ) for every X, Y ⊆ L.

The q-FKG inequality was introduced by Björner in [Bjö11, Thm 2.1], who used it to prove
a q-analogue of (11.4). Christofides [Chr09, Thm 1.5] gave the q-AD inequality, while the
multivariate q-AD inequality we given in [CP23a, Thm 6.1].

These correlation inequalities play a key role in many poset inequalities throughout the
survey. Notably, they are used in proofs of the following results:
• Theorems 4.3, 4.4, 4.5 and 4.11 on general inequalities for the order polynomial,
• Theorems 6.6 and 6.7 on the order polynomial version of the BW inequality (BW),
• Fishburn’s inequality (Theorem 7.4) and its generalizations in §7, including the most general
Theorem 7.10,
• GYY inequality (Theorem 8.1) and its generalization Shepp’s inequality (Theorem 8.3),
obtained as a consequence of the order polynomial versions Theorems 8.5 and 8.6,
• XYZ inequality (Theorem 8.7), and its applications Theorems 8.10 and 8.11.
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14.5. Combinatorial optimization. Both the order polytope OP and the chain polytope SP
were defined by Stanley, see [Sta86]. The volume equality volOp = e(P )/n! in (2.8) is
straightforward via a simple triangulation of OP into congruent orthoschemes (also called path-
simplices) whose volume is 1/n! and which are in bijection with linear extensions f ∈ E(P ).
Equality between volumes and between Ehrhart polynomials of OP and SP in (2.11), follows
from an explicit continuous piecewise-linear volume-preserving map ξ : OP → SP .

Chain polytope SP is especially useful in applications.

• Proposition 3.10 and Theorem 3.13 are proved using the description of the dual polytope S◦P ,
• Theorem 3.16 and Theorem 3.17 are proved using the entropy functional on SP .

An interesting approach was introduced by Sidorenko in [Sid91], which combines combina-
torial duality and network flows. Think of the comparability graph Γ(P ) as a directed network
and enlarge it by adding bidirected edges for incomparable pairs. Now define the Sidorenko
flow by sending a unit along every linear extension. Observe that the flow along these bidi-
rected edges is equal in both directions, so these edges can be deleted. In fact, the flow can be
described using promotions, see e.g. [CPP23b, §8]. The detailed analysis of this flow implies
several closely related inequalities:

• Theorem 3.7 proving the summation inequality for antichains,
• Sidorenko inequality (Theorem 5.1), and its generalizations (Theorems 5.4 and 5.5).

We refer to [Schr03] for a very extensive discussion of combinatorial optimization and ap-
plications to chain polytopes.

14.6. Geometric inequalities. Applying known geometric inequalities to order and chain
polytopes OP and SP gives surprisingly strong implications. These include:

• The reverse Sidorenko inequality (Theorem 5.1), proved by applying the Saint-Raymond
inequality [StR81]. This is a special case of Mahler’s conjecture, see e.g. [Tao08, §1.3].
• The reverse Sidorenko inequality (Theorem 5.6), proved by applying the Blaschke–Santaló
inequality to polytope SP and its dual S◦P , see e.g. [BZ88, §24.5].
• The mixed Sidorenko inequality (see Remark 5.8), proved by applying Godberson’s conjecture
established in [AASS20] for anti-blocking polytopes, including SP .
• Stanley inequality (Theorems 9.1 and 9.7) and Kahn–Saks inequality (Theorem 9.3), proved
by applying the Alexandrov–Fenchel inequality to sections of OP .
• Special cases and weak versions of Conjecture 9.12 given in Theorem 9.13 (3) and Theo-
rem 9.14, are proved by using Favard’s inequality.
• Kahn–Linial’s proof of a weak version of Conjecture 13.1 and parts (5)−(7) of Theorem 13.2,
are proved using Mityagin’s inequality, which is a generalization of Grünbaum’s inequality,
see §13.2.
• Kahn–Yu and Yu inequalities (Theorems 13.7 and 13.9) are proved using the Brunn–
Minkowski inequality combined with the K. Ball inequality.

Additionally, the geometric analysis of equality conditions of geometric inequalities can
be translated to equality conditions of poset inequalities. This is a very recent direction of
research pioneered by Shenfeld and van Handel [SvH23], in their study of equality cases of the
Alexandrov–Fenchel inequality.

• Equality cases of Stanley inequality in Theorem 10.2,
• Equality cases of the Kahn–Saks inequality in Theorem 10.8,
• Ma–Shenfeld’s proof of vanishing of the generalized Stanley inequality in Theorem 10.9,
• Equality cases of the generalized Stanley inequality in Theorem 10.13, k = 1 case,
• Equality conditions of the generalized Stanley inequality in Theorems 10.12 and 10.16.
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In contrast with the previous list of applications, all of these results are very technical
and difficult to obtain. Even the definitions can be difficult as a direct translation from the
geometry can pose challenges. Streamlining one such definition is the point of our Defini-
tion/Lemma 10.15 proved in §15.2.

14.7. Combinatorial atlas. In [CP21], we presented a new linear algebraic approach to log-
concave inequalities, based on a structure we call combinatorial atlas. Roughly, this is a
combinatorial setup of vectors and matrices related to each other according to certain directed
graphs. These matrices are associated with posets and contain counting of numbers of linear
extensions. The setup allows one to prove by induction that these matrices are hyperbolic,
starting with two element posets as the base of induction.

Formally, a d× d real matrix M is called hyperbolic, if

(Hyp) ⟨v,Mw⟩2 ≥ ⟨v,Mv⟩⟨w,Mw⟩ for all v,w ∈ Rd s.t. ⟨w,Mw⟩ > 0.

It is not hard to see that M is hyperbolic if and only if it has at most one positive eigen-
value (including multiplicities). While the eigenvalue conditions allows to obtain the step of
induction, the inequality (Hyp) implies a number of correlation and Stanley type inequalities:

• Deletion correlations (Theorem 8.13),
• Subset correlations (Theorems 8.14 and 8.16),
• Covariance inequalities (Theorems 8.17, 8.18 and 8.19),
• Unique covers special cases (Theorem 8.20 and 8.21),
• Weighted Stanley inequality (Theorem 9.6),
• Equality conditions for the Stanley inequality (Theorem 10.2).

We refer to [CP22a] for the introduction to the combinatorial atlas technology and to [CP22b]
for applications to correlation inequalities.

15. Proofs of technical results

15.1. Proof of Theorem 10.5 and Proposition 10.6.

Proof of Theorem 10.5. In notation of Conjecture 9.12, let P := (X,≺) be a poset with |X| =
n elements and fixed element z ∈ X. Let Q := (Y,≺′) given by Y := X ∪ {x, y, w}, with
relations u ≺′ v ⇔ u ≺ v for all u, v ∈ X, x ≺′ y ≺′ u for all u ∈ X, and x ≺′ w.

For all a ≥ 1, we have:

Fxyz(Q, 1, a) = (a− 1)N(P, z, a− 1) + (n+ 1− a)N(P, z, a).(15.1)

This follows from the observation that Fxyz(Q, 1, a) in the number of linear extensions f ∈
E(P ) for which f(x) = 1, f(y) = 2, f(z) = a+ 2, while f(w) ∈ {3, . . . , n+ 3}.

Also note that, for all k ≥ 2,

Fxyz(Q, 2, a) = N(P, z, a).(15.2)

Indeed, this follows from the observation that Fxyz(Q, 2, a) counts those linear extensions for
which f(x) = 1, f(w) = 2, f(y) = 3 and f(z) = a+ 3.

Now, (CPC) implies that for all a, i ≥ 1, we have:

(15.3) Fxyz(Q, 1, a) · Fxyz(Q, 2, a+ i) ≤ Fxyz(Q, 1, a+ i) · Fxyz(Q, 2, a).

By (15.1) and (15.2), the LHS of (15.3) is equal to

(a− 1)N(P, z, a− 1) ·N(P, z, a+ i) + (n+ 1− a)N(P, z, a) ·N(P, z, a+ i),

while the RHS of (15.3) is equal to

(a+ i− 1)N(P, z, a+ i− 1) ·N(P, z, a) + (n+ 1− a− i)N(P, z, a+ i) ·N(P, z, a).
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Thus, (10.1) follows from (15.3) and the two equations above. □

We restate Proposition 10.6 for clarity, writing out all the inequalities:

Proposition 15.1 (= Proposition 10.6). Let P = (X,≺) be a poset with |X| = n elements,
let x ∈ X and a ∈ [n]. Suppose that N(P, x, a) > 0. Then (10.1) implies:

N(P, x, a)2 = N(P, x, a+ 1) ·N(P, x, a− 1) ⇔ N(P, x, a+ 1) = N(P, x, a) = N(P, x, a− 1).

Additionally, we have Stanley’s inequality:

N(P, x, a)2 ≥ N(P, x, a+ 1) ·N(P, x, a− 1).

Proof. For the first part, the ⇐ direction is trivial. For the ⇒ direction, combining the
inequality (10.1) (with z ← x and i ← 1) and the assumption N(P, x, a)2 = N(P, x, a + 1) ·
N(P, x, a− 1) gives

N(P, x, a+ 1) ·N(P, x, a− 1) ≥ N(P, x, a) · N(P, x, a+ 1).

With the assumption N(P, x, a) > 0 (and thus N(P, x, a+ 1) > 0), this gives N(P, x, a− 1) ≥
N(P, x, a). The same argument for the dual poset P ∗ gives N(P, x, a + 1) ≥ N(P, x, a). This
implies the first part.

For the second part, note that (10.1) (with z ← x and i← 1) can rewritten as:

(a− 1)
(
N(P, x, a)2 − N(P, x, a− 1)N(P, x, a+ 1)

)
≥ N(P, x, a)

(
N(P, x, a+ 1) − N(P, x, a)

)
.

Suppose N(P, x, a) < N(P, x, a + 1). Then the RHS of the above inequality is ≥ 0, and the
LHS implies Stanley’s inequality. Similarly, for N(P, x, a) < N(P, x, a−1), the same argument
for the dual poset P ∗ also implies Stanley’s inequality. Therefore, we have N(P, x, a) ≥
N(P, x, a+ 1) and N(P, x, a) ≥ N(P, x, a− 1), which immediately implies the result. □

15.2. Proof of Lemma 10.15. We now present the definitions as stated in [MS22], and show
that they are in fact equivalent to our Definition 10.15. What follows is a technical argument
which ordinarily would not fit a general survey. We include it here in order to show that the
subcritical/critical/supercritical poset characterization is in P.

Assume that (10.7) holds, and that cℓ−1 < a < cℓ. It follows from Nzc(P, x, a− 1) > 0 and
Nzc(P, x, a+ 1) > 0, that cℓ−1 + 1 < a < cℓ − 1. Let us slightly simplify the notation:

(y0, y1, . . . , yk, yk+1, yk+2) ←−
(
z0 = 0̂, z1, . . . , zℓ−1, x, zℓ, . . . , zk, zk+1 = 1̂

)
,

(d0, d1, . . . , dk+1, dk+2) ←− (0, c1, . . . , cℓ−1, a, cℓ, . . . , ck, n+ 1).

For 0 ≤ r < s ≤ k+1, let λ(r, s) := γ(yr, ys). Denote by Rp a collection of disjoint nonempty
intervals [r1, r2], . . . , [r2p−1, r2p], such that [r1, r2] ̸= [0, k + 2].

Definition 15.2 (cf. [MS22, Def. 2.11]). We say that a quintuple (P, x, a, z, c) is6

• subcritical if for every p ≥ 1 and every Rp as above, we have:

λ(r1, r2) + . . . + λ(r2p−1, r2p) ≤ δ + ∆ ,(subcrit-MS)

where δ := 2− ξ − ζ,

∆ := (dr2 − dr1 − 1) + . . . + (dr2p − dr2p−1 − 1),

6This definition is more combinatorial in flavor that the one in [MS22, Def 2.11], which has a more geometric
flavor. It is easy to show that these definitions are equivalent, we omit the details.
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and a := a(r1, . . . , r2p), b := b(r1, . . . , r2p) are given by

(15.4)

ξ :=

{
1 if [ℓ− 1, ℓ] ⊆ [r2i−1, r2i] for some i ∈ [p],

0 otherwise,

ζ :=

{
1 if [ℓ, ℓ+ 1] ⊆ [r2i−1, r2i] for some i ∈ [p],

0 otherwise.

• critical if for every p ≥ 1 and every Rp as above, we have:

λ(r1, r2) + . . . + λ(r2p−1, r2p) ≤ δ − 1 + ∆.(crit-MS)

• supercritical if for every p ≥ 1 and every Rp as above, we have:

λ(r1, r2) + . . . + λ(r2p−1, r2p) ≤ δ − 2 + ∆.(supercrit-MS)

We now proceed to the proof which is separated into parts:

(subcrit) ⇔ (subcrit-MS). By the argument in (10.8), the inequality (subcrit) always holds.
It suffices to show the same for (subcrit-MS). By (15.4), we have ξ, ζ ≤ 1, so 2 − ξ − ζ ≥ 0.
Since Nz c(P, x, a) ≥ 1, for every f ∈ Nz c(P, x, a) and i ∈ [p], we have:

λ(r2i−1, r2i) ≤
∣∣{f−1(i) : dr2i−1 < i < dr2i}

∣∣ = dr2i − dr2i−1 − 1.(15.5)

Summing these inequalities proves the claim. □

(crit) ⇐ (crit-MS). Let (r, s) ∈ Λ be a splitting pair such that cr < a < cs . Let r1 := r
and r2 := s+ 1 . Note that (zr, zs) = (yr1 , yr2), and it follows that ξ = ζ = 1. We have:

γ(zr, zs) = λ(r1, r2) ≤(crit-MS) (1− ξ − ζ) + (dr2 − dr1 − 1) = cs − cr − 2,

as desired. □

(crit) ⇒ (crit-MS). Let Rp be as above. If ξ + ζ ≤ 1, then (crit-MS) follows from the fact
that λ(r2i−1, r2i) ≤ dr2i − dr2i−1 − 1 by (15.5). Thus, we can assume that ξ + ζ = 2. This
implies that there exists j ∈ [p] such that [ℓ− 1, ℓ+1] ⊆ [r2j−1, r2j ], which in turn implies that

cr2j−1 = dr2j−1 ≤ dℓ−1 < dℓ = a < dℓ+1 ≤ dr2j = cr2j−1 .

It then follows that

λ(r2j−1, r2j) = γ
(
zr2j−1 , zr2j−1

)
≤(crit) cr2j−1 − cr2j−1 − 2 = dr2j − dr2j−1 − 2.

On the other hand, for every i ∈ [p], i ̸= j, we have:

λ(r2i−1, r2i) ≤ dr2i − dr2i−1 − 1.

Combining these two inequalities with the assumption that ξ + ζ = 2, we get (crit-MS). □

(supercrit) ⇐ (supercrit-MS). Let (r, s) ∈ Λ, so that cr < a < cs. Let r1 := r and r2 :=
s+ 1 . Note that (zr, zs) = (yr1 , yr2), and it follows that ξ = ζ = 1. It then follows that

γ(zr, zs) = λ(r1, r2) ≤(supercrit-MS) (−ξ − ζ) + (dr2 − dr1 − 1) = cs − cr − 3,

as desired. □

(supercrit) ⇒ (supercrit-MS). Let Rp be as above. We split the proof into three cases,
depending on the values of ξ + ζ. First, for ξ + ζ = 0, the inequality (supercrit-MS) follows
from λ(r2i−1, r2i) ≤ dr2i − dr2i−1 − 1 by (15.5).
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Second, for ξ + ζ = 1, there exists j ∈ [p] such that ℓ = r2j−1 or ℓ = r2j . Without loss of
generality, we can assume that ℓ = r2j−1 . For every f ∈ Nz c(P, x, a− 1), we have:

λ(r2j−1, r2j) = γ
(
yr2j−1 , x

)
≤

∣∣{f−1(i) : dr2j−1 < i < a− 1}
∣∣

= a− 1− dr2j−1 − 1 = dr2j − dr2j−1 − 2.

On the other hand, for every i ∈ [p], i ̸= j, we have:

λ(r2i−1, r2i) ≤ dr2i − dr2i−1 − 1.

Combining these two inequalities with the assumption that ξ + ζ = 1, we get (supercrit-MS),
as desired.

Third, for ξ + ζ = 2, there exists j ∈ [p], such that [ℓ− 1, ℓ+ 1] ⊆ [r2j−1, r2j ]. This implies
that

cr2j−1 = dr2j−1 ≤ dℓ−1 < dℓ = a < dℓ+1 ≤ dr2j = cr2j−1 .

It then follows that

λ(r2j−1, r2j) = γ
(
zr2j−1 , zr2j−1

)
≤(supercrit) cr2j−1 − cr2j−1 − 3 = dr2j − dr2j−1 − 3.

On the other hand, for every i ∈ [p], i ̸= j, we have:

λ(r2i−1, r2i) ≤ dr2i − dr2i−1 − 1.

Combining the two inequalities above with the assumption that a+b = 0, we get (supercrit-MS),
as desired. □

16. Final remarks and open problems

16.1. The nature of linear extensions. How is the number of linear extensions different
from all other combinatorial counting functions? This question is worth addressing since we
devoted so much space to the subject. It is also a very difficult question which has more than
one answer.

First, we clarify that counting linear extensions is as much a distinct area of Poset Theory as
counting colorings, spanning trees, or counting perfect matchings are distinct areas of Graph
Theory. These three areas are covered by a large number of surveys and monographs, see e.g.
[LP86, MR02, Moon70] for our favorites. By contrast, this is probably the first survey dedicated
to linear extensions of general posets. Of course, special cases such as standard Young tableaux
and increasing trees are extensively covered in the literature, see e.g. [AR15, KPP94, Sta99].

Second, from the complexity point of view, linear extensions are in the middle of the spec-
trum: counting is #P-complete, while the existence is trivially in P. Of course, for colorings
these problems are #P-complete and NP-complete, respectively. For spanning trees, these
problems are in FP and P, respectively. For perfect matchings, the counting is #P-complete
and while the existence is in P, for a nontrivial reason.

Third, the (1 ± ε) approximation counting is NP-hard for the number of 3-colorings and
sufficiently small ε > 0 [Vaz01], while for the number of perfect matchings there is a Markov
chain based algorithm with a difficult analysis [JSV04]. This puts linear extensions in the
middle of the spectrum again — it is a hard counting problem with an easy Markov chains
algorithm, see the discussion in §12.2.

It is not surprising that for counting functions which are harder to compute it is easier to
prove that they are hard to compute, and it is harder if not impossible to obtain good bounds.
On the other hand, even when counting is easy like for the spanning trees, perfect matchings
in planar graphs, or standard Young tableaux of skew shapes, the inequalities can be quite
interesting, see e.g. §11.3 and [Gor21, Gri76].



LINEAR EXTENSIONS OF FINITE POSETS 47

In summary, there is no real pattern among these counting problems. Each of them is its
own mini-universe with its unique advances and challenges. Unfortunately, counting linear
extensions is the least explored of these counting problems. Hopefully, this survey will pave a
way for further studies in the area.

16.2. Early history of linear extensions. The area of linear extensions of posets was started
in 1930, with Szpilrajn’s extension theorem [Szp30], which is nontrivial for infinite posets and
gives e(P ) ≥ 1 for finite posets. Birkhoff’s fundamental theorem for finite distributive lattices
[Bir33], states that every finite distributive lattice L is isomorphic to a lattice J(P ) of lower
order ideas of a finite poset P , see e.g. [Sta99, §3.4]. Stanley noticed that this implies that the
number of maximal chains in L is e(P ), see [Sta72, Prop. 4.1]. For example, the number of
maximal chains in the Boolean algebra Bn is e(An) = n!, cf. Example 3.14.

In Enumerative Combinatorics, enumeration of linear extensions arose naturally in the con-
text of standard Young tableaux in MacMahon’s classical work [Mac15], which led to the
hook-length formula (11.1) and its generalizations, see §11.3. Building in part on Knuth’s
paper [Knu70], Stanley’s thesis on P -partition theory [Sta72] generalized this work both relat-
ing and unifying it with the study of symmetric functions. Soon after, Schützenberger’s work
[Schü72] on promotion operators led to development of RSK and other combinatorial tools
used to this day. For further references, see Stanley’s historical notes in [Sta99, pp. 383–386].

In Computer Science, linear extensions of posets arose naturally in connection with sorting
problems. Notably, Kislitsyn [Kis68] which stated the 1

3 −
2
3 Conjecture 13.1 and the uni-

modality of {N(P, x, a)}, which was later rediscovered by Rivest and eventually proved by
Stanley [Sta81]. Soon after, Fredman [Fre75] and Schönhage [Schö76] introduced (different,
but related) sorting problem in the West, and gave the information theoretic lower bounds.

16.3. What’s next? This survey may seem extensive, but to resolve long open conjectures
we would need new tools and ideas beyond those in Section 14. The latest entrants — the
combinatorial atlas and the geometric approach to Alexandrov–Fenchel inequalities, led to a
great deal of progress and there is hope for further advances.

Let us single out a few open problems mentioned in the survey. First, we personally find
the Kahn–Saks conjecture (13.4) more important than the 1

3 −
2
3 Conjecture 13.1, although

both remain out of reach with existing technology. Next, we believe that the Cross Product
Conjecture 9.15 is false already for width three posets. We tried to disprove it by finding
a counterexample to Conjecture 10.4 (which follows from CPC), but the extensive computer
experiments have yet to succeed.7

In a different direction, it would be interesting to make even a small improvement towards
Conjecture 9.18. In fact, any constant (2− ϵ) in the RHS of (9.18) would already be a major
progress. Finally, Conjectures 8.8 and 9.2 remain a major challenge both in Combinatorics
and Computational Complexity.
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