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Abstract. For a simple graph G = (V,E) and edge e ∈ E, the effective resistance is defined as

a ratio τ(G/e)
τ(G)

, where τ(G) denotes the number of spanning trees in G. We resolve the inverse

problem for the effective resistance for planar graphs. Namely, we determine (up to a constant) the
smallest size of a simple planar graph with a given effective resistance. The results are motivated
and closely related to our previous work [CKP24] on Sedláček’s inverse problem for the number
of spanning trees.

1. Introduction

1.1. Spanning trees and effective resistance. Let G = (V,E) be a connected graph without
loops. For an edge e ∈ E, denote by G/e the graph obtained by contracting the edge e, where
all resulting loops are removed.

Let τ(G) denote the number of spanning trees of G. The effective resistance is defined as

(1.1) ρ(G, e) :=
τ(G/e)

τ(G)
.

This notion goes back to Kirchhoff (1847) in the context of electrical networks, as it measures
the current through the edge e = (x, y), as a fraction of the current between nodes x and y.
Effective resistance is one of the main graph invariants, with applications across mathematics and
the sciences. Notably, it was proved by Nash-Williams [Nas59], that ρ(G, e) is the probability
that a simple random walk which starts at x and exits at y, traverses e at some point. We refer
to [DS84, Lov96, LP16] for background, modern proofs, and further references.

Clearly, effective resistance can be computed in poly-time via the matrix tree theorem. In this
paper, we study the inverse problem, of finding the smallest size graph with a given effective
resistance. We restrict ourselves to planar graphs.

Theorem 1.1 (Main theorem). Let t > c ≥ 1 be coprime integers. Then there exists a simple
planar graph G = (V,E) and an edge e ∈ E, such that

(1.2) ρ(G, e) =
c

t
and

|V | ≤ C max

{
t

c
,

t

t− c
, log t

}
,(1.3)

for some universal constant C > 0.

In fact, the upper bound in the theorem is optimal in the following sense:

Proposition 1.2. Let G = (V,E) be connected simple planar graph, and let e ∈ E be an edge
that is not a bridge. Suppose that

(1.4) ρ(G, e) =
c

t
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is a reduced fraction. Then:

|V | ≥ C ′ max

{
t

c
,

t

t− c
, log t

}
,(1.5)

for some universal constant C ′ > 0.

Here the non-bridge condition is necessary to ensure that ρ(G, e) < 1. Proposition 1.2 follows
easily from the results in the literature; we present a short proof in §3.3. See §4.3 for an explicit
value of the constant C ′.

The idea of inverse problems for combinatorial functions was developed independently in several
different areas. Recently, it reemerged in the computational complexity context and systematically
studied by the first and third author [CP24a]. This paper is a continuation of our previous study
[CKP24] of Sedláček’s problem, which is the inverse problem for the number of spanning trees in
simple graphs (see below). There, we introduced a new approach based on continued fractions,
and used the Bourgain–Kontorovich technology [BK14] to obtain the result. Here we follow a
closely related approach.

Theorem 1.1 extends the earlier result [CP24c, Lemma 1.14], where a weaker bound |V | =
O(log t (log log t)2) was obtained for c

t ∈
[
1
3 ,

2
3

]
. Additionally, the graphs in [CP24c] were allowed

to have multiple edges.

1.2. Sedláček’s problem. Given a positive integer t ≥ 3, let α(t) be the smallest number
vertices of a simple graph with exactly t spanning trees. The study of the function α(t) was
initiated by Sedláček in a series of papers [Sed66, Sed69, Sed70], and remains unresolved. The

best known upper bound is α(t) = O((log t)3/2/(log log t)) due to Stong [Sto22], while best known
lower bound is α(t) = Ω(log t / log log t), which follows from Cayley’s formula τ(Kn) = nn−2.

Azarija and S̆krekovski [AŠ12] conjectured that α(t) = o(log t).
In [CKP24], the authors consider another, closely related problem by Sedláček, on the function

αp(t) defined as the smallest number vertices of a simple planar graph with exactly t spanning
trees. Clearly, we have α(t) ≤ αp(t) for all t. It is known and easy to see that αp(t) = Ω(log t),
see §3.3. The main result in [CKP24] is that αp(t) = O(log t) for a set of integers t of positive
density. One can think of Theorem 1.1 as a tradeoff: the density condition is removed but the
number of spanning trees is replaced with a ratio of two such numbers.

In a different direction, it follows from Theorem 1.1 that for all integers t ≥ 2, there exists a
connected simple planar graph G = (V,E) such that

(1.6) τ(G) ≡ 0 mod t and |V | = O(log t).

This is also a special case of the following modular version of Theorem 1.1.

Theorem 1.3 (Alon–Bucić–Gishboliner [ABG25, Thm 3.1]). Let t ≥ 2 be a positive integer,
and let a, b ∈ N be such that (a, b) ̸= (0, 0) mod t. Then there exists a simple planar graph
G = (V,E) and an edge e ∈ E, such that

τ(G/e) ≡ a mod t, τ(G) ≡ b mod t, and |V | = O(log t).

The equation (1.6) follows from Theorem 1.3 by setting a = 1 and b = 0. The proof in [ABG25]
involves the celebrated expander construction of SL(2, p) based on Selberg’s theorem [Sel65].
Curiously, the same Selberg’s theorem is the starting point of a long chain of results leading to
[Bou12, BK14], which provided main tools for both [CKP24] and for this paper.
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1.3. Connections to continued fractions. Given the integers a0 ≥ 0 and a1, . . . , aℓ ≥ 1, the
corresponding continued fraction is defined as

[a0 ; a1, . . . , aℓ] := a0 +
1

a1 +
1

. . . + 1
aℓ

Integers ai are called partial quotients, see e.g. [HW08, §10.1]. We use the notation [a1, . . . , aℓ]
when a0 = 0. Every positive rational number q admits two continued fraction representations
since [a0; a1, . . . , aℓ, 1] = [a0; a1, . . . , aℓ + 1] . For q ∈ Q>0, we define

S(q) := a0 + a1 + . . . + aℓ

and note that S(q) is the same for both representations. We also define S(0) := 0.
We need the following remarkable result which was proved as a consequence of the Bourgain–

Kontorovich technology [BK14].

Theorem 1.4 (Bourgain [Bou12, Prop. 1]). Every rational number d
c ∈ [0, 1) can be written as

the following sum:

d

c
= q1 + . . . + qk ,(1.7)

where q1, . . . , qk ∈ Q ∩ (−1, 1) satisfy

S
(
|q1|

)
+ . . . + S

(
|qk|

)
≤ C log(c+ d),

for some universal constant C > 0.

We apply Theorem 1.4 to our problem via the following theorem, which converts the problem
of analyzing ratios of spanning trees into a problem on continued fractions. For an edge e ∈ E,
we denote by G− e the graph obtained by deleting the edge e on G.

Theorem 1.5. Let q1, . . . , qk ∈ Q>0 be positive rational numbers. Then there exists a simple
planar graph G = (V,E) and an edge e ∈ E, such that

τ(G− e)

τ(G/e)
= q1 + . . . + qk

and

|E| = 4
(
S(q1) + . . . + S(qk)

)
+ 1.

Note that Theorem 1.4 and Theorem 1.5 immediately imply Theorem 1.1 when all rational
numbers q1, . . . , qk in the representation of t− c

c in (1.7) are nonnegative. The full version of
Theorem 1.1 can then be obtained through a more involved argument that builds on both Theo-
rem 1.4 and Theorem 1.5.

Remark 1.6. We note that Theorem 1.4 cannot be strengthened to require that all qi are
nonnegative. Indeed, if q ∈ Q>0 is less than 1/c, then S(q) ≥ c. Therefore, any expression of the
unit fraction 1/c as 1/c = q1 + . . .+ qk with positive qi must have S(q1) + . . .+ S(qk) ≥ kc.

2. Preliminaries

In this section, we collect several graph theoretic lemmas and constructions that will be used in
the proofs in Section 3. Several of these constructions are standard and have previously appeared
in [CP24c, CKP24], but our simplification is new or at least used in a nonstandard way.
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2.1. Basic definitions. Throughout this paper, all graphs are assumed to be planar and have
no loops. Graphs are allowed to have multiple edges unless indicated otherwise. A graph with no
loops is simple if it also does not have multiple edges. Let G = (V,E) be a graph and let e ∈ E
be an edge in G. A pair (G, e) is called a marked graph. Our operations are defined on marked
graphs.

2.2. Subdivisions and duplications. The k-subdivision of (G, e) is a marked graph (G′, e′)
obtained by replacing edge e with a path of length (k + 1), and marking one of the new edges
as e′. Note that if G is connected, simple and planar, then so is G′. When k = 1, we omit the
parameter and write subdivision.

The k-duplication of (G, e) is a marked graph (G′′, e′′) obtained by replacing edge e with (k+1)
parallel edges, and marking one of the new edges as e′′. Note that if G is connected and planar,
then so is G′′. When k = 1, we omit the parameter and write duplication. Note also that these
two operations are planar dual to each other (see below).

Proposition 2.1 ([CP24c, Thm 5.1]). Let c, d ≥ 1 be positive integers with gcd(c, d) = 1.
Suppose that

(2.1)
d

c
= [a0 ; a1, a2, . . . , aℓ],

for some a0 ≥ 0, a1, . . . , aℓ ≥ 1. Then there exists a planar graph G = (V,E) and an edge e ∈ E
satisfying

τ(G− e) = d, τ(G/e) = c,

and such that

|E| = a0 + a1 + . . . + aℓ + 1.

The proof of the proposition is given by a repeated subdivision and duplication of marked
graphs starting with a single edge. Note that the resulting graph is not necessarily simple as this
required additional constraints on ai , see [CKP24, Lemma 2.3].

2.3. Marked sum. A marked graph (G, e) is called proper if τ(G− e) > 0 and τ(G/e) > 0. In
other words, (G, e) is proper if G is connected and e is not a bridge. The spanning tree ratio of
a proper marked graph is defined as

ζ(G, e) :=
τ(G− e)

τ(G/e)
> 0.

It follows from (1.1) and the deletion-contraction formula τ(G− e) + τ(G/e) = τ(G), that

(2.2) ρ(G, e) =
1

1 + ζ(G, e)
.

Let (G, e) and (G′, e′) be marked graphs, where G = (V,E), G′ = (V ′, E′). By definition, we
have e ∈ E and e′ ∈ E′. Define the marked sum (G, e) ⊕ (G′, e′) as the marked graph (G◦, e◦)
obtained by taking the disjoint union of G and G′ and identifying e with e′ as a single edge e◦.
Note that if G and G′ are proper, planar and simple, then so is G◦ = (V ◦, E◦). Observe that
|V ◦| = |V |+ |V ′| − 2 and |E◦| = |E|+ |E′| − 1.

Lemma 2.2 ([CP24c, Lem. 5.4]). For proper marked graphs (G, e) and (G′, e′), and the marked
sum (G◦, e◦) = (G, e)⊕ (G′, e′) defined above, we have:

(2.3) ζ(G◦, e◦) = ζ(G, e) + ζ(G′, e′).
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2.4. Plane duality. Let G = (V,E) be a proper planar graph, and let F be the set of faces
of G. Denote by G∗ = (F,E) the plane dual graph. Here we identify edges in G and G∗. Note
that G∗ is also proper and planar. By Euler’s formula, the number of vertices in G∗ is given by
|F | = |E| − |V |+ 2. Recall also that τ(G∗) = τ(G).

Lemma 2.3. For a proper planar marked graph (G, e), we have:

(2.4) ζ(G∗, e) =
1

ζ(G, e)
and ρ(G∗, e) = 1 − ρ(G, e).

Proof. Note that deletion and contraction are dual operations. Thus we have:

(2.5) τ(G− e) = τ(G∗/e∗) and τ(G/e) = τ(G∗ − e∗).

This and (2.2) imply the result. □

2.5. Simplification. Let G = (V,E) be a proper planar simple graph, and let e ∈ E. Define
doubling of the marked graph (G, e) as a marked graph (G′, e), where G′ = (V,E′) is obtained by
duplication of each edge other than e. Note that G′ is also proper and planar.

Similarly, define halving of the marked graph (G, e) as a marked graph (G′′, e), where G′′ =
(V,E′′) is obtained by subdivision of each edge other than e. Note that G′′ is also proper, planar
and simple. Finally, define simplification of (G, e) as a marked graph (G◦, e) obtained by first
doubling and then halving. Note that G◦ is again proper, planar and simple.

Lemma 2.4. Let G = (V,E) be a proper planar simple graph, and let e ∈ E. Then:

ζ(G′, e) = 2ζ(G, e) , ζ(G′′, e) =
ζ(G, e)

2
and ζ(G◦, e) = ζ(G, e).

Proof. For the first equality, we have:

τ(G′ − e) = 2|V |−1 τ(G− e) and τ(G′/e) = 2|V |−2 τ(G/e),

as desired. Now, note that (G′)∗ = G′′. Thus the second equality follows from the first and (2.4).
The third equality follows from the first two. □

3. Proofs of results

3.1. Proof of Theorem 1.5. Let q1, . . . , qk ∈ Q>0 be positive rational numbers as in the the-
orem. It follows from Proposition 2.1, that there exists (not necessarily simple) planar marked
graphs (Gi, ei), where Gi = (Vi, Ei), such that

ζ(Gi, ei) = qi and |Ei| = S(qi) + 1,

for all 1 ≤ i ≤ k. Let (G, e) := (G1, e1) ⊕ · · · ⊕ (Gk, ek), where G = (V,E). It follows from
Lemma 2.2, that

ζ(G, e) = ζ(G1, e1) + . . . + ζ(Gk, ek) = q1 + . . . + qk and

|E| = |E1| + . . . + |Ek| − k + 1 = S(q1) + . . . + S(qk) + 1.

Since the marked graph (G, e) is not necessarily simple, take its simplification (G◦, e), where
G◦ = (V ◦, E◦). It then follows from Lemma 2.4 that (G◦, e) is a simple planar marked graph
satisfying ζ(G◦, e) = ζ(G, e) and

|E◦| = 4(|E| − 1) + 1 = 4
(
S(q1) + . . . + S(qk)

)
+ 1.

This completes the proof. □
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3.2. Proof of Theorem 1.1. Let d := t− c. Using (2.2), it suffices to show that there exists a
simple planar graph G = (V,E) and edge e ∈ E, such that for sufficiently large t we have:

(3.1) ζ(G, e) =
d

c
and |E| ≤ C max

{
d

c
,
c

d
, log(c+ d)

}
,

for some universal constant C > 0. We prove (3.1) in the following series of lemmas. Denote by
C0 > 0 the universal constant in Theorem 1.4.

Lemma 3.1. Condition (3.1) holds for d / c ≥ ⌈C0 log(c+ d)⌉.

Proof. Let c′, d′ be coprime positive integers defined as

d′

c′
=

d

c
mod 1,

so we have d′/c′ ∈ [0, 1). Note that c′+ d′ ≤ c+ d. Now, by Theorem 1.4, there exist rational
numbers q′1, . . . , q

′
k ∈ (−1, 1) such that

d′

c′
= q′1 + . . . + q′k and

S
(
|q′1|

)
+ . . . + S

(
|q′k|

)
≤ C0 log(c

′+ d′) ≤ C0 log(c+ d).(3.2)

Note that it follows from the assumed lower bound on d/c and (3.2) that

(3.3) k ≤ C0 log(c+ d) ≤
⌊
d

c

⌋
.

We now define q1, . . . , qk as

q1 :=

⌊
d

c

⌋
− k + 1 + q′1 and qi := 1 + q′i for all i ≥ 2.

It follows that q1 > 0 by (3.3), and q2, . . . , qk > 0 by definition. Also note that

d

c
= q1 + . . . + qk .

Observe that for a rational number q = [a1, . . . , aℓ] ∈ Q ∩ (0, 1), we have:

1− q =

{
[1, a1 − 1, a2, . . . , aℓ] if a1 > 1,

[a2 + 1, . . . , aℓ] if a1 = 1.

This implies that
S(1 + q′i) ≤ 1 + S(|qi|′) for all 1 ≤ i ≤ k.

Therefore, we have:

S
(
q1
)
+ . . . + S

(
qk
)

=

⌊
d

c

⌋
− k + S(1 + q′1) + . . . + S(1 + q′k) ≤

d

c
+ C0 log(c+ d),

where the inequality is due to (3.2).
By Theorem 1.5, there exists a simple planar graph G = (V,E) and edge e ∈ E, such that

ζ(G, e) = q1 + . . . + qk =
d

c
and

|E| = 4
(
S(q1) + . . . + S(qk)

)
+ 1 ≤ 4

d

c
+ 4C0 log(c+ d) + 1.

Thus (G, e) satisfies (3.1) with a constant

C1 := 4C0 + 5.

This completes the proof of the lemma. □
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Lemma 3.2. Condition (3.1) holds for d / c ≥ 1.

Proof. Let K := 4⌈C1 log(c+ d)⌉ . Let L ∈ {0, . . . ,K − 1} be the unique integer such that

d

c
− L

K
∈

[
1/K, 2/K

)
mod 1.

Let c′, d′ be coprime positive integers defined as

(3.4)
d′

c′
=

d

c
− L

K
mod 1,

so we have

(3.5)
d′

c′
∈

[
1/K, 2/K

)
.

Note that
log(c′+ d′) ≤ log(c+ d) + logK ≤ 2 log(c+ d),

for sufficiently large (c+ d). Note also that

c′

d′
≥(3.5)

K

2
= 2 ⌈C1 log(c+ d)⌉ ≥ C1 ⌈log(c′+ d′)⌉.

By Lemma 3.1 applied to c′ / d′, there exists a simple planar graph G = (V,E) and an edge
e ∈ E, satisfying

ζ(G, e) =
c′

d′
and

|E| ≤ C1

(
c′

d′
+ log(c′+ d′)

)
≤(3.5) C1

(
K + log(c′+ d′)

)
≤ C1 (4C1 + 2) log(c+ d).

Let G∗ = (F,E) be the plane dual of G. The marked graph (G∗, e) satisfies

ζ(G∗, e) =
d′

c′
and |E| ≤ C1 (4C1 + 2) log(c+ d).

Note that G∗ is not necessarily simple.
In a different direction, we have d / c ≥ 1 ≥ d′ / c′ by assumption in the lemma. Also note that

K(d/c− d′/c′) is an integer by (3.4). By Theorem 1.5 applied to q1 ← (d/c− d′/c′) and k = 1,
there exists a planar graph G′ = (V ′, E′) and an edge e′ ∈ E′, such that

ζ(G′, e′) =
d

c
− d′

c′
and |E′| ≤ 4S

(
d

c
− d′

c′

)
+ 1 .

Note that

|E′| ≤ 4S

(
d

c
− d′

c′

)
+ 1 ≤ 4

(
d

c
+ K

)
+ 1 ≤ 4

(
d

c
+ 4C1 log(c+ d)

)
+ 17,

where the second inequality is because K(d / c− d′ / c′) is an integer.
Now, let (G◦, f), where G◦ = (V ◦, E◦) and f ∈ E◦, be the marked graph obtained by taking

the marked sum (G∗, e) ⊕ (G′, e′) followed by simplification. By construction, H is a simple
planar graph. It follows from Lemma 2.2 and Lemma 2.4, that

ζ(G◦, f) = ζ(G∗, e) + ζ(G′, e′) =
d

c
and

|E◦| ≤ 4
(
|E| + |E′| − 2

)
+ 1 ≤ 16

d

c
+ 8C1 (2C1 + 9) log(c+ d) + 61.

Thus (G◦, f) satisfies (3.1) with a constant

C2 := 16C2
1 + 72C1 + 77.
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This completes the proof of the lemma. □

Lemma 3.3. Condition (3.1) holds for d / c < 1.

Proof. Since c / d > 1, applying Lemma 3.2 to c / d gives a simple planar marked graph (G,E)
satisfying

ζ(G, e) =
c

d
and |E| ≤ C2 max

{
c

d
, log(c+ d)

}
.

Apply the planar dual and then the simplification operations to the marked graph (G, e) to obtain
a simple planar marked graph (G◦, e), where G◦ = (V ◦, E◦) and e ∈ E◦. We have:

ζ(G◦, e) =
1

ζ(G, e)
=

d

c
and

|E◦| = 4
(
|E| − 1) + 1 ≤ 4|E| ≤ 4C2 max

{
c

d
, log(c+ d)

}
.

Thus (G◦, e) satisfies (3.1) with a constant 4C2 . This completes the proof of the lemma and
finishes the proof of the theorem. □

3.3. Proof of Proposition 1.2. The proposition consists of three inequalities which we prove
separately. For the first and second inequality, we need the following result:

Lemma 3.4. For every connected graph G = (V,E) and edge e = (x, y) ∈ E, we have:

ρ(G, e) ≥ 1

2

(
1

deg(x)
+

1

deg(y)

)
,

where deg(v) denotes the degree of vertex v ∈ V .

The lemma is well known via connection to the random walks on G and the commute time
interpretation

κ(G, e) = 2|E| ρ(G, e)

given in [C+96, Thm 2.1], combined with the inequality

κ(G, e) ≥ |E|
(

1

deg(x)
+

1

deg(y)

)
,

see e.g. [Lov96, Cor. 3.3]. Since G is simple, we have deg(x),deg(y) < |V |. This implies the first
inequality:

(3.6) |V | > 1

ρ(G, e)
=

t

c
.

For the second inequality, denote by F the set of faces in G. Since G is simple and planar, it
follows from Euler’s formula that |E| ≤ 3|V | − 6 and |F | ≤ 2|V | − 4. Applying Lemma 3.4 to the
dual graph G∗ = (F,E), we conclude:

(3.7) |V | > |F |
2

>(3.6)
1

2 ρ(G∗, e)
=(2.4)

1

2
(
1− ρ(G, e)

) =
1

2

(
t

t− c

)
.

Finally, for the third inequality, we have:

(3.8) t ≤ τ(G) < 2|E| < 23 |V | ,

as desired. □
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4. Final remarks and open problems

4.1. Bourgain’s Theorem 1.4 was partially motivated by Hall’s classic result that every number
in the interval (

√
2 − 1, 4

√
2 − 4) can be presented as the sum of two continued fractions whose

partial quotients do not exceed four [Hall47, Thm 3.1]. Hančl and Turek [HT23] gave a version of
this result for partial fractions of the type [a1, 1, a2, 1, a3, 1, . . .]. In our previous paper [CKP24],
we used partial fractions of this type to study Sedláček’s problem, see §1.2. While initially, we
intended to obtain Theorem 1.1 via a finite version of the Hančl–Turek result, this turned out to
be unnecessary due to the simplification operation given in §2.5.

4.2. For a finite poset P = (X,≺), the relative number of linear extensions e(P −x)/e(P ) plays
roughly the same role as the effective resistance for graphs. In [CP24b], we used recent analytic
estimates on sums of quotients of continued fractions to show that for all d/3 ≥ c ≥ 1 there exists
a poset P = (X,≺) and an element x ∈ X, such that

e(P − x)

e(P )
=

c

d
and |X| ≤ C max

{
d

c
, log d log log d

}
.

By analogy with Theorem 1.1, one can hope to remove the log log d factor; this was in fact
conjectured in [CP24b, Eq. (1.7)]. Unfortunately, the approach in this paper is not applicable
since the analogue of the marked sum for posets called the flip-flop construction defined in [CP24b,
§3.3] cannot be used more than once.

4.3. Throughout the paper we made no effort to compute or optimize the constants. This is in
part because the constant C in Bourgain’s Theorem 1.4 is not specified. We note, however, that
the constant C ′ in Proposition 1.2 can be easily computed. In fact, a more careful argument shows
that one can remove the constant 1/2 in the inequality (3.7). Similarly, one can improve (3.8) by

using the τ(G) < 5.23|V | bound in [BS10]. After these improvements, one can take C ′ := 0.6.
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