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We consider plane rooted trees on n+1 vertices without branching points on
odd levels. The number of such trees in equal to the Motzkin number Mn . We give
a bijective proof of this statement. � 1996 Academic Press, Inc.

1

Let Pn be the set of all plane rooted trees on n+1 unlabeled vertices with
edges oriented from the root (see [1]). We say that a vertex v in a tree
T # Pn is a branching point if at least two edges in T go from v. The level
of a vertex v is the number of edges in the shortest path between v and the
root. Let En/Pn denote the set of plane trees without branching points on
odd levels. By Mn/Pn denote the set of plane trees with at most two edges
going from every vertex.

The Motzkin number Mn is the number of elements in Mn . The gener-
ating function M(x)=1+�n�0 Mnxn+1 satisfies the following functional
equation (see [1�3]):

M(x)=1+xM(x)+x2M2(x).

This equation gives a recurrence relation for the Motzkin numbers.
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Note that |Pn | is the Catalan number Cn=(1�(n+1))( 2n
n ) (see [1, 3]).

Theorem 1. |En |=Mn .

Theorem 2. The number of trees T # En with k+1 vertices on even levels
is equal to ( n

2k) Ck .

We get the known formula Mn=�k�0 ( n
2k) Ck (see [2, 4]).

2

Our proofs of Theorems 1 and 2 are based on a bijection \ : En � Mn . Let
Bn be the set of binary trees with n unlabeled vertices (see [1]). There is
a simple bijection , : Pn � Bn (see e.g. [1, 3]). This bijection is clear from
an example on Fig. 1.

Denote EBn=,(En) and MBn=,(Mn). Then a tree T is an element of
MBn if and only if there are no chains of two left edges in T. We say
that level of a vertex v in a binary tree is the number of right edges in the
shortest path between the root and v. Then a binary tree T is an element
of EBn if and only if there are no left edges in T which go from an odd level
vertex. Let { : Bn � Bn be the involution which exchanges left and right
edges in a tree T # Bn .

Now construct a bijection ' : EBn � {(MBn). Let the map ' changes all
right edges in T # EBn going from an odd level vertex to left edges. Then
'(T ) does not have chains of two rights edges, otherwise, one of the edges
in such a chain goes from an odd level vertex.

Conversely, construct the inverse map '&1: {(MBn) � EBn . Let
T # {(MBn). For every right edge (v, u) in T such that u has a child w (then
(u, w) should be a left edge) we change (u, w) to a right edge. It is not
difficult to see that we get a tree from EBn and this map is the inverse to
'.

Hence ' is a bijection between EBn and {(MBn). Now \=,&1 b { b ' b ,
is a bijection between En and Mn . See Fig. 2, as an example. We have
proved Theorem 1.

Fig. 1. Bijection , : Pn � Bn .
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Fig. 2. Bijection \ : En � Mn .

The proof of Theorem 2 is based on the following property of the bijec-
tion \: The number of vertices on even levels of a plane tree T # En is equal
to the number of end points in the plane tree \(T ) # Mn . Indeed, let a tree
T # En have k+1 vertices on even levels. Then ,(T ) contains k+1 vertices
which do not have a left child and which are either end points or lie on an
even level. The bijection ' maps these vertices to the vertices of (' b ,)(T )
which do not have a left child. And ,&1 b { maps them to the end points
of \(T ).

On the other hand, it is known (see [4]) that the number of trees T # Mn

with k+1 end points is equal to ( n
2k) Ck . This completes the proof of

Theorem 2.
Remark. The bijection \ is an ``unlabeled analogue'' of a bijection from

[5]. In this sense, the sequence of Motzkin numbers is an ``unlabeled
analogue'' of the numbers of up-down (alternating) permutations.
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