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Abstract. We present both upper and lower bounds for the Kronecker coefficients and the reduced

Kronecker coefficients, in term of the number of certain contingency tables. Various asymptotic

applications and generalizations are also presented.

1. Introduction

By now the Algebraic Combinatorics is so well developed, it is easy to become overwhelmed with the
abundance of tools, formulas, techniques and applications. Yet the celebrated Kronecker coefficients
stand apart for being both unapproachable and deeply mysterious. Not only they are provably hard
to compute or even decide whether they are vanishing, there are no good bounds for them except in a
handful of special cases. In this paper we present general upper bounds for Kronecker coefficients by
using recent work on 3-dimensional contingency tables.

Kronecker coefficients g(λ, µ, ν) are defined as structure constants in products of Sn-characters:

χµ · χν =
∑
λ`n

g(λ, µ, ν)χλ ,

where λ, µ, ν ` n (see §2 for the background).

Theorem 1.1. Let λ, µ, ν ` n such that `(λ) = `, `(µ) = m, and `(ν) = r. Then:

g(λ, µ, ν) ≤
(

1 +
`mr

n

)n (
1 +

n

`mr

)`mr
In particular, when `mr ≤ n, this gives g(λ, µ, ν) ≤ 4n. The bound in the theorem is often much
sharper than the dimension bound g(λ, µ, ν) ≤ min{fλ, fµ, fν}, which is the only known general upper
bound for Kronecker coefficients. For example, when n = `3, λ = µ = ν = (`2, . . . , `2), ` times, the
dimension bound gives only

g(λ, µ, ν) ≤ fλ = e
1
3n logn+O(n) .

Our tool is the following general upper bound:

Lemma 1.2. Let T(λ, µ, ν) be the number of 3-dimensional contingency tables with margins λ, µ, ν `
n. Then g(λ, µ, ν) ≤ T(λ, µ, ν).

This bound is very weak in full generality; e.g. for λ = µ = ν = (1n) we have g(λ, µ, ν) = 0 while
T(λ, µ, ν) = (n!)2. However, the bound in the lemma does seem to work well for partitions into few
parts. The theorem follows from the analysis of known upper bounds on T(λ, µ, ν) in some special
cases plus majorization technology (see §3).

In the last part of the paper, we compare our upper bound with the upper and lower bounds coming
from counting binary contingency tables. Let us single out the following curious asymptotic inequality:

Theorem 1.3. Let Ln = {λ ` n, λ = λ′}. We have:∑
λ∈Ln

g(λ, λ, λ) ≥ ecn
2/3

for some c > 0 .

May 4, 2020.
?Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: pak@math.ucla.edu.
†Department of Mathematics, USC, Los Angeles, CA 90089. Email: gpanova@usc.edu.

1



2 IGOR PAK AND GRETA PANOVA

In §7, we present the analogue of Theorem 1.1 for the reduced Kronecker coefficients. We conclude the
paper with final remarks and open problems in §8.

2. Basic definitions and notation

2.1. Standard notation. We use N = {0, 1, 2, . . .}, R+ = R≥0, and [n] = {1, 2, . . . , n}.

2.2. Partitions and Young tableaux. We use standard notation from [Mac] and [S2, §7] throughout
the paper.

Let λ = (λ1, λ2, . . . , λ`) be a partition of size n := |λ| = λ1 + λ2 + . . .+ λ`, where λ1 ≥ λ2 ≥ . . . ≥
λ` ≥ 1. We write λ ` n for this partition. The length of λ is the number ` of parts of λ, denoted `(λ).
Denote by p(n) the number of partitions λ ` n.

A Young diagram of shape λ is an arrangement of squares (i, j) ⊂ N2 with 1 ≤ i ≤ `(λ) and
1 ≤ j ≤ λi. We denote by λ′ the conjugate (transposed) partition. Special partitions include the
rectangular shape (ab) = (a, . . . , a), b times, the hooks shape (k, 1n−k), the two-row shape (n − k, k),
and the staircase shape ρ` = (`, `− 1, . . . , 1).

A plane partition A = (aij) of n is an arrangement of integers aij ≥ 1 of a Young diagram shape
which sum to n and weakly decrease along rows and columns. Denote by p2(n) the total number of
such plane partitions.

For λ ` n, denote by fλ = χλ(1), which is also equal to the number SYT(λ) of standard Young
tableaux of shape λ. We have the hook-length formula:

(HLF) fλ =
n!∏

u∈λ h(u)
,

where h(u) = λi − i+ λ′j − j + 1 is the hook-length of the square u = (i, j).

2.3. Kronecker coefficients. The Kronecker coefficients g(λ, µ, ν), λ, µ, ν ` n, can be computed as
follows:

g(λ, µ, ν) =
1

n!

∑
σ∈Sn

χλ(σ)χµ(σ)χν(σ) ,

where χα denotes the character for the irreducible Sn representation indexed by α. From here it is
easy to see that:

g(λ, µ, ν) = g(µ, λ, ν) = g(λ, ν, µ) = . . . and g(λ, µ, ν) = g(λ′, µ′, ν) .

Also, for all fν ≤ fµ ≤ fλ we have:

(2.1) g(λ, µ, ν) ≤ fµfν

fλ
≤ fν ,

see e.g. [Isa, Ex. 4.12] and [PPY, Eq. (3.2)].

3. Contingency tables

3.1. The number of 2-dimensional tables. Let λ, µ ` N be two integer partitions, where λ =
(λ1, . . . , λm) and µ = (µ1, . . . , µn). A contingency table with margins (λ, µ) is an m × n matrix of
non-negative integers whose i-th row sums to λi and whose j-th column sums to µj . We denote by
T (λ, µ) the set of all such matrices, and let T(λ, µ) := |T (λ, µ)|. Finally, denote by P(λ, µ) ∈ Rmn the
polytope of real contingency tables, i.e. table with row and column sums as above, and non-negative
real entries.

Counting T(λ, µ), even approximately, is famously a difficult problem, both mathematically and
computationally. In fact, even a change in a single row and column sum can lead to a major change in
the count, see [B3, DLP]. Three-dimensional tables are even harder to count, see [B4, DO]. We refer
to [B3, DG, FLL] for an introduction to the subject and further references in many areas.
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3.2. The number of 3-dimensional tables. Let λ, µ, ν ` n. Denote by T(λ, µ, ν) the number
of 3-dimensional `(λ) × `(µ) × `(ν) contingency tables with 2-dimensional sums orthogonal to three
coordinates are given by λ, µ and ν, respectively. Denote by P(λ, µ, ν) ⊂ R`mr, the corresponding
polytope of real 3-dimensional contingency tables. Note that P(λ, µ, ν) has codimension d = `+m+
r− 3. Denote by A a d× `mr matrix defining a subspace spanned by P(λ, µ, ν) via A ·X = 0, where
X is a column vector of all xijk. A subset J ⊂ [`] × [m] × [r] is called free if the elements (ijk) ∈ J
correspond to linearly independent columns of A.

Theorem 3.1 (Barvinok, Benson-Putnins and Shapiro, see §8.2). Let ` = `(λ), m = `(µ), r = `(ν).
Let Z = (zijk) ∈ P(λ, µ, ν) be the unique point maximizing a strictly concave function

g(Z) :=
∑̀
i=1

m∑
j=1

r∑
k=1

(zijk + 1) log(zijk + 1) − zijk log zijk .

Denote

G(λ, µ, ν) := eg(Z) and M(λ, µ, ν) := min
J

∏
(ijk)∈J

1

1 + zijk
,

where the minimum is over all free subsets J ⊂ [`]× [m]× [r]. Then:

T(λ, µ, ν) ≤ G(λ, µ, ν) ·M(λ, µ, ν) .

We discuss the history of the theorem in §8.2.

Corollary 3.2. Let λ = (n/`)`, µ = (n/m)m, ν = (n/r)r be three rectangular partitions. Then:

T(λ, µ, ν) ≤
(

1 +
`mr

n

)n (
1 +

n

`mr

)`mr−(`+m+r)+3

Proof. By the symmetry and uniqueness of Z = (zijk), we conclude that zijk = n/(`mr) for all
1 ≤ i ≤ `, 1 ≤ j ≤ m, and 1 ≤ k ≤ r. Then:

G(λ, µ, ν) = eg(Z) = exp
(
`mr

[
(1 + n/`mr) log(1 + n/`mr) − (n/`mr) log(n/`mr)

])
=

(
1 +

`mr

n

)n (
1 +

n

`mr

)`mr
.

By the definition of free subset J as above, we have |J | ≤ d = `+m+ r− 3. Since we can always take
J of size d and all of them give equal products as in the theorem, we have:

M(λ, µ, ν) =
(

1 +
n

`mr

)−(`+m+r)+3

.

Now Theorem 3.1 implies the result. �

3.3. Majorization for the number of contingency tables. Let λ, µ ` n. The dominance order
is defined as follows: λ� µ if λ1 ≤ µ1, λ1 + λ2 ≤ µ1 + µ2, etc. For λ ` n and a set of partitions L, we
write λ� L if λ� µ for all µ ∈ L. This is a special case of majorization, equivalent for partitions and
studied extensively in many fields of mathematics and applications, see e.g. [MOA].

Theorem 3.3 (Barvinok). Let λ, µ, α, β ` n, and suppose `(λ) = `(α), `(µ) = `(β), λ � α, µ � β.
Then:

T(λ, µ) ≤ T(α, β) .

The original proof by Barvinok is in [B1, Eq. (2.4)]. Alternatively, it can be deduced from [V4,
Thm. 4.9]. We refer [Pak] (Note 36, 37 in the expanded version on the paper), for a explicit combina-
torial proof and further references. The following is a helpful extension of Theorem 3.3.
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Theorem 3.4. Let λ, µ, ν, α, β, γ ` n, and suppose `(λ) = `(α), `(µ) = `(β), `(ν) = `(γ), λ � α,
µ� β, ν � γ. Then:

T(λ, µ, ν) ≤ T(α, β, γ) .

Proof. For a contingency table T ∈ T (λ, µ, ν), let A = A(T ) ∈ T (µ, ν) be a partition of the 1-margins,
i.e. of sums along lines parallel to x axis. For a table A and vector ξ let T (ξ, A) denote the number
of contingency tables with margins ξ and the vector of entries in A. Thus, projecting along the x axis
and applying Theorem 3.3, we have:

T(λ, µ, ν) =
∑

A∈T (µ,ν)

T(λ,A) ≤
∑

A∈T (µ,ν)

T(α,A) = T(α, µ, ν) .

Applying this two more times, we obtain:

T(λ, µ, ν) ≤ T(α, µ, ν) ≤ T(α, β, ν) ≤ T(α, β, γ) ,

as desired. �

Remark 3.5. Theorem 3.4 can be easily generalized to d-dimensional contingency tables. The proof
by induction follows verbatim the proof above.

3.4. Majorization for upper bounds. In notation of Theorem 3.1, we can naturally extend the
definition of g(Z) to all α ∈ R`+, β ∈ Rm+ , γ ∈ Rr+, as an optimization problem on the polytope
P(α, β, γ) of 3-dimensional real tables with margins α, β, γ. Similarly, define G(λ, µ, ν) and G(α, β, γ)
as in the theorem.

Theorem 3.6. Let λ� α, µ� β, ν � γ, where λ, α ∈ R`+, µ, β ∈ Rm+ , and ν, γ ∈ Rr+. Then:

G(λ, µ, ν) ≤ G(α, β, γ) .

Proof. As in the discrete case, it suffices to prove the result for 2-dimensional tables. The 3-dimensional
case then follows verbatim the proof of Theorem 3.4.

Define G(λ, µ) and M(λ, µ) for 2-dimensional tables by setting ν = (1). To prove that G(λ, µ) ≤
G(α, β) and M(λ, µ) ≤ M(α, β), we again employ a standard majorization strategy inspired by the
proof of Theorem 3.3.

First, it is easy to see that if two weakly decreasing sequences λ, α majorize one another, λ � α,
then λ can be obtained from α by a finite sequence of operations adding vectors of the form te(i, j),
where e(i, j)r = 0 for r 6= i, j and e(i, j)i = 1, e(i, j)j = −1, see e.g. [MOA, §2]. Now it is enough to
prove the inequality in the case when µ = β and λ = α + te(i, j), and apply it consecutively in the
algorithm obtaining (α, β) from (λ, µ) by changing α to λ first, and then β to µ.

Let w ∈ R`2+ be the unique maximizer of g(Z) for G(λ, µ), and let α = λ − te(i, j) and assume for
simplicity that i = 1, j = 2. Consider the 2× ` section with rows 1, 2, and let its column margins be
a1, . . . , a`. We have: ∑̀

i=1

(
w1i − w2i

)
= λ1 − λ2 ≥ 2t,

so the positive terms among (w1i−w2i) add up to at least 2t. Assume for simplicity that the positive
terms are for i = 1, . . . , r, and choose 0 ≤ ti ≤ 1

2 (w1i − w2i), so that t1 + . . . + tr = t. Let zij = wij
for i 6= 1, 2 or j > r, and let z1j = w1j − tj , z2j = w2j + tj . Then z has margins (α, µ), and we will
show that g(z) ≥ g(w).

To see this, let f(x) = (1 + x) log(1 + x) − x log x, and note that since it is concave we have that
f(a− x) + f(b+ x) is increasing whenever a > b and x ∈ [0, a−b2 ]. Hence,

f(z1j) + f(z2j) = f(w1j − tj) + f(w2j + tj) ≥ f(w1j) + f(w2j)

for j = 1, . . . , r, and equal for the other indices. Thus, g(z) ≥ g(w). We have:

G(α, µ) = max
Z∈P(α,µ)

exp g(Z) ≥ exp g(z) ≥ exp g(w) = G(λ, µ) ,

which completes the proof. �
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4. Upper bounds via general contingency tables

4.1. Proof of the upper bound. We begin with the proofs of results in the introduction.

Proof of Lemma 1.2. Recall Schur’s theorem1 [S2, Exc. 7.78f], that:∑
λ,µ,ν

g(λ, µ, ν) sλsµsν =
∏
i,j,k

1

1− xiyjzk
=
∑
λ,µ,ν

T(α, β, γ)mαmβmγ ,

where s are the Schur functions and m are the monomial symmetric functions. Taking the coefficients
in xαyβzγ on both sides gives

T(α, β, γ) =
∑

λ�α,µ�β,ν�γ

g(λ, µ, ν)KλαKµβ Kνγ ≥ g(α, β, γ) ,

where Kλα ≥ 0 is the Kostka number, and Kαα = 1 for all α ` n. �

Proof of Theorem 1.1. Denote by α = (n/`)` ∈ R`+, β = (n/m)m ∈ Rm+ , γ = (n/r)r ∈ Rr+. Observe
that λ� α, µ� β and ν � γ. By Lemma 1.2 and Theorem 3.1, we have:

g(λ, µ, ν) ≤ T(λ, µ, ν) ≤ G(λ, µ, ν) ·M(λ, µ, ν) ≤ G(α, β, γ) .

Here in the last inequality we are using Theorem 3.6 and a trivial bound M(λ, µ, ν) ≤ 1.
Adapting the calculation in the proof of Corollary 3.2 to vectors α, β, γ which are non-integral in

general, we have:

G(α, β, γ) ≤
(

1 +
`mr

n

)n (
1 +

n

`mr

)`mr
,

which implies the result. �

4.2. Examples and applications. The bound in Theorem 1.1 is rather weak for large (`mr). E.g.,

for `mr ≥ n3/2, we have the RHS >
√
n!, which is larger than the dimension bound. However, for

`mr = o(n) the bound is surprisingly strong.

Corollary 4.1. Let λ, µ, ν ` n such that `(λ) = `, `(µ) = m, and `(ν) = r. Suppose `mr = o(n) as
n→∞. Then:

g(λ, µ, ν) ≤ exp
[
`mr log n + O(`mr)

]
.

Let us give a somewhat stronger bound in the case when majorization for contingency tables (The-
orem 3.4) can be applied directly.

Theorem 4.2. Let λ, µ, ν ` n such that `(λ) ≤ `, `(µ) ≤ m, and `(ν) ≤ r. Suppose further that
`,m, r

∣∣n. Then:

g(λ, µ, ν) ≤
(

1 +
`mr

n

)n (
1 +

n

`mr

)`mr−`−m−r+3

Proof. We modify the proof of Theorem 1.1 given above. In this case vectors α = (n/`)`, β = (n/m)m,
and γ = (n/r)r are all integral. By Lemma 1.2 and Theorem 3.4, we have:

g(λ, µ, ν) ≤ T(λ, µ, ν) ≤ T(α, β, γ) .

Now Corollary 3.2 implies the result. �

1Sometimes this identity is called the generalized Cauchy identity.
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Example 4.3. As in the introduction, let λ = (`2)`, where ` = n1/3. By the HLF, we have fλ =
exp
[

1
3 n log n+O(n)

]
. Theorem 1.1 gives g(λ, λ, λ) ≤ 4n, while Theorem 4.2 improves this by a weakly

exponential factor to

g(λ, λ, λ) ≤ 81−n1/3

· 4n .

This is in sharp contrast with our result (see §6.2 below) that for λ = µ as above and some partition γ,
we have:

g(λ, λ, γ) ≥ (fλ)2√
p(n)n!

= exp

[
1

6
n log n + O(n)

]
.

We also conjecture that our upper bound is tight up to the lower order terms in the example above:

Conjecture 4.4. Let λ = (`2)`, where ` = n1/3, as above. Then:

g(λ, λ, λ) ≥ 4n−o(n) .

Remark 4.5. We should warn the reader to avoid using the upper bound in Theorem 1.1 for relatively
small n. For example, for λ = (7, 5, 2, 2), µ = (7, 7, 2), ν = (8, 8), λ, µ, ν ` 16, we have g(λ, µ, ν) = 4.
The dimension bounds are quite weak: fλ = 40040, fµ = 120120, fν = 1430. The bound in the
theorem is even weaker: g(λ, µ, ν) ≤ (1 + 24

16 )16(1 + 16
24 )24 ≈ 4.91 · 1011.

5. Upper bounds via binary contingency tables

5.1. Number of binary contingency tables. Denote by B(λ, µ, ν) the set of 3-dimensional binary
(0/1) contingency tables, and let B(λ, µ, ν) =

∣∣B(λ, µ, ν)
∣∣. Denote by

Q(λ, µ, ν) := P(λ, µ, ν) ∩ijk
{

0 ≤ zijk ≤ 1
}

the intersection of the polytope of contingency tables with the unit cube.

Theorem 5.1 (Barvinok, see [B3, §3]). Let ` = `(λ), m = `(µ), r = `(ν). Let Z = (zijk) ∈ Q(λ, µ, ν)
be the unique point maximizing a strictly concave function

h(Z) :=
∑̀
i=1

m∑
j=1

r∑
k=1

zijk log
1

zijk
+ (1− zijk) log

1

1− zijk
.

Then:

B(λ, µ, ν) ≤ eh(Z) .

Example 5.2. Let n = `3, a = `2, λ = (`a). Consider B(λ, λ, λ) as in the theorem by an a × a × a
cube with all marginals `. By the symmetry, zijk = n/a3 = 1/n for all 1 ≤ i, j, k ≤ a. This gives

h(Z) = a3 ·
[

1

n
log n +

(
1− 1/n

)
log

1

1− 1/n

]
= n log n + O(n)

and

B(λ, λ, λ) ≤ exp
[
n log n + O(n)

]
.

It is also known that this upper bound is asymptotically tight (see [B3, CM]).
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5.2. Two upper bounds. Let λ, µ, ν ` n. As before, denote by B(λ, µ, ν) and B(λ, µ, ν) the set and
the number of 3-dimensional binary contingency tables, respectively.

Theorem 5.3 (see §8.3). We have: g(λ, µ, ν) ≤ B(λ′, µ′, ν′).

Denote by ni,mi, ri denote the number of part of size i in λ, µ, ν, respectively. Define the group
Σ = Σ(λ, µ, ν) as a product

Σ := Sn1 × Sn1 × . . .× Sm1 × Sm2 × . . .× Sr1 × Sr2 × . . .

Group Σ has a natural action on B(λ, µ, ν) by a permutation of 2-dimensional layers with equal sums.
Denote by B◦(λ, µ, ν) the number of orbits under this action. Clearly,

1

|Σ|
B(λ, µ, ν) ≤ B◦(λ, µ, ν) ≤ B(λ, µ, ν) .

The following result is an improvement over the theorem above.

Theorem 5.4 (Bürgisser–Ikenmeyer, see also §8.3). We have: g(λ, µ, ν) ≤ B◦(λ′, µ′, ν′).

Example 5.5. Let λ = (`k), where n = `3, k = `2. Then B(λ, λ, λ) = 1 since there is a unique
`× `× ` binary table with all 2-dim sums `2. It is easy to see directly (or deduce from Theorem 6.1
below), that g(λ, µ, ν) = 1 in this case. Note that in this case |Σ| = (`!)3, but of course Theorem 5.4
does not improve over Theorem 5.3.

Example 5.6. Let λ = (a`), where n = `3, a = `2. By Theorem 5.3 and Example 5.2 above, we have:

g(λ, λ, λ) ≤ B(λ′, λ′, λ′) = exp
[
n log n + O(n)

]
.

which is much weaker than both the dimension bound and our exponential bound given in Example 4.3.
In addition, we have: ∣∣Σ(λ′, µ′, ν′)

∣∣ = (a!)3 = exp
[
2n2/3 log n + O

(
n2/3

)]
.

Thus in this case, Theorem 5.4 does not improve over Theorem 5.3 again.

Remark 5.7. Note that Theorem 5.4 gives some general upper bound on the Kronecker coefficients
g(λ, µ, ν). Unfortunately, the number of orbits B◦(λ, µ, ν) is not easy to analyze in general, while the
total number B(λ, µ, ν) of binary tables can be rather large (see examples above).

5.3. Hooks and double hooks. For a partition λ ` n, the size of the Durfee square is defined as
D(λ) = max{k : λk ≥ k}. For example, D(λ) = 1 if and only if λ is a hook. Partition λ with D(λ) = 2
is called a double hook [Rem].

Example 5.8. Let λ = (m+ 1, 1m), n = 2m+ 1, and note that λ = λ′. Observe that Theorem 5.3 in
this case gives a very weak estimate since B(λ, λ, λ) > m!. This can be seen, e.g. by a placing (m+ 1)
ones along a line and a permutation in Sm into an orthogonal 2-plane. Of course, Theorem 3.1 gives
an even weaker bound, since B(λ, λ, λ) < T(λ, λ, λ). On the other hand, fλ =

(
2m
m

)
= 2nΘ(1/

√
n)

is a better estimate. Surprisingly, Theorem 5.4 is much stronger. Indeed, the orbits of Σ(λ, λ, λ) are
characterized by the number of 1’s on lines (1, 1, ∗), (1, ∗, 1), (∗, 1, 1) and the value at (1, 1, 1). This
gives g(λ, λ, λ) ≤ B◦(λ′, µ′, ν′) = O(n3). In fact, g(λ, λ, λ) = 1 in this case, see e.g. [Rem, Ros].

Proposition 5.9. Let λ, µ, ν ` n such that λ and µ are double hooks, and ν is a hook. Then:

g(λ, µ, ν) ≤ n450p(n)400 .

Note that g(λ, µ, ν) has a cumbersome combinatorial interpretation when ν is a hook, but no explicit
bounds [Bla] (see also [BB]). The proof generalizes the approach in the example above.



8 IGOR PAK AND GRETA PANOVA

Proof. By the symmetry and Theorem 5.4, we have: g(λ, µ, ν) ≤ B◦(λ, µ, ν′). Denote λ = (a, b, 2p, 1q),
µ = (c, d, 2u, 1v), and ν′ = (r, 1n−r). Let Σ = Σ(λ, µ, ν) = Sp×Sq×Su×Sv×Sn−r, as in the theorem.

For a binary table X = (xijk) ∈ B◦(λ, µ, ν′), denote by Y = (yij), where yij := xij1, 1 ≤ i ≤ `(λ) =
2 + p + q, and 1 ≤ j ≤ `(µ) = 2 + r + s. We think of Y as a block table in the following manner.
In the first two rows of Y one can have 1’s in either or both rows, giving four possibilities for a pair
(y1j , y2j), for 3 ≤ j ≤ 2 + u + v. Same holds for pairs (yi1, yi2), for 3 ≤ i ≤ 2 + a + b. Action of Σ
allows one to order these pairs as follows: first two 1’s, then one in first row/column, then in second,
then in neither. Do these separately for 3 ≤ j ≤ 2 + u, 3 + u ≤ j ≤ 2 + u + v, and 2 ≤ i ≤ 2 + a,
3 + a+ ≤ i ≤ 2 + a + b, respectively. This divides Y into 9 × 9 block matrix, and within each of the
64 non-top-boundary block we have row/column sums ≤ 2.

We are not done, however. Let X ′ = (x′ij) be the projection of X onto the first two coordinates
x′ij = xij1 + xij2 + . . ., and let Y ′ := X ′ − Y . Repeat the above procedure for Y ′. Overlay block for
Y with blocks for Y ′. Each 4-block overlaid with 4-blocks give 7 block, giving in total 15 × 15 block
matrix. Now split X vertically as well into 2 blocks of size 1, n− k, giving a 15× 15× 2 block matrix.

We are now ready to calculate the number of orbits B◦(λ, µ, ν′). There is one 2 × 2 corner block,
giving 24 possibilities, and n4 for the block above it. There are 2(14 + 14) = 56 border blocks, giving
at most n56 possibilities. Indeed, we already took into account the action of Sp × Sq × Su × Sv onto
the 28 border blocks on the first level, and the action of Sn−r reduces a unique configuration of 1’s in
each remaining block.

Now, for the remaining 2(14 · 14) = 392 blocks there are at most n392 ways to divide the remaining
1’s. However, the configuration in each block is no longer unique. Rather, it counts the number of
bipartite graphs with degrees at most 2. For the t × t block sums all equal to 2, this is exactly the
number of partitions p(t), since this is the number of conjugacy classes of St. Furthermore, the number
is smaller when the sums are smaller.

Putting all these (very rough) upper bounds together, we get

B◦(λ, µ, ν′) ≤ 16 · n4 · n56 · n392 · p(n)392 ≤ n450p(n)400,

as desired. �

Remark 5.10. Proposition 5.9 gives a subexponential bound g(λ, µ, ν) = eO(
√
n), which is smaller

than the dimension bound. The proof of the theorem does not generalize to triple hooks or three double
hooks as the number of configurations inside each block can become exponential. This upper bound
is not tight and can be further improved to g(λ, µ, ν) ≤ 27n6 (in preparation). In fact, we conjecture
that g(λ, µ, ν) is at most polynomial when all three partitions have bounded Durfee squares.

5.4. Tensor squares. Let λ = ν ` n, `(λ) = `, λ1 = m, `(ν) = r. By Theorem 5.3, we have:

g(λ, λ, ν) = g(λ′, λ, ν′) ≤ B(λ, λ′, ν) .

Proposition 5.11. We have: B(λ, λ′, ν) ≥ fν .

The proposition implies that the upper bound in Theorem 5.3 is weaker than the dimension bound
for every self-conjugate λ.2

Proof of Proposition 5.11. The result follows from two inequalities:

fν ≤
(

n

ν1, . . . , νr

)
≤ B(λ, λ′, ν) .

The first inequality is a trivial consequence of

fν = χν(1) ≤ φν(1) =

(
n

ν1, . . . , νr

)
,

where φν is the character of the corresponding permutation representation. The second inequality
follows from the following interpretation of the multinomial coefficient. Start with an ` ×m matrix
X = (xij), where xij = 1 if j ≤ λi, and xij = 0 otherwise. Consider all binary contingency tables
Y = (yijk) ∈ B(λ, λ′, ν) which project onto X along the third (vertical) coordinate. Because the

2This case is motivated by the tensor square conjecture [PPV].
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horizontal margins are equal to νi, the number of such Y is exactly the multinomial coefficient as
above. �

6. Pyramids approach

6.1. Lower bound. Let λ, µ, ν ` n. A 3-dimensional binary contingency table X = (xijk) ∈ B(λ, µ, ν)
is called a pyramid if whenever xijk = 1, we also have xpqr = 1 for all p ≤ i, q ≤ j, r ≤ k. Denote by
Pyr(λ, µ, ν) the set of pyramids with margins λ, µ, ν. Finally, let Pyr(λ, µ, ν) :=

∣∣Pyr(λ, µ, ν)
∣∣ denote

the number of pyramids.

Theorem 6.1 (§8.3). We have: Pyr(λ′, µ′, ν′) ≤ g(λ, µ, ν).

Example 6.2. In notation of Example 5.6, the unique binary table is a pyramid. This implies that
g(λ, µ, ν) = 1 in this case.

Proposition 6.3. Let λ, µ, ν ` n, s.t. `(λ) = `(µ) = λ1 = µ1 = `. Then Pyr(λ, µ, ν) > 0 if and only
if λ = µ′ and ν = (n).

Proof. For the ‘if’ part, observe that Pyr
(
λ, λ′, (n)

)
= 1. This follows by the definition of a pyramid

which becomes a partition in the plane (x∗∗1).
For the ‘only if’ part, let X = (xijk) ∈ B(λ, µ, ν). Then x`11 = x1`1 = 1 since the last margins

λ` = µ` = 1. This implies that xi11 = x1 i1 = 1 for all 1 ≤ i ≤ `. On the other hand, since the
first margins λ1 = µ1 = `, this implies that xi12 = x1j 2 = 0. Thus, xij 2 = 0 for all 1 ≤ i, j ≤ `,
and ν = (n). But then xij1 = 1 if and only if 1 ≤ j ≤ λi for all 1 ≤ i ≤ `. This implies λ = µ′, as
desired. �

Recall the Saxl conjecture [PPV], which states that g
(
ρ`, ρ`, ν) ≥ 1 for all ν ` n = |ρ`| = `(`+1)/2,

where ρ` = (`, ` − 1, . . . , 1) is the staircase shape. The Proposition 5.11 implies that Theorem 6.1
cannot be applied to the Saxl conjecture in any nontrivial special case. More generally, the tensor
square conjecture [PPV] is also unreachable with this approach.

6.2. Explicit construction. It was shown by Stanley [S3] that

max
λ`n

max
µ`n

max
ν`n

g(λ, µ, ν) =
√
n! e−O(

√
n)

In [PPY], we refined this to

fλ fµ√
p(n)n!

≤ max
ν`n

g(λ, µ, ν) ≤ min
{
fλ, fµ

}
,

where p(n) is the number of partitions of n. Stanley’s result follows from an easy asymptotic formula:

max
λ`n

fλ =
√
n! e−O(

√
n)

(cf. [VK2]). While we know the asymptotic shape maximizing fλ, see [VK1], we do not know any
explicit construction of λ, µ, ν ` n which satisfy g(λ, µ, ν) ≥ exp Ω(n log n). Here by an explicit
construction (see e.g. [Wig]), we mean a complexity notion (there is a deterministic poly-time algorithm
for generating the triple).3 In fact we do not have a randomized algorithm either in this case, only the
existence results as above.

The current best explicit construction of triples in [PP2, Thm 1.2] has g(λ, µ, ν) = exp Θ
(√
n
)
,

based on a technical proof using both algebraic and analytic arguments in the case λ = µ = (``),
for ν = (k, k), n = `2 = 2k. See also [MPP] which gives precise asymptotics in this case. It is a
major challenge to improve upon this (relatively weak) bound. Below we give an elementary explicit
construction of a better lower bound.

Theorem 6.4. There is an explicit construction of λ, µ, ν ` n, such that:

g(λ, µ, ν) = exp Ω
(
n2/3

)
.

3For the purposes of this section, a naive combinatorial notion of an “explicit construction” will suffice.
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To understand this result, observe the following:

Proposition 6.5. For some λ, µ, ν ` n, we have

Pyr(λ, µ, ν) = exp Θ
(
n2/3

)
.

Proof. Observe that the number p2(n) of plane partitions of n satisfies:

p2(n) :=
∑

λ,µ,ν`n

Pyr(λ, µ, ν).

Recall that the number of triples of margins λ, µ, ν ` n is

p(n)3 = exp Θ(
√
n), while p2(n) = exp Θ

(
n2/3

)
,

see e.g. [FS, §VIII.24-25]. This implies the result. �

Lemma 6.6 ([V1, Ex. 3.3]). For α = (7, 4, 2) ` 13 we have Pyr(α, α, α) = 2.

Proof of Theorem 6.4. Fix N = 13, and consider two distinct pyramids X,X ′ ∈ Pyr(α, α, α), where
α = (7, 3, 2) ` N as in the lemma above. Denote ` = `(α) = 3.

Let s ≥ 1. Consider a matrix

Y = (yijk) ∈ Pyr(θs−1, θs−1, θs−1

)
given by yijk = 1 for all i + j + k ≤ s + 1, and yijk = 0 otherwise, so θs−1 = (

(
s
2

)
,
(
s−1

2

)
, . . . ,

(
2
2

)
).

Replace each 1 by an all-1 matrix of size `× `× `, each 0 with i+ j+ k = s+ 2 with X or X ′, and the
remaining 0’s by an all-0 matrix of the same size. There are 2s(s+1)/2 = exp Ω(s2) resulting pyramids
which all have the same margins

(
λ(s), λ(s), λ(s)

)
, where

ns :=
∣∣λ(s)

∣∣ = `3 ·
(
1 + 3 + . . .+ s(s− 1)/2

)
+ N ·

(
s+ 1

2

)
= Θ(s3) .

By Theorem 6.1, this gives a lower bound

g
(
(λ(s))′, (λ(s))′, (λ(s))′

)
≥ Pyr

(
(λ(s)), λ(s)), (λ(s))

)
= exp Θ

(
n2/3
s

)
,

as desired. �

6.3. Summation bounds. Now Theorem 1.3 can be obtained as a corollary of Theorem 6.1 and the
asymptotic approach above.

Proof of Theorem 1.3. A plane partition A is called totally symmetric if the corresponding pyramid
has an S3-symmetry, see Case 4 in [Kra, S1] and [OEIS, A059867]. Denote by An the set of totally
symmetric plane partitions of n. By the symmetry, the margins of A ∈ An are triples (λ, λ, λ), where
λ ∈ Ln. From Theorem 6.1, we have:∑

λ∈Ln

g(λ, λ, λ) ≥
∑
λ∈Ln

Pyr(λ, λ, λ) ≥
∣∣An∣∣ .

It is easy to see by an argument similar to the proof of Theorem 6.4 above (or from the explicit product
form of the GF), that: ∣∣An∣∣ = exp Ω

(
n2/3

)
.

This completes the proof. �

Recall that |Ln| = exp Θ
(
n1/2

)
, see e.g. [OEIS, A000700]. It was shown in [BB] that g(λ, λ, λ) ≥ 1

for all λ ∈ Ln. This gives only the exp Ω
(
n1/2

)
lower bound for the LHS in Theorem 1.3. Of course,

we believe a much stronger bound lower holds:

Conjecture 6.7. Let Ln := {λ ` n, λ = λ′}. We have:∑
λ∈Ln

g(λ, λ, λ) = exp

[
1

2
n log n + O(n)

]
.

https://oeis.org/A059867
https://oeis.org/A000700
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In the conjecture, the upper bound follows from eiquation (2.1). We refer to [PPY, §3] for partial
motivation behind this conjecture.

7. Bounds for the reduced Kronecker coefficients

The reduced Kronecker coefficients were introduced by Murnaghan in 1938 as the stable limit of
Kronecker coefficients, when a long first row is added:

(7.1) g(α, β, γ) := lim
n→∞

g
(
α[n], β[n], γ[n]

)
,

where

α[n] := (n− |α|, α1, α2, . . .), for all n ≥ |α|+ α1 ,

see [Mur1, Mur2]. They generalize the classical Littlewood–Richardson (LR–) coefficients:

g(α, β, γ) = cαβγ for |α| = |β| + |γ| ,

see [Lit]. As such, they occupy the middle ground between the Kronecker and the LR–coefficients. We
apply the results above to give an upper bound for the reduced Kronecker coefficients with few rows.
Note that only other upper bound we know for g(α, β, γ) is the upper bound for the maximal value
given in [PP4].

Theorem 7.1. Let α ` a, β ` b, γ ` c, such that `(α) = `, `(β) = m, and `(γ) = r. Denote
N := a+ b+ c. Then:

g(α, β, γ) ≤
min{a,b,c}∑

n=0, n=N mod 2

E(`mr, n) · E (`m, v − c) · E
(
`r, v − b) · E(mr, v − a) ,

where

E(s, w) :=
(

1 +
s

w

)w (
1 +

w

s

)s
for w > 0 ,

E(s, 0) := 1 , and v :=
1

2

(
N − 3n

)
.

The proof follows the previous pattern. We begin with the following combinatorial lemma.

Lemma 7.2.

g(α, β, γ) ≤ R(α, β, γ) ,

where

R(α, β, γ) =
∑

Φ(α,β,γ)

T(λ, µ, ν) T(π, ρ) T(σ, τ) T(η, ζ) ,

and

Φ(α, β, γ) :=
{

(λ, µ, ν, π, ρ, σ, τ, η, ζ) ∈ P9, (α, β, γ) = (λ, µ, ν) + (π, ρ,∅) + (σ,∅, τ) + (∅, η, ζ)
}
.

Proof. The result follows from the identity given recently in [BR], and by taking the coefficients in
xα yβ zγ on both sides:∑

(α,β,γ)∈P3

g(α, β, γ) sα(x) sβ(y) sγ(z)

=

 ∞∏
i,j,k=1

1

1− xiyjzk

  ∞∏
i,j=1

1

1− xiyj

  ∞∏
i,k=1

1

1− xizk

  ∞∏
j,k=1

1

1− yjzk


=

∑
(α,β,γ)∈P3

R(α, β, γ)mα(x)mβ(y)mγ(z) .

Here the nine partitions in the definition of Φ(α, β, γ) come from a combinatorial interpretation of
one 3-dimensional and three 2-dimensional contingency tables. �
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Proof of Theorem 7.1. In notation of Lemma 7.2, denote n := |λ| = |µ| = |ν|. Note that n ≤ a, b, c,
and has the same parity as N = a + b + c. Observe that n determines the remaining six partitions
sizes: π, ρ ` v − c, σ, τ ` v − b, and η, ζ ` v − a. By assumption as in the theorem, we have an
upper bound on the number of rows of all nine partitions: `(λ), `(π), `(σ) ≤ `, `(µ), `(ρ), `(η) ≤ m,
and `(ν), `(τ), `(ζ) ≤ r. In notation of the theorem, from the proof in the previous section we obtain:

T(λ, µ, ν) ≤ G
(
(n/`)`, (n/m)m, (n/r)r

)
= E(`mr, n) .

The same holds for the remaining pairs of partitions:

T(π, ρ) ≤ G
(
((v − c)/`)`, ((v − c)/m)m

)
= E(`m, v − c) ,

T(σ, τ) ≤ G
(
((v − b)/`)`, ((v − b)/r)r

)
= E(`r, v − c) ,

T(η, ζ) ≤ G
(
((v − a)/m)m, ((v − a)/r)r

)
= E(mr, v − c) .

Note that in the case of empty partitions of zero, we have a unique zero contingency table, giving
T(·) = E(·, 0) = 1, by definition in the statement of the theorem. Putting all these bounds into the
main inequality in Lemma 7.2, implies the result. �

Example 7.3. Suppose a = N/6, b = N/3 and c = N/2, with ` = m = r = N1/3. Then the sum over
n in Theorem 7.1 maximizes at n = a = N/6. Thus v = N/2, and we have:

g(α, β, γ) ≤ (n/2) · E(N,N/6) · E
(
N2/3, 0

)
· E
(
N2/3, N/6

)
· E
(
N2/3, N/3

)
≤
(

1 +
1

6

)N
(1 + 6)

N/6 · expO
(
N2/3

)
≤ exp

[
cN + O

(
N2/3

)]
.

where c = (log 7/6) + (log 7)/6 ≈ 0.4785.
Note that in the limit (◦) it suffices to take n ≥ |α|+ |β|+ |γ|, see [BOR, V2]. Since the number of

rows increases only by 1 under the limit, Theorem 1.1 still gives an exponential bound for g(α, β, γ),
but with a much larger constant.

8. Final remarks and open problems

8.1. There are two distinct motivations behind our work. First, the Kronecker coefficients are
famously difficult and mysterious, full of open problems such as the Saxl Conjecture [PPV] (see
also [BBS, Ike]). This means that there are very few strong results and those that exist are not
very general, so our general bounds can prove helpful in applications.

More importantly, the Kronecker coefficients are famously #P-hard to compute, and NP-hard to
decide if they are nonzero, so one should not expect a closed formula, see [IMW, Nar, PP1]. Fur-
thermore, it is a long standing open problem [S3] to find a combinatorial interpretation for Kronecker
coefficients, so it is not even clear what we are counting. Thus, good general bounds is the next best
thing one could hope for.

This paper is meant to be the first in a series of papers on the subject of bounds on Kronecker
coefficients; the forthcoming papers are based on Sra–Khare–Tao majorization tools [PPP] and Féray–

Śniady character bounds [D+]. We should mention that this paper is a substantially truncated version
of the arXiv preprint [PP3] which has upper bounds on Kronecker coefficients via Kostka numbers and
via multi–LR coefficients combined with LR–bounds from [PPY]. Unfortunately, all these bounds are
weaker than Theorem 3.1 except sometimes for the lower order terms.

8.2. Counting contingency tables, both general and binary, is a very large subject with numerous
approaches and many techniques. We refer to [B4] and [Wor] for recent broad survey (the latter is
only in the binary case). Theorems 3.1 and 5.1 are taken from Barvinok [B4, §3]. They are based on
results of Barvinok [B2, B3], Benson-Putnins [Ben] and Shapiro [Sha].
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8.3. The history of theorems 5.3 and 6.1 is a bit confusing. The upper bound in Lemma 1.2 is new, yet
an easy consequence of the standard symmetric functions identities. The binary version can be proved
in a similar way (see [PP3, §7.1]), and has been rediscovered multiple times. Notably, Theorem 5.3
follows from [JK, Lemma 2.9.16] and [Man] (in a different context). Theorem 6.1 in a special case
of [V3, Cor. 3.5] and a version of Theorem 5.3 were given in [V3]. Both theorems are proved in this
form in [IMW, Lemma 2.6]. Finally, Theorem 5.4 is given in [BI, Thm. 4.1] in an equivalent form. It
implies Theorem 5.3, of course.

8.4. In the context of §6, we believe in the following claims.

Conjecture 8.1. Denote by a(n) and b(n) the number of triples (λ, µ, ν), λ, µ, ν ` n, s.t. B(λ, µ, ν) ≥
1 and Pyr(λ, µ, ν) ≥ 1, respectively. Then:

a(n)

p(n)3
→ 1 and

b(n)

p(n)3
→ 0 as n→∞ .

On the other hand, we believe that the Kronecker coefficients are non-vanishing a.s.

Conjecture 8.2. Denote by c(n) the number of triples (λ, µ, ν), such that λ, µ, ν ` n and g(λ, µ, ν) ≥
1. Then:

c(n)

p(n)3
→ 1 as n→∞ .

These conjectures are motivated by Conjecture 8.3 in [PPV] which states that χλ[µ] 6= 0 a.s. In
the opposite direction, it is known that the Kostka numbers K(λ, µ) = 0 a.s. This is equivalent to
the former Wilf ’s conjecture that the probability P (λ � µ) → 0 for uniform random λ, µ ` n. This
conjecture was resolved in [Pit].
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