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Increasing trees and alternating permutations(1)
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§1. Introduction

In this article we consider some increasing trees, the number of which is
equal to the number of alternating (updown) permutations, that is,
permutations of the form σ(1) < σ(2) > σ(3) < ... . It turns out that there are
several such classes of increasing trees, each of which is interesting in itself.
Special attention is paid to the study of various statistics on these trees,
connected with the Andre polynomials and the Foata group on the one hand,
and the Entringer numbers, which arise on grading alternating permutations
from the first element, on the other. The proofs of most of the assertions are
based on the construction of explicit bijections between classes of trees and the
study of their properties. We also obtain new combinatorial identities for the
Euler and Bernoulli numbers.

In §2 we give basic definitions and known theorems concerned with
alternating permutations, binary and increasing trees. We define 0-1-2 trees,
that is, trees such that at most two edges go out from any vertex, we establish
a bijection between them and orbits of the action of the Foata group on
binary trees, and consider various statistics.

In §3 we define even trees, that is, trees such that an even number of edges
go out from each non-rooted vertex. We find an explicit bijection between
them and alternating permutations, and establish a connection with the
inversion polynomial and the Tutte dichromate of a complete graph.

(1) This translation incorporates some corrections agreed with the authors (Ed.).
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In §4 we consider increasing trees with branchings on even levels and
various statistics on them. We find a bijection between them and 0-1-2 trees,
using some binary trees as an intermediate result.

In §5 we introduce embedded and weakly embedded trees, and study the
statistics on them. It turns out that embedded trees are representatives of the
orbits of the action of the Foata group on all increasing trees. We establish a
connection with the Catalan and Bell numbers.

In §6 the authors consider geometric classes of trees, that is, sets of
increasing trees such that if some tree is contained in it, then all trees
isomorphic to it are also contained in it as unlabelled trees. We prove a
general theorem on the equivalence of certain statistics on a given geometric
class of trees, and find applications to the classes of trees listed above.

In §7 we give proofs of the theorems in §§3-6, and in §8 we formulate
further perspectives of the development of this theme.

At the end of the paper, for the reader's convenience there are small tables
of the classes of trees we have considered.

In the course of the article we shall keep to the following notation:
[n] = {1,2, ...,«},
[«] = {0,1,2, ...,«},
Ν is the set of natural numbers,
Z + is the set of non-negative integers,
Sn is the group of permutations of elements of the set [n].
Classes of increasing trees are denoted by upper case Roman letters, and

the index denotes the number of edges in them. We shall denote bijections and
statistics on trees by lower case Greek letters. All the notations are collected in
a table at the end of the article.

The authors thank D. Foata and M.-P. Schutzenberger: this article was
written under the influence of their results and ideas. The authors also thank
V.I. Arnol'd for his interest in the theme of this work.

§2. Alternating permutations and 0-1-2 trees

2.1. Let us recall some well-known definitions (see [1], [2]).
A permutation σ e Sn is called alternating (or updowri) if

σ(1) < σ (2) > σ(3) < ... . We denote the set of such permutations by Altn;
Altn,fc := {σ e Α1ίπ|σ(1) = k}. We put an := |Altn |, an^ •= |Altn^|. The numbers
an<t are called the Entringer numbers.

Examples.

Altj = {(1)}; Alt2 = {(12)}; Alt3 = {(132), (231)};

Alt4 = {(1324), (1423), (2314), (2413), (3412)};

Alt5 = {(13254), (14253), (14352), (15243), (15342),

(23154), (24153), (24351), (25143), (25341),

(34152), (34251), (35142), (35241), (45132), (45231)}.
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It is convenient to put the numbers an^ in the form of a triangle, which is
called the Euler - Bernoulli triangle (see Fig. 1). Its left-hand side, on which are
the numbers fl2«+i,i = ain, is called the Euler side; the right-hand side, with the
numbers a2n,\ = «2n-i> is called the Bernoulli side. For the first few values of

„,* see Fig. 1.

an 1

Q Q 0 1

a3,l °,,2 V = 1 7 0

Ο ΰ Q Q 0 7 2 2

°S,J °S,2 °!,3 °S,4 °S,S 5 5 4 2 0

Fig. 1

Proposition 1. Suppose that 1 ̂  k < n. Then

(1) dn,k = <*„,*+! + ttn-l.n-fc-

Proof. We construct the explicit bijection

7: ΑΗηι*+ι LJ Altn_1>n_fc -¥ Altn)fc

Suppose that σ€Α1ίη^+ι, σ ' e Altn_in_^. Suppose also that
ak = {k,k+\) &Sn, σ" = (η,η-σ'(\), . . . , « - σ'(η - 1)). We put

η(σ) = afc ο σ, 7(σ') = σ" ο ση_ι ο ση_ 2 ο · · • ο fffc.

Then

Altn)A: \7(Altn,jt+i) = {σ e Altn, σ(1) = fc, σ(2) = k + 1} = 7(Alt n _ l i n _ f c ),

which completes the proof of the proposition.

Proposition 2.

(2) a n , f c = ^
ι=0

|(n-fc

(3) a n , f c = ^ (-1)M 2 ) a n _ 2 t _ 2 , K f c < n .

Proof. We observe that (1) is a relation between adjacent numbers in the
Euler-Bernoulli triangle. Applying (1) repeatedly, we express an^ in terms of
the numbers on the sides of the triangle. Clearly, anj = αη_ι and αη>η = 0.
Depending on the side of the triangle and the parity of η we obtain (2)
and (3).
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Proposition 3. We have the following relations:

(AS ττ( 2η \
(V 02n+l = 2^, I 2i _ 1 )°2«-la2n-2t+i;

(^ V^ (2n\
I5) 02n+l = 2^ 1 2 J°2«a2n-2i;

v*1 (2n - Λ

Proof. It is easy to see that |{σ € Altn,ff(y) = 1}| is equal to ί . Jay_ian_y

for odd j , and equal to 0 for even j . Summing over odd j we obtain (5)
and (6). Similarly (4) is obtained by considering the places where η can be.

Consider the exponential generating function o(x) = Y^<^=oanx"/n\, where
flo = βι,ι = 1· Then from (4), (5), (6) we obtain the differential equation

(7) 2a'{x) = 1 + a(x)a(x).

We observe that tan(x) + sec(x) satisfies (7). Taking account of the initial
condition o(0) = 1, we immediately obtain

(8) a(x) = tan(x) + sec(x).

The expression (8) can also be obtained without using (7). In fact, putting
k equal to 1 and η in (2), (3) and taking account of the fact that απ,ι = αη-\,
ann = 0, we obtain

(9) a(x) • cos(z) = 1+ sin(x),

from which (8) follows immediately.
We observe that tan(x) contains only odd terms, and sec(;c) only even

terms in the expansion. En — a^ are the Euler numbers, and
Βη = 2η· 2-2π(22η - 1)~1α2«-ι are the Bernoulli numbers (see [3]).

The problem of listing alternating permutations was first solved by Andre
(see [4], [5]). The numbers an^ were introduced by Entringer (see [6], [7]). We
shall be interested in combinatorial interpretations of these numbers, as
numbers of certain trees.

2.2. We define a tree with η non-rooted vertices as a basic rooted tree in the
complete graph Kn+\ with vertices from the set [«], oriented from the root
atO (see [8]-[10]).

We define an increasing tree as a tree whose vertices increase along the
edges. We denote the set of trees and the set of increasing trees with η non-
rooted vertices by Fn and Un respectively. A classic theorem of Cayley asserts
that \Fn\ = (M + 1)"" 1 (see [1], [8], [9]). On the other hand, \Un\ = n\. In fact,
we can add the vertex A; to a tree t € Uk-\ in exactly k different ways. Hence,
by induction, we immediately deduce that \Un\ = η • (η - 1) · . . . · 1 = n\.
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We define a binary tree on a set l a s a structure defined by induction:
a) it is empty if X = 0;

b) it consists of an upper vertex xo G X and left and right branches, that is,
binary trees on sets L and R respectively such that I = L u i ? U {*<>} and
\X\ = \L\ + \R\ + 1 (see [11], for example).

In what follows, unless we say otherwise we shall consider binary trees on
the set [n] such that in each branch the upper vertex is less than all the
vertices of this branch. We denote the set of such binary trees by Bn. We shall
represent a binary tree as an increasing tree that joins each upper vertex to the
upper vertices of the left and right branches by edges (if these branches are
not empty), calling them left and right edges respectively.

It is important to note that a binary tree is not a tree in the traditional
sense, but is a new structure which, as we see, takes an intermediate position
between increasing trees and permutations.

Let us construct a simple bijection φ : Sn —• Bn by induction. Suppose we can
associate with the permutations of some set / C [«] a binary tree with vertex set /
for all / such that |/| < k. Consider a permutation σ :/—>/, \I\=k. Let m be
the minimal element in /. Then σ has the form {σ Ίησ"). We construct a new
tree with vertex m whose left and right branches are trees corresponding to σ'
and σ" respectively (see Fig. 2). It is easy to see that by extending this process
we obtain a binary tree (see Fig. 3). The fact that this map is bijective is also
obvious (see [1], [12]). Hence, in particular, we immediately deduce that | 5 Λ | = «!.

Fig. 2

δ-(9572Ηβ*4) j>(6)*

Fig. 3

We put Vn = «A(Altn) C Bn, Vn<k = iA(Altn,fc) c Vn, hence \Vn\ = an,
= an<k- It is easy to see that Vn consists of those binary trees with η

vertices such that either 0 or 2 edges go out from each vertex, except possibly
the extreme right vertex. We call them 0-2 binary trees. It is also obvious that
a 0-2 binary tree t e Vnk if its extreme left lower vertex is k.
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Following established tradition (see [12], for example) we shall understand a
statistic on a set X to be a grading, that is, a map τ : X —* Z+. Two statistics
(gradings) τ and τ' on sets X and A'' respectively are said to be equivalent if
for any k £ Z+, |ΛΤτ(*)| = |JST;(ife)|, where Jft(Jfc) = {x e ί;τ(ΛΓ) = *}.

In this language, on the set 5B(Altn) there is defined a statistic of the first
element of a permutation, which is equivalent to the statistic on Bn (Vn) of the
extreme lower left vertex. We denote the first statistic by ε, in honour of
Entringer, and the second by φ (ε).

We now construct the important bijection φ : Un —> Bn (see [11], for
example). Suppose, by induction, that we have already constructed binary trees
corresponding to the branches of our increasing tree, obtained by removing
the edges going from 0. We order the roots of these branches in ascending
order and join them to the chain going left. We then join each of them by an
edge going right to the corresponding binary tree (see Fig. 4). It is obvious
that the resulting map φ is bijective (see Fig. 5).

Fig. 4

t-

Fig. 5

The map φ enables us to carry over all facts about trees and statistics from
increasing trees to binary trees and vice versa. For example, a — φ~χ(ψ(ε)) is a
grading on increasing trees from the maximal vertex joined to the root by an
edge. However, we shall not consider (p~](Vn). We note that the map
φ~χ ο ψ : Sn —> Un coincides with a map by means of records (left-to-right
maximum) (see [12], and also [2]).

2.3. Let us define the Foata group Fn, acting on Bn. Suppose it is generated by
generators ^1,̂ 2, •••,sn-\ such that st acts on a tree t 6 Bn by replacing the
right edge going from vertex i by the left, and the left by the right (if they exist).
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It is easy to see that SjSj = SjSi, that is, the generators commute. Taking into
account also that sf = 1, we immediately obtain Gn = Z""1 (see [13], [14]).
(Here we are giving a description of the Foata group that is somewhat
different from the original.)

Let Ln be the set of increasing trees with η non-rooted vertices from which
at most two edges go out. We call such trees 0-1-2 increasing trees. Then there
is an obvious bijection π : Bn/Gn —> L«_i between orbits of the action of the
Foata group and 0-1-2 increasing trees. The most important fact is that
\Ln\ = an+\. This was first formulated by Foata (see [13]) and was proved by
Foata and Strehl (see [14], and also the bijection in [15]).

Theorem 1. \Ln\ = an+\.

For the reader's convenience we present the proofs of most theorems in §7.
Here, however, we give a simple bijective proof due to Donaghey (see [16]).

Proof. Let us construct a map λ : Sn —> Bn obtained by modifying the bijection
φ and the complementation operation ι : Sn —> Sn, that is,

ι{σ) := (η + 1 - σ(1),... ,η + 1 - σ(π)), σ € Sn.

Suppose that σ :/—>/, Ι <Ζ [η] has the form (σ'τη\σ") and mi e σ", where m\
and W2 are the minimal and maximal elements of / respectively. Then we must
consider the vertex m\ from which a left edge goes to λ(σ') and a right edge
goes to λ(σ"), and form the bijection by induction, beginning with / = [«]. If
m2 6 d', then after the natural generalization of ; by the permutation σ : I —* I,
ι(σ) will have the form ι (σ) = {σ'ηΐχσ"), m2 ε " " and we can proceed
analogously. This completes the construction of the map λ (see Fig. 6).

Fig. 6

We now prove that n(A(Altn)) — Ln_\. In fact, λ(Ξη) consists of those
binary trees in which the maximal vertex of any subtree lies in its right
branch. Obviously such binary trees are representatives of the orbits of the
action of the Foata group. On the other hand, it is easy to show by induction
that the inverse image ΖΓ1 of each such tree contains exactly one permutation
σ G Alt,, and σ 6 i(Altn) (see [16]). Hence it follows immediately that
no λ: Alt,, —> Ln-\, is bijective, which proves Theorem 1.

We put LBn = cp(Ln). It is easy to see that LBn is the set of binary trees
such that the chain of edges going from any vertex to the left of it consists of
at most one edge. By Theorem 1, \LBn\ — an+\.
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We define a minimal descent as a chain of edges in an increasing tree, the
first of which goes out from the root and the last goes into the end vertex,
and each of the edges goes into the minimal vertex of those into which the
edges go that go out from this vertex. We denote by β the statistic on Un of
the end vertex of the minimal descent. We note that φ(β), the statistic on Bn

of the lower right vertex, goes over to the statistic φ (α) = ψ (ε) under the
action by the element (s\ · S2 •... · sn-i) e Gn.

We denote by δ the statistic on Un of the vertex from which an edge goes
to n. It turns out that the statistics β and δ on Ln are equivalent to the
statistic ε on Alt,, up to a shift. More precisely:

Theorem 2. The number of trees t £ Ln-\ such that β(ή = n — k is equal to the
number of trees t € Ln such that δ(ί) = η — k — 1, and is equal to

This theorem was first formulated and proved by Poupart (see [17]). He
was also the first to find the statistics β and δ. We also note that he studied
the statistics β and δ on the set Vn/Gn (see [18]), where they are also
equivalent up to a shift. We shall not study such trees in this paper. (In §6 we
prove the equivalence of β and δ on all geometric classes of trees.)

2.4. Let us consider an important statistic ν on Un of the number of end
vertices. We denote by dn,k the number of 0-1-2 increasing trees with k end
vertices. Then by Theorem 1 we have

since 0-1-2 trees with 2« - 1 or 2n vertices cannot have more than η end
vertices.

Consider the orbit O, of the Foata group Gn corresponding to the 0-1-2
increasing tree t, that is, O,— n~x(t) c Bn. Then \O,\ = 2m', where m, is the
number of generators st, i e [ « - l ] , that act non-trivially, that is, m, is the
number of non-end vertices of the tree /. Thus, m, = n - v(t), that is, we have
obtained the relation

(11) Σ <*„_!,* · 2"- f c = η!, since £ \Ot\ = | * n | = n!.

Proposition 4. We have the relations

(12) dn,l = 1
(13) dn,k=kdn-1<k+(n + 3-2k)dn-1,k-1, 1< Jfc < (n -

(14) d 2n,n+l = O2n+l/2n.

Proof. The relation (12) is obvious, since there is exactly one tree with one end
vertex, namely a chain of η — 1 edges. Suppose we have fixed a tree / € £n-i>
v(f) = k. Then t obviously has k - 1 vertices from which two edges go out,
η — 2k — 1 vertices from which one edge goes out, and k end vertices.
Consequently, we can add a new nth vertex in (n — 2k — 1) + k = (n — k — 1)
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ways, and k of the resulting trees have k vertices, and n-2k—\-k+\ end
vertices. Hence (13) follows immediately. The proof of (14) is based on a
consideration of the action of the Foata group Gn. In fact, if t e L^+i and
v(t) = n+l, then either 0 or 2 edges go out from each vertex of t.
Consequently, O(t) C V2n+i, but |O(i)| = 2(2n+1)-<"+1) = 2"; hence (14) follows
immediately.

We note that the relations (12) and (14) uniquely define a two-index
sequence of numbers dn^- The existence of the numbers dn^ in studying
ascents and descents on permutations connected with the Euler and Andre
polynomials is considered in [15] (see also [2] and the references listed there).
We shall not touch on this question here (however, see §8).

§3. Even trees

3.1. This is a new class of increasing trees, which we shall study.

Definition 1. An increasing tree is said to be even if an even number of edges
go out from each non-rooted vertex.

We denote the set of even trees with η non-rooted vertices by En.

Theorem 3. \En\ = an.

For examples of even trees see the tables at the end of the article.
The number of even trees / e En such that v(t) = k is equal to dn,n-k+\-

Theorem 4. The number of even trees t G En such that δ(ί) = k — 1 is equal to
the number of t € En such that β(ί) = k, and is equal to

Suppose that σ = {σ\,σ2. • .ση) G Alt,,, σ,, = 1 is the minimal element of the
set {σι... ση}, ah is the maximal element of the set {σ ! ι +ι... ση], σ,·3 is the
minimal element of the set {σ,2+ι.. .ση}, and so on up to aik — ση. We call the
elements σ,,, σ,2, . . . ,u i k distinguished.

Theorem 5. The number of trees t € En such that exactly k edges go out from
the root is equal to the number of alternating permutations σ e Altn with k
distinguished elements.

For the proofs of Theorem 5 and the first part of Theorem 4 see §7.

3.2. For the proof of Theorem 3 we need an additional construction, which is
of interest in itself. We denote by Rn the set of integer sequences
(zi,z2, ...,zn) in which 1 ^ zt < η + 1 - /. Let Zn C Rn be the set of sequences
such that zi < z2 > Z3 < z4 > z5 < ... . Obviously \Rn\=n\. We construct a
bijection ω : Sn —> Rn such that co(Altn) = Zn.

Suppose that σ e Sn. We put ω(σ) = (ζι,ζ2, .. .,zn), where
Zi =#{j\ i <y < n, a(j) < σ(ί)}. It is easy to see that ω is a bijection; the
inequalities for ω (Alt,,) are verified directly, from which it follows at once that
\Zn\ = an. We note that ω(σ) is the classic vector of inversions of σ (see [1],
[11], [12], for example). In what follows it will be important that
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[ω(σ)](1) — σ(\), that is, ω(ε) is also the statistic of the first element of the
sequence. For examples of Zn see the table.

We now construct a bijection μ : Zn —• En by successively joining the
vertices of [n] by edges. More precisely, the bijection is a result of the
working of an algorithm consisting of η +1 steps, where the results of
working the kth step (k < «) is a forest (that is, a graph without cycles) on
the set of vertices Ik C [«]. We denote by Λ the set of roots of the connected
components of the forest obtainedafter completing the kth step. At the initial
moment we put /o = JQ = 0. Let Λ = Λ υ {0; η + 1}. We represent Jk in the
form {0 —ji+\ <ji < ... <j\ <jo = n+l}, where / is the number of roots of
the forest after the kth step. We also consider the set

Μ := {m€ [π] \ Ik \hP+i <m< j 2 p , Ρ € Z+} = {mi < m2 < · • • < m3}.

If k is even we put ik+\ = mZk+l, and if k is odd we put 4+i = mn-k+2-zk+l •
Suppose that J2P+i < 4+1 <hp· Then we add to the forest the vertex 4+1 and
the edges that go out from ik+\ and go to the vertices j\,jz, •••,hp- Now
4+1 :=IkU{ik+i}, Λ+ι :=Au{/fc+i}\{7i,72, ...,j2p}, and we can proceed to
the next step. At the (n + l)th step we must add the vertex 0, join it to all the
vertices of /, and complete the working of the algorithm.

It is easy to see that μ(ζ) = μ{ζ\, ..., zn) is actually an even tree, since at
the kth step we join the vertex ik to an even number of vertices, which are
greater than 4. Inequalities for ζ e Zn guarantee the working of the algorithm,
namely the existence of mZk+i (mn-k+2~Zk+l), that is, μ{ζ) is well defined as a
result of the working of the algorithm. It is easy to define the action of the
reverse algorithm, based on eliminating each time the root with maximal
number. Hence we immediately obtain the bijection μ, which proves
Theorem 3.

Example. Let σ = (58261734) G Alt8, ω(σ) = (57241311) G Zg.
After the Oth step we have ii = 5 .

After the 1st step

; = {0,5,9},M = {6,7,8},i2 = 6; {'5)

After the 2nd step

J = {0,5,6,9},Af = {l,2>3,4,7,8},t3 = 2; ( ' S - β )

After the 3rd step

( A
s/\

After the 4th step

6 .4,
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After the 5th step

After the 6th step

•7={0,1,3,9},Μ = {7

After the 7th step

J = {0,l,3,7,9},M =

After the 8th step

After the 9th step

We now show that the bijection μ also proves the second part of
Theorem 4. For this it is sufficient to verify that the statistic μ(ω(σ)) coincides
with the statistic β on En. In fact, as we have already noted, in the
construction of μ~' we must discard the maximal root each time, that is, the
statistic μ~λ(β) coincides with the statistic of the first element, which in turn
coincides with ω(ε). Thus β = μ(ω(ε)), and the second part of Theorem 4 is
completely proved.

In the remaining part of §3 we consider the connection between even trees
and the polynomial that enumerates trees from the number of inversions and
the Tutte dichromate of the complete graph Kn.

3.3. We recall that Fn consists of spanning rooted trees, oriented from the root
to 0. Suppose we have fixed t e Fn. We call a pair of vertices /, 7,0 ^ i <j ^n,
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an inversion if the chain of edges going from the root to i passes through j .
Let inv(i) denote the number of inversions of the tree t.

Let us consider fn(x) = ZW,, χ ί η ν ^> t n e inversion polynomial. Obviously
fn{\) = (« + I)"" 1 is the number of all trees, and /«(Ο) =η\ is the number of
trees with no inversions, that is, increasing trees (see §2). A remarkable
observation (see [1], §3.3.48) is t h a t / , ( - l ) = an and, on the other hand, fn(2)
is the number of connected graphs with n + 1 vertices (see [19], [20]). Here
once more we prove this from a single point of view.

Let Fn be the set of spanning rooted trees on the set [n], oriented from the
root to an arbitrary vertex. Similarly fn(x) = ΣιβΡ χίην^·

Proposition 5.

Proof. Let F* = {(e /"„ with root at k}. We construct a bijection
yk : Fk

n -»· Fk

n

+X such that in\(yk(t)) = inv(f) + 1, t e Fk

n. In fact, suppose that
yk changes the vertices k and k+ 1 in t. Then the inversion (i,j) of the tree t
is preserved, and exactly one new inversion (k, k+ 1) is added.

Let us introduce some notation. Let ρ = {Ρ\,Ρ2,• · ·} be a finite unordered
collection of subsets P, c [«] such that Ρ , η Ρ / = 0; ϊφ}\ UP, = [η];
Pi — \Pi\ > 0. Let 23n be the set of all such collections p, and let 25° be the set
of all collections ρ = {Ρχ,Ρι, ...} such that pt — \Pt\ is odd for all i.

Also let (n)x = I + x + ... + x"~\n eN.

Proposition 6. We have the relations

(is) fn(x) =

(16) fn(x)=

Proof. We split a tree into two subtrees, removing the edge going from the
root to 0, after the removal of which 0 and η will be in different subtrees. It
is completely obvious that the number of inversions of the tree is the sum of
the number of inversions of the rooted subtrees, one of which has its root
at 0. Summing over the number of vertices in the second subtree, we
obtain (15). The relation (16) is obtained similarly if we split the tree into
subtrees by removing all edges going out from the root.

We observe that (fc)_, = 0 when k is even, and (/c)_, — 1 when k is odd.
This immediately proves that / n ( - l ) = an. In fact, when χ — - 1 the relation
(15) is a recurrence relation for the numbers/n(—l), which coincides with the
relations (4)-(6). We show that /«(—1) — \En\. This gives a new proof of
Theorem 3. In fact, the condition on trees for the number of vertices in the
branches to be odd is equivalent to the condition for the number of edges
going out from each non-rooted vertex to be even. Now, acting as in the
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proof of Proposition 6, we deduce that for the number of even trees the
recurrence relation (16) is satisfied when χ = - 1 , that is, fn{-\) — \En\. Let us
formulate once more a relation that is apparently new:

(17) an=
p€!B°

We note that by means of the bijections yk (see the proof of Proposition 5)
we can construct an involution that is fixed on increasing even trees and
changes the parity of the number of inversions of the remaining trees.
Concerning the polynomial fn{x) and the relation (15) see [20], [21]. When
χ — 1 the relation (15) turns into an identity of Abel type (see [22]).

3.4. We now turn to a formulation of results about the Tutte dichromatic
polynomial of the complete graph χ{Κη+\\ l,x) = gn(x). By a theorem of Tutte
(see [10], [23]) one of the equivalent definitions consists in the following.

We specify a lexicographical ordering on the edges of the complete graph
Kn+\ : (i,j) is less than (i',j') (i<j,i' <j') if i < V or i — /', ]<}'. Suppose
we have fixed t e Fn. We say that the edge (i,j) of the graph Kn+i is
externally active with respect to t if (i,j) gt and is a minimal edge in the
unique cycle formed by the edges of the tree t and the edge (i,j). Let e(t) be
the number of edges externally active with respect to t, and gn(x) — Σ^/·,,·**^·

Proposition 7. fn{x) = gn{x).

Proof. It is sufficient to prove for gn{x) a recurrence relation analogous
to (15). As earlier, we split the tree t into two subtrees /' and t" by removing
the edges going out from the root; then 0 and η lie in different subtrees. We
observe that the edge (i,j), 0 < i<j, cannot be externally active with respect
to / if i and j lie in different subtrees, since otherwise the cycle contains an
edge going out from 1, which is automatically less than the edge (i,j) in the
lexicographical ordering. Hence e{t) — e(t') + e(t") + m(t), where m is the
number of externally active edges of the form (0, j) such that 0 € t', j e t".
For various removed edges and fixed t' and t" the number m(t) takes all
values from 0 to \t"\ - 1 at once. Summing over the number of vertices in the

( 1 \

, , )gk(x)gn-k-l(x),
Κ — 1/

as required.

Hence we immediately obtain gn(—l) = an. On the other hand, since
gn(x) = χ{Κη+\\ Ι,χ), where χ is the Tutte dichromate of the complete graph
(see [10], [23]), from the properties of the dichromate we immediately deduce
that/ n (l + x) is the generating function for the number of spanning connections
of subgraphs of Kn+\ over the number of edges. Proposition 7 in this form
was first formulated by Bjorner in [40]. In particular, fn(2) is the number of
all spanning connected graphs. We note that in [24] and [20] explicit bijections
were constructed that prove the identity fn(x) = gn(x) and the assertion that
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is the generating function for labelled connected graphs with n + 1
vertices over the number of edges.

3.5. As an application we examine one more example where relations of the
type (15) and (16) appear. Let FBn be the set of all binary (not necessarily
increasing) trees on the set [«], and let t e FBn. Let inv(f) be the number of
pairs (i,j), I ^ i <j ^n, such that the chain of edges going out from the root
and going to i passes through / We put fbn(x) := ΣΗΕΡΒ

 χΐην^- Then
1 /Ό \ "

fbn{\) = \FBn\ = n\ ( ) is the number of all binary trees (see [1], [9]),
η+1\n )

and/&„(()) = \Bn\ = n\ is the number of all increasing binary trees.

Proposition 8.
η inisodd-

if η is even.
Proof. We shall act as in the proof of Propositions 5 and 6. Consider the
polynomial fbn(x) = ^2 xlm(-'\ where the summation is over all binary trees
with upper vertex at 1. We have fbn(x) =fbn(x)(\ 4- χ + ... + χ""1). Similarly
fbn{x) = EZlfbk(x) -fbn-k-ι(x). Hence fbn(-l) = 0 for even n> and fbn{-\)
is equal to the number of even binary trees, that is, fbn(-\) = \Vn\— an, for
odd η (see §2). This completes the proof of the proposition.

§4. Trees with branchings on even levels

4.1. Let us introduce a new class of increasing trees.

Definition 2. The level of the vertex i in an increasing tree t is the number of
edges in the chain of edges that go out from the root and go to the vertex /.
Trees with branches on even levels are increasing trees whose branchings, that
is, vertices from which more than one edge goes out, lie only on even levels
(the root lies on the zero level, that is, on an even level). We denote the set of
all such trees by Wn.

Theorem 6. = an+\.

We give a proof of it in this subsection by means of an explicit bijection.

Theorem 7. The number of trees t £ Wn such that a(t) —k is equal to αη+\^^+\
(where α(ί) is the statistic of the maximal vertex joined to the root; see §2).

Theorem 8. The number of trees t € Wn such that /?(?) = k is equal to the
number of trees t € Wn such that δ(ί) = k — 1 {where β(ί) is the statistic of the
end of the minimal descent, and 5(t) is the statistic of the vertex joined by an
edge to the vertex n; see §2).

Theorem 9. The number of trees t € Wn-\ with η — 2k + 1 end vertices on odd
levels is equal to
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We note that the statistic found in Theorem 8 is apparently new. For the
proof of Theorems 8 and 9 see §7. For examples see the table.

4.2. Let us construct an explicit bijection ρ : Wn —> Ln. For this we define <p{Wn).
The level of the vertex i in a binary tree t € Bn is the number of edges going

to the left in the chain of edges going out from the root to the vertex i. Consider
the set WBn = <p(Wn) c Bn of binary trees t ε Bn that have no edges going to
the left and going out from a vertex on an odd level. It is easy to see that
WBn = q>{Wn) c Bn. We define LBn c Bn as the set of binary trees of which the
chain of edges going to the right from each vertex has length not greater than 1.
Obviously h : t —> h • t specifies a bijection between LBn and LBn, where
h = (s\ • 52 · • • · · sn) ε Gn (we need to replace right edges by left and vice versa).

We construct the bijection η : WBn —• LBn. Then the required bijection is
ρ = φ ο η ο ho φ~χ. Since edges cannot go to the left from vertices at odd
levels, we suppose that η consists in replacing edges going to the right and
going out from a vertex at an odd level by an edge going to the left (see
Fig. 7). Then, of course, chains going to the right will have length not greater
than 1, hence η(1¥Βη) c LBn. To construct η~ι(ί) we consider vertices χ of the
tree t to which a right edge goes and from which a left edge goes. Since by
the definition of LBn no right edge goes out from x, at all such vertices χ we
interchange a left edge and a right edge. Hence it is obvious that η is
invertible, and consequently bijective. This proves Theorem 6.

το

1ft) e
T2

Fig. 7

We show that we have simultaneously proved Theorem 7. In fact, the
bijection η does not change the extreme lower left vertex, that is,
φ(α)(ή = φ(<χ)(η(ή), t 6 Bn. But the bijection h obviously takes the statistic
φ(<χ) into the statistic φ(β) (see §2). Hence

a(t) = φ(α)(φ(ί)) = φ(α)(η ο <p(t)) = φ(β)(φ-1 ο hV ο φ{ί}) =

that is, the statistic α on Wn is equivalent to the statistic β on Ln, that is,
Theorem 7 is a consequence of the already known Theorem 2.

In exactly the same way we can show that n + 1 — 2p~'(v) is the statistic of
the number of end vertices at odd levels in a tree t £ Wn, and thus prove
Theorem 9. Another proof of Theorem 9 by means of the recurrence relations
(12), (13) (see §2) will be given in §7.
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We also mention another important consequence of the construction for the
bijection p.

Theorem 10. The number of trees t G Wn such that k edges go out from the root
is equal to the number of trees t G Ln such that the length of the minimal
descent is equal to k (see §2).

Proof. In fact, as we mentioned above, the bijection ρ takes the set of vertices
of the tree / to which an edge goes from the root into the set of vertices to
which edges of the minimal descent go. Hence ρ takes the statistic of the
number of edges going out from the root into the statistic of the length of
minimal descent, which proves Theorem 10.

4.3. When the edges going out from the root are removed, a tree t G Wn splits
into several trees. To this there corresponds the recurrence relation

(18) fln+l = } , αΡι-1 "αΡ2-1 ' · ·· ·

The relation (18) is more surprising than (17) (see §3). We shall return to it
in the next section.

§5. Embedded and weakly embedded trees

5.1. Let t be a branch of an increasing tree to G £/„. We denote the minimal
and maximal vertices of t by min(i) and max(i).

Definition 3. We say that an increasing tree / 6 Un is embedded if on removal
of the edges going out from any vertex a € t the resulting branches
t\, t2, • • • ,tk satisfy the embedding condition:

min(ii) < min(t2) < · • · < min(tfc) < max(ijt) < • · · < maxfo) < max(ti).

We denote the set of embedded trees with η vertices by Tn.

Theorem 11. \Tn\ = an.

Theorem 12. The number of embedded trees t G Tn such that α(ί) = k is equal to
the number of embedded trees t G Tn such that 5(i) = η — k, and is equal to an^
(see §2).

We prove Theorems 11 and 12 by establishing an explicit bijection between
Τη and Ln-\.

For examples of embedded trees see Table VII.

5.2. Consider the set TBn c Bn of binary trees t such that for any vertex a the
maximal vertex of its left branch is less than the maximal vertex of its right
branch. We show that TBn = φ(Βη).

In fact, if α is a vertex of a tree t e Tn, then the set of vertices of the right
branch of the vertex min(ii) G φ(ή is precisely q>(t\) (see Definition 3), and
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the set of vertices of its left branch is (jf_2 φ(ίί), hence from the embedding
condition we immediately obtain

Consequently, φ(Τη) c TBn.
Conversely, suppose that / e Un and φ(ή G TBn. Then, using the definition

of TBn for the vertex ^(min^!)), where t\,t2, ...,tk are the branches going
out from a e T, so that min(ii) < min(f2) < · · • < min(tk), we have

maxi|jf=2(?)( in)) < max(/i). Similarly, for the vertex min((p(/2)) we have

m a x ( U f = 3 <?('«)) < max(i2), and so on, for the vertex min(q>(tk-i)) we have

maxi(jf=it ψ(*η)) <max(tk-i). Hence there immediately follows the embedding

condition max(ifc) < .. . < max(i2) < max(?i), that is, i e Γ.
We now show that TBn is the set of representatives of the orbits of the

action of the Foata group Gn on Bn. Suppose that t e Bn, hi — sfl • si2 •...,
where I — {i\, h, ...} is the set of vertices ι) of the tree t at which the maximal
vertex of the left branch is greater than the maximal vertex of the right
branch. Then it is obvious that 7— hi • t € TBn, and if the trees t\ and h lie in
different orbits of the action of the Foata group, then t\ Φ ί2- Thus we have
established a bijection π'1 between Ln and TBn, which consists in the fact that
we must regard edges as right or left depending on which maximal vertex of
such a branch is the greater. Hence ξ — φ~ι ο π~' is the required bijection
between Ln and Tn+\. We note that the map π : TBn —» Ln is trivial and
consists in neglecting the structure of right and left edges (see §2).

Thus Theorem 11 is completely proved. We show that we have also proved
the second part of Theorem 12. For this we verify that ξ(δ) = δ. In fact, if in
a tree t e Tn an edge goes from a vertex α to a vertex n, then by the
embedding condition for the vertex α no other edges go out from it.
Consequently, from the definition of the bijection φ, the edge (a, n) belongs to
the tree φ(ή, and hence to the tree ξ~ι(ή, that is, ξ(δ) = δ, and the second
part of Theorem 12 follows from Theorem 2. We shall prove the first part of
Theorem 12 in §7. We also note that for any tree t e Tn we have β(ή = η,
since the maximal vertex in a given branch always lies in the subbranch with
minimal root, by the embedding condition.

5.3. Let us consider one more class of increasing trees.

Definition 4. Let Qn be the set of increasing trees on the set of vertices [n]
satisfying the embedding condition for all non-root vertices. We call such trees
weakly embedded. Obviously, Tn c Qn.

For greater clarity we represent each tree t e Qn as a forest, obtained by
removing edges going out from the root (see the examples in Table VII).

Theorem 13. \Qn\ = an+}.
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Proof. In fact, since the branches of a weakly embedded tree obtained by
removing edges going out from the root are embedded trees, we have

\Qn\ =
p€»n

by Theorem 11 and the relation (17).

Theorem 14. The number of trees t £ Qn such that a(t) = n + \ —k is equal
to an+\,k-

Theorem 15. The number of trees t Ε Qn such that k edges go out from the root
is equal to the number of trees t € Ln such that the length of minimal descent is
equal to k.

To prove the theorems we construct a bijection ζ : βη —• Wn. Let t e Qn be
a weakly embedded tree; ί\ξ.ΤΡλ-\, h e ΓΛ_ι, ... is an unordered collection
of embedded trees obtained from t by removing edges going out from the
root; ρ = {P\,P2, ...} e 23M is the corresponding unordered collection of sets of
vertices of the trees /, (see above). We now number the vertices of the tree
ρ" 1 0Γ 1 (*,·)) by elements of the set Λ, {min(P,·)}» « = 1,2,... . We now
consider the tree ζ(ή, which has a root at 0, from which edges go to the
vertices min(P,·), from each of which one edge goes out to ρ~ϊ(ξ~ι(ίί)) (see
Fig. 8). Obviously ξ : Qn —• Wn is a bijection, since ζ is, and the invertibility of
ζ follows from the bijectivity of ρ and ζ. This gives us a new proof of
Theorem 13. We note that ξ ο ρ ο ζ is a bijection between Qn and Tn+\.

We now show that £(a) = a. In fact, it follows from the construction of the
bijection ζ that the set of vertices joined to the root by an edge, that is,
having level equal to 1, does not change. Thus Theorems 14 and 15 follow
from Theorems 7 and 10 on trees with branchings on even levels.

min

Fig. 8

5.4. To conclude this section we consider two other classic sequences of numbers.
The Bell number bn is the number of partitions of [«] into unordered parts,

that is, bn = |23n|. The Catalan number cn is the number of binary unlabelled
trees. More precisely, cn is the number of orbits of the natural action of the
permutation group Sn on the set of all binary trees FBn (see §3.5). For explicit
formulae and different combinatorial interpretations of the Bell and Catalan
numbers see [1], [12], [22].



Increasing trees and alternating permutations 97

We call edges (h,j\) and (12,72) of an increasing tree t€ Un embedded if
<l'l <I2 <h

Proposition 9. The number of weakly embedded trees t € Q» without branchings
at non-rooted vertices is equal to bn. Among them the number of trees without
embedded edges is equal to cn.

As a simple consequence of Proposition 9 we obtain cn^bn^an+\. We
note that cn — bn = an+\ when η ^ 3, and also Ca, = 14 < 64 = 15 < as = 16 (see
the table).

§6. Geometric classes of trees

6.1. We prove a general theorem about equivalent statistics on geometric
classes of trees.

Definition 5. We call a set of increasing trees Η c Un geometric if with any
tree t e Η it also contains a tree t' e Un isomorphic to / as a rooted
unlabelled tree. In other words, Η is geometric if and only if / e Η implies
that Or, Π Un C H, where Or, is the orbit containing t of the transformation
group Sn, which acts on Fn by permutations of the vertices.

It is easy to see that the classes of 0-1-2 trees, even trees, and trees with
branchings at even levels are geometric, but the classes of embedded and
weakly embedded trees are not geometric.

To formulate the main theorem we introduce some notation. Suppose that
t € Un. The minimal descent vector of t is the collection of numbers
x{f) = (xi,x2, . . . ,*/) such that the minimal descent (see §2) of t consists of the

edges (0,1),{1,χ\),(χι,χ2), ...,(χι-ι>χι)> a n d β(*) = χι i s t h e e n d o f t h e

minimal descent (see §2). The «-descent is the unique path going from the root
to the vertex n. Its length m is by definition equal to the level of the vertex n.
The η-descent vector of t is the collection of numbers y{t) = {y\,y2, • • -,ym) such
that the «-descent of t consists of the edges (0,y\),(y\,y2), ...(ym-\,ym),(ym,n).
Clearly, x(t) and y(t) are multidimensional statistics on the set Un.

Theorem 16. Let Η be a geometric set of increasing trees, Η C Un. Then the
statistics of the η-descent and minimal descent vectors are equivalent up to a
shift. More precisely, the number of trees t £ Η such that x(t) = (υ\, υ2, • • •, U/t)
is equal to the number of trees t £ Η such that y(t) — (υ\ - 1, υ2 - 1, . . . , υ* - 1).

Proof. To prove this theorem we construct an explicit bijection θ : Η —• Η such
t h a t y(0(t)) = (x\ - l,x2 - 1, ...,xk- 1), w h e r e (x\,x2, . . . , * * ) = * ( 0 ·

Suppose that t 6 H, x(t) = (xi,x2, ...,Xk)- Consider the tree t' on the set
{1,2, ...,« + 1} obtained by replacing the vertex 0 by the vertex 1, the
vertex 1 by the vertex x\, the vertex x\ by the vertex x2, and so on, the vertex
Xk-\ by the vertex xk, and the vertex Xk by the vertex « + 1. Let θ(ή be the
tree obtained by lowering the numbers of all vertices of t' by one. Obviously,
y(6(t)) = (x\ - l,x2 - 1, ... ,Xk - 1)- We now show that θ(ή £ Η. For this it is
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sufficient to show that θ(ή e Un, since the set Η is geometric, and the fact
that t, t' and θ(ί) are isomorphic is clear from the construction. Suppose that
the tree t' contains an edge (x(, z) such that ζ < JC,. Then t contains an edge
(x,_i,z) and an edge (JC/_I,X,·), which is impossible, since ζ < x, and the edge
(xi-\,Xi) is contained in the minimal descent of t. Thus t' is an increasing tree,
and 9{t) e Un. The fact that θ is invertible, and hence bijective, is obvious,
which completes the proof of the theorem.

Theorem 16 is due to Schutzenberger and is a special case of Assertion 5.1
in [25]. The proof of Theorem 16 also follows [25].

6.2. We particularly note two important corollaries of Theorem 16.

Corollary 1. Let Η be a geometric set of increasing trees, Η C Un. Then the
number of trees t € Η such that β(ί) = k is equal to the number of trees t G Η
such that δ(ή =k-\.

Proof. In fact, as we observed above, if x(t) = {x\,xi, • · . ,*/),
y(f) = (yuy2, • • -,ym), then β(ή — χι, δ(ή = ym, from which we immediately
obtain the assertion of the corollary.

Thus we have proved Poupard's theorems on the equivalence up to a shift
of the statistics β and δ on Ln and Vn/Gn (see Theorem 2 in §2), Theorem 8
(see §4), and the equivalence of the first and second parts of Theorem 4
(see §3).

Corollary 2. Let Η be a geometric set of increasing trees, Η c Un. Then the
number of trees t e Η for which the length of minimal descent is equal to k is
equal to the number of trees t G Η for which the vertex η is at level k.

Thus, in the case Η — Ln we have found the statistic of the level of a
vertex of Ln, equivalent to the statistic on Ln of the length of minimal descent,
which by Theorems 10 and 15 is in turn equivalent to the statistics on Wn and
Qn of the number of edges going out from the root. To emphasize the
importance of this statistic, we formulate a theorem on a statistic equivalent to
it on the set of alternating permutations Altn+i.

We call an element a(i), 2 < / < n, extreme in the permutation σ € Sn if
a ( j ) < a ( i ) f o r a l l \ ^ j < i o r a ( j ) > a ( i ) f o r a l l l ^ j < i , t h a t i s , t h e
elements of the permutation to the left of a(i) are either all less than σ(ι) or
all greater than σ(ί). Let κ(σ) be the number of extreme elements in the
permutation σ.

Theorem 17. The number of alternating permutations σ e Altn+i such that
κ(σ) — k is equal to the number of 0-1-2 trees t S Ln for which the length of
minimal descent is equal to k.

We prove Theorem 17 in §7 by means of recursive relations found for this
statistic.
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6.3. To conclude this section we say something about the geometric approach
to problems of listing permutations and trees.

A class of permutations, or a statistic on permutations, is called geometric
if it is defined just by ascents and descents in the permutation, that is,
σ(ί) < σ(ΐ + 1) or a{i) > σ(ζ+ 1). In particular, the classic Euler statistics of
the number of descents and the McMahon statistic of the sum of places of
descents are geometric (see [1], [2], [12]). A systematic study of geometric
classes of permutations and statistics was apparently first started in [2] and
then continued in a number of other works. Since we cannot give a survey of
this cycle of articles, we mention in this connection a long series of papers by
Carlitz and his co-authors, concerned with generalizations of the numbers an^
for other regular configurations of ascents and descents, the original approach
by Stanley by means of Mobius functions for binomial partially ordered sets
(see [26], [12]), and also the rich factual material collected in Chapter 4 of the
monograph [1] (see the list of literature there). Concerning the listing of the
number of trees in geometric classes there is also a large quantity of results,
mainly connected with the application of the technique of differential
equations (see [27], [1], for example). We mention here the advantage of the
bijective approach, which enables one to formulate and prove non-geometric
results about permutations in terms of geometric classes of trees, and vice versa.

§7. Proofs of theorems

To start with we note that we have constructed a complete system of
bijections between Alt,, and Ln-\, En, Wn, Tn, Qn_\ (see the figure in Table I).
Hence we immediately obtain the assertions of Theorems 1, 3, 6, 11, 13. In
studying the properties of bijections, as we showed in §§3-5, we obtained the
proofs of Theorems 7, 9, 14, 15, and also the second parts of Theorems 4
and 12. Next, Theorem 16, together with Theorem 8 and the first part of
Theorem 4 which follow from it, were proved in §6. For a proof of Theorem 2
see [17]. Here we give the proofs of the remaining Theorems 5 and 17 and the
first part of Theorem 12, and we also give a second proof of Theorem 9.

7.1. Proof of Theorem 4. We denote by cn^ the number of trees t € En with k
end vertices. We have the relation

[(t»-l)/2J fc-l , _ χ .

(19) Cn,k = Σ Σ [ ΟΙ ) C 2 i ' m •C"-2i-l,fc—
1=1 m=l ^ '1=1 m=l

In fact, we split a tree t € En into two subtrees t' and t" by removing the
edge (0, 1). Let 2/+ 1 be the number of vertices in the subtree t' containing
the vertex 1, and m the number of end vertices of / ' . Then, if / > 0, there are
in all η-21- 1 vertices in /", of which k - m are end vertices. Analysing the
cases / = 0 and / > 0 separately and summing over / and m, we obtain (19).
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We denote by bn^ the number of trees t e Ln_i with k non-end vertices.
Then

n-2 fc-i , _ 2 .

,* = Σ Σ / )&l.mi>n-l-l,i-m + i>n-l,fc-l.
1=1 m = l ^ J

(20)

The relation (20) is proved similarly, except that in this case we remove all the
edges going out from the root, and consider separately the cases when there
are one or two such edges. We now recall that bn^ = i4,n-/t+i by the definition
of the sequence dn^ (see §2). Now, taking account of the explicit expressions
for the binomial coefficients and the relation (12), we can derive (19) from the
relation (20) for the sequence bn^. Since (19) gives the sequence cn^ uniquely
up to the initial values, we have bn^ — cn^. This completes the proof of
Theorem 4, since in an even tree any non-end and non-rooted vertex is a
branching.

7.2. Proof of Theorem 5. We denote by cn<k the number of trees t € En such
that k edges go out from the root. Then we have the relation

_
(21) cn,jfc = Σ ( 21 )°2ί" Cw-ai-i.fc-i-

In fact, we split the tree / into two subtrees t' and t" by removing the edge
(0, 1), and suppose that t" contains the vertex 0 and t' contains exactly 21 + 1
vertices. Now, summing over all t' and t", we obtain the relation (21).

We denote by bn^ the number of alternating permutations with k
distinguished elements. We derive the relation (21) for the sequence bn^- Let
σ,, = 1 be the first distinguished element in the permutation σ. We represent σ
in the form (σ'ΐσ"), where σ' = (σ\σ2...σ,·,_ι), σ" = (σ,·1+ι.. .ση). Then
/ ι = 2 / + 1 , and all the distinguished elements other than σ(1 lie in σ".
Summing over σ' and σ", we immediately obtain the relation (21) for the
sequence bn^, which completes the proof of Theorem 5.

7.3. Proof of Theorem 9. We denote by cn^ the number of trees t £ Wn-\ with
η — 2k + 1 end vertices at odd levels. Obviously cn,i = 1, since a tree t e Un-\
with η — 1 end vertices is precisely the tree to containing η — 1 edges going out
from the root. We now prove the relations (13) for the sequence cn,k- Consider
t 6 Wn-\ with k vertices at even levels. Then it has k— 1 non-end vertices at
odd levels and n — k—(k—\) = n — 2k+\ end vertices at odd levels.
Consequently, we can add a new vertex in k + {n-2k+\) different ways,
where in k cases the number of end vertices at odd levels is equal to
η - Ik + 2, and in η — 2k + 1 cases it is equal to n — 2k. Hence
cnjc = k· cn-itk + (n — 2k + 2)-Cn-ijc-ι, and we have proved (13) for the
sequence cn^, which completes the proof of Theorem 9.
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7.4. Proof of the first part of Theorem 12. Let t G Ln. An antimaximal descent in t
is a chain of edges, of which the first goes out from the root, and the last goes
into a non-branching vertex of t (that is, a vertex from which at most one edge
goes out) such that the edge going out from the vertex ζ goes into a branch
containing the minimal of the maximal vertices of the branch that go out from i.
We denote by β the statistic of the end of the antimaximal descent. We show
that β = [π ο φ] (α) = ξ~ι(α). In fact, as we showed in §2, φ (α) is the statistic of
the end of the maximal chain going left. But by definition TBn = φ{Τη), and the
maximal of the vertices i lies in the right half-branch, hence β = ξ~ι(α.). We
denote by bn^ the number of trees t e Ln-\ such that β(ή = α(ξ(ή) = k — 1. We
show that bn^ = an,k- For this we introduce the recursive relations cn,\ — an-\ and

(22) ^ = L 2 . ( / )l m )«—-m-W-i-i-
1=0 m=0 x ' v

for c,* = an,,t and c,,,* = bn<k independently.
Let t e Ln-\. If β(ή — 0, then exactly one edge goes out from the root, and

consequently bn,\ = an-\. Now suppose that β(ή > 0, that is, exactly two edges
go out from the root of / (t e Ln-\). We split t into two subtrees t' and t" by
removing these edges. Suppose that the vertex η is contained in t'. Then
clearly the vertex k— 1 is contained in t" (by the definition of an antimaximal
descent). We denote by / the number of vertices of t" less than k — 1, and by
m the number of vertices of t' greater than k—\. Summing over all t' and t",
we immediately obtain the relation (22) for the sequence bn^·

Let σ 6 Altn, and let k = ε(σ) be the first element of the permutation σ.
Clearly, αη,ι = an-\ (see §1). Now suppose that k>\, σ(1 = 1, σ,·2 = η,
i — min(zi,/2)· We represent σ in the form (σ'σ,σ"), where σ' = (σι, ...,σ,·_ι),
σ" — (σ,+ι, ... ,ση). We denote by / the number of elements σ,· in σ" such that
1 < σ,· < k, and by m the number of elements σ, in σ" such that k < σ,· < «.
We show that by summing over all σ' and σ" we obtain the relation (22) for
the sequence an^· For this we observe that when i = i\ the summation will run
over / and m such that n — l — m is even, and when i = ii over / and m such
that n — l — m is odd. Thus we have proved identical recurrence relations for
an{ and bn^, which completes the proof of the theorem.

7.5. Proof of Theorem 17. We denote by cn{ the number of trees t € Wn such
that exactly k edges go out from a vertex. We have the relation

n - l

(23) Σ In - 1\
I \Cn-l-itk-l αι

1=1 ^ '

In fact, we split t into two subtrees t' and /" by removing the edge (0, 1).
Suppose that /" contains / + 1 vertices, and t' contains the vertex 0. Analysing
the two cases / = 0 and /> 0 separately and summing over all /' and /", we
obtain the relation (23).
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We now prove the relation (23) for the sequence bn<k, where bn^ is the
number of permutations σ e Altn, κ(σ) = k, σ,, = 1, σ,2 = η, i = max(ii, ii). We
represent σ in the form (σ'σ,σ"), where σ' = (σ\, ... ,σ,_ι), σ" — (σ,+ι> .. . ,ση).
We observe that σ' contains k — 1 extreme elements but σ" does not contain
them, and also that when ι = i\ the number i is even, and when / = 12 it is
odd. Analysing the cases / = η and / < η separately and summing over σ' and
σ", we immediately obtain the relation (23) for the sequence bn<k, in which the
summation goes over / = « — /. This completes the proof of Theorem 17, since
by Theorem 10 the statistic on Ln of the length of minimal descent is
equivalent to the statistic on Wn of the number of edges going out from the
root.

7.6. Proof of Proposition 9. We construct the surjection y : Qn -+ 25n as follows.
Let t e Qn be a weakly embedded tree, and let P\,P2,... be the sets of
vertices of its subtrees obtained by removing all the edges going out from the
root. We put y(t) = ρ = {P\,Pi •• ·) € 23n. We show that y brings about a
bijection between weakly embedded trees without branchings at non-rooted
vertices and 35n. In fact, if one of the subtrees of t obtained by removing all
the edges going out from the root contains vertices of the set
Ρ — {P\ <pi< ••· < Pi}, then only one edge can go from p\ to P2, one from
Pi to ρ·}, and so on. Thus a weakly embedded tree t without branchings at
non-rooted vertices is restored uniquely from ρ e 23n, y(t) = p, which implies
the first part of Proposition 9.

The proof of the second part of Proposition 9 is based on a different
construction. Let {{p\,qi),{pi,qi), ••••,(pi,qi)} be the set of edges of a weakly
embedded tree / not going out from the root, where p\ <p2 < ... <pi, which
is possible if t has no branchings. The condition for the lack of embedded
edges in this language means that q\ < q2 < ... < qi (if #, > qt+ι, then the
edges (pi,qi) and (/?Ι+ι,<7,+ι) are embedded). We now consider a path on the
lattice Z 2 with start (0, 0) and end (2n, 0) (for the definition see [1], for
example), having the form

(? i+Pi ,? i -Pi)i(fl. +Ρι + 1,9ι-Ρΐ + 1).,·.··,(«

(92 +P2.92 - P2), · · ·, (qi +Pi, qi - Pi), • • •, (n + pt, η - pi),..., (2n,0).

It is well known that the number of such paths is equal to the Catalan
number (see [1], §5.2, for example), which completes the proof of
Proposition 9.

§8. Remarks, open problems, and further perspectives

8.1. We should be interested in obtaining direct combinatorial proofs of
identities of type (1) for statistics equivalent to the Entringer statistic on
various classes of increasing trees.
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8.2. Springer [28] and Arnol'd [29], [30] have proposed generalizations of the
numbers an^ to other systems of roots. The authors do not know of an
interpretation of them in the form of the numbers of certain trees. It would be
of particular interest to obtain a generalization of Proposition 7 and the
identity χ{Αη; 1, — 1) =an-\. In this case, obviously, we need to consider the
Tutte dichromate of the corresponding system of roots. The authors intend to
return to this question later.

8.3. In [31] the authors consider the "unlabelled analogue" of the bijection ρ of the
present work. The role of increasing trees is played by plane trees with a hanging
root, which, as is known (see [1]), have the Catalan number. On them we can also
introduce the action of an "unlabelled analogue" of the Foata group, the number
of orbits of which is equal to the number of plane trees with branchings on even
levels and is equal to the Motzkin number (see [1], [32], [33], for example). It is
possible that there are unlabelled analogues of other classic combinatorial objects.

8.4. Let N(ri) be the subgroup of GL(n, ¥2) consisting of upper triangular
matrices with ones on the diagonal. Kirillov remarked in [34] that the number
of classes of conjugate elements of N(n), like the number of orbits of the
coadjoint representation of N(n), is equal to 1,2, 5, 16, 61 for small n, that is,
it coincides with an for η < 5. However, for η — 6 we obtain 275 > 272 = Of,
conjugacy classes (see [35]). If it turned out that the number of some
conjugacy classes of N(n) is equal to an, it would be interesting to generalize
this fact to all fields F 9 and to other systems of roots.

8.5. Kreweras [36] established a connection between the polynomial fn{x)
(see §3) and majorizing sequences. An explicit involution on majorizing
sequences, which proves that /«(-I) = an, various generalizations, and a
connection with the theory of representations of the symmetric group were
considered by the last two authors in [37].

8.6. Theorem 16 on the equivalence of the statistics β and <5 on geometric
classes of increasing trees is connected with the Schutzenberger shift
(jeu de taquin), which plays a fundamental role in the theory of
representations of the symmetric group (see [25], [38]). A generalization to any
partially ordered set was obtained in [25]. Generalizations connected with the
statistics α, ν and so on are not known to the authors.

8.7. "Multidimensional analogues" of classic combinatorial objects are well
known. Thus, the role of ordinary trees is played by fc-dimensional trees, that
of binary trees by (k+ l)-ary trees, and so on (see [9], for example). It would
be interesting to obtain a multidimensional generalization of the numbers an

and polynomials fn(x) in the spirit of the present article.

8.8. The authors do not know of a simple explicit bijection between Tn and
Qn-\. It is possible that the discovery of it would give a simple proof of
Theorems 12-15.
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8.9. Various authors at different times have studied ^-analogues of the
numbers an, connected with the statistic on Altn of the number of inversions
of permutations. Extensive information about them is collected in [1]. It would
be interesting to obtain ^-analogues of the corresponding statistics on
increasing trees. In this connection we mention the paper [39], in which a kind
of ^-analogue of Cayley's formula is presented.

8.10. It would be interesting to obtain a generalization of relations of the type
(15) for Tutte polynomials of bichromatic and fc-chromatic graphs (see [8], [9],
for example), since in these cases there are simple multiplicative formulae for
the number of spanning trees.

Table I. List of notations

1. Sets

Altn — alternating permutations, §2.1.
Fn — the set of all trees, §2.2.
Un—the set of increasing trees, §2.2.
Bn — the set of binary increasing trees, §2.2.
F n —the set of 0-2 binary trees, §2.2.
Gn — the Foata group, §2.3.
Ln — the set of 0-1-2 increasing trees, §2.3.
LBn — the set of 0-1-2 binary increasing trees, LBn = q>(Ln), §2.3.
Ο ι — the set of trees in the orbit of the Foata group corresponding to a given

t G Ln, §2.3.
En—the set of even trees, §3.1.
Rn — the set of integer sequences (z\, . . . ,zn), in which l < z ( < / i + l - i , §3.2.
Z n — the set of elements of Rn such that z\ ^ zi > z-j ̂  ..., §3.2.
Fn—the set of rooted trees with an arbitrary root, §3.3.
p = (P\,P2, ·••) — a collection of unordered subsets of the fixed set

[n] = {1, . . . ,/i} such that Ρ, η P} = φ, i ψ], Pt ψ &, \JtP, = [n], §3.3.
©„ — the set of such collections, §3.3.
33̂  — the set of such collections in which |P,| is odd, §3.3.
FBn — the set of binary trees, §3.5.
Wn — the set of trees with branchings at even levels, §4.1.
WBn = 9{Wn), §4.2.
LBn = h(LB)—trees symmetric to LBn, §4.2.
Tn — the set of embedded trees, §5.1.
TBn = q>{Tn), §5.2.

Qn—the set of weakly embedded trees, §5.3.
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2. Bijections

φ
π
λ
ω

μ
ρ

h
η

π

:Sn-+

:Un->
: BH/Gn

: Alt* -

: Sn -*

• Z n ^

: Wn^
• LBn -

• WBn -

• TBn -

Bn, ψ : Alt» ->
Bn, §2.2.

- L B - i , §2.3.

* Bn/Gn, §2.3.

Rn, ω : Altn -»·

En, §3.2.

Ln, §4.2.

* LBn, §4.2.

- LBn, §4.2.

- £„, §5.2.

Vn,

Zn,

§2.2.

§3.2.

C : 2« - Wn, §5.3.
θ : Η —> //, where // is any geometric class of trees, §6.1.

3. Statistics

ε : 5η —> Z + , ε : Altn —• Z+, statistic of the first element, §2.2.

α = φ~1(φ(ε)) : [/„ —» Z + , statistic of the maximal vertex joined to the root,

§2.2.

β : Un —> Z + , statistic of the end vertex of a minimal descent, §2.3.

δ : {/„ —> Z+, statistic of the vertex joined to η by an edge, §2.3.

ν : Un —> Z+, statistic of the number of end vertices, §2.4.

inv : Fn —» Z + , statistic of the number of inversions of a tree, §3.3.

j : {/„ ^^ α sequence, statistic of the minimal descent vector, §6.1.

κ : Sn —* Z + , κ : Altn —> Z + , statistic of the number of extreme elements of a

permutation, §6.2.

4. Sequences

an — the number of alternating permutations, §2.1.

anik — the Entringer number, §2.1.

dn:k — the number of 0-1-2 trees with k end vertices, §2.4.

bn — the Bell number, §5.4.

cn — the Catalan number, §5.4.
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Table II. Some values of sequences

1) Numbers of alternating permutations.
din — En — the Euler numbers;
a2n-i = 22"(22n - \)Bn/2n, where Bn are the Bernoulli numbers.
2) the Euler-Bernoulli triangle, the Entringer numbers αη^.

1

0 1

1 1 0

0 1 2 2

5 5 4 2 0

0 5 10 14 16 16

61 61 56 46 32 16 0

0 61 122 178 224 256 272 272

1385 1385 1324 1202 1024 800 544 272 0

3) The numbers άη^

η *

1

2

3

4

5

6

7

1

1

1

1

1

1

1

1

2

1

4

11

26

57

120

3

4

34

180

768

4

34

496

4) The Catalan and Bell numbers.

η

On.

b
n

1

1

1

2

2

2

3

5

5

4

14

15

5

42

52
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Table III. The sets Alt(n) and Vn, η ^ 5
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1) Alt(n), π < 5.

η = 1 (1) π = 2 (12) η = 3 (132), (231)

π = 4 (1324), (1423), (2314), (2431), (3412)

η = 5 (15243), (15342), (14253), (14352), (13254),

(25143), (25341), (24153), (24351), (23154),

(35142), (35241), (34152), (34251), (45132), (45231)

2)Vn,n<5.

η · 1 η « 1 <

Α» «Α.

Γ V \» V \3 J
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Table IV. The sets Ln, LBn, η < 4

l)Ln,n<4.

n«0 , 0

<Az I A J )Α2

A* iA* JJ ι

i
0 0 0 0 0

l\ z{ \i A

]

2) LBn, η < 4.

n.2 , ι

2/ \

A3
\a -3/ \-a

< Ί 1 < Ι f 1

2. \2 ^^ V \l

) 3 ^
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Table V. The sets En, η ^ 5
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Λ* Λ, .Λ»

i
3/ \2 2,

r ,/K* ,/Ks- </K,
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Table VI. The sets Wn and WBn, η < 4

nmO 0 0 n«2. υ

i l ΐΛ°2·

2)WBn,n<4.

Υ <
ζ/' \ \

Λ2 if,

\ /\ A2/\s 3/\2 */\l τΛλ 2Λ3 zAk \z \l
\* \*i \a A \4 \i \3 \ 3

1/ \h



1)Γη,η<5.

κ-1 {o
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Table VII. The sets Tn and TBn, Qn

111

2
3

i i

o c o O

2 U i/\3 2Λ4 ΖΛΛ 4 U a

s

ο

2} U 5
ι ιΛ» 1Λ2 i/\i <Λ3 <Λ^ <
3 3 Λ\ U aAi ζΛ« ^Λ^. j-

1 6-Ι 5-Ι 5" Ι

2)ΓΒη,η<5.

=2 ι
Λ 3
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» 1
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