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Abstract. We give an elementary proof of the recent hook inequality given in [MPP3]:∏
u∈λ

h(u) ≤
∏
u∈λ

h∗(u),

where h(u) is the usual hook in a Young diagram λ, and h∗(i, j) = i+ j − 1. We then obtain a
large variety of similar inequalities and their high-dimensional generalizations.

Introduction

In Enumerative Combinatorics, the results are usually easy to state. Essentially, you are
counting the number of certain combinatorial objects: exactly, asymptotically, bijectively or
otherwise. Judging the importance of the results is also relatively easy: the more natural or
interesting the objects are, and the stronger or more elegant is the final formula, the better.
In fact, the story or the context behind the results is usually superfluous since they speak for
themselves. In the words of Gian-Carlo Rota, one of the founding fathers of modern enumerative
combinatorics:

“Combinatorics is an honest subject. [...] You count balls in a box, and
you either have the right number or you haven’t.” [Rota]

It is only occasionally the context makes the difference; this paper is an exception.

The subject of this paper are certain new combinatorial inequalities for hook numbers of Young
diagrams, rooted trees and their generalizations. In two special cases these inequalities are known,
have technical proofs, and arise in somewhat different areas. Not only do we give elementary
proofs of these results, we also setup a new framework which allows us to obtain their advanced
generalizations. Viewed by themselves, our most general inequalities overwhelm the senses – they
are just too far removed from anything the reader would know and recognize as interesting (see
Section 6).

We structure the paper in a way so as to postpone stating the most general results until the
end. First, we tell the story of two combinatorial inequalities which would ring a lot of bells
for people in the area (sections 1 and 2). We then introduce combinatorial tools to prove the
inequalities (majorization and shuffling), see sections 3 and 4. We then gradually proceed with
our generalizations, hoping not to lose the reader in the process.

1. First story: The number of standard Young tableaux

1.1. Hook-length formula. Our story starts with the classical hook-length formula [FRT] for
the number of standard Young tableaux of a given shape. This formula is “a beautiful result in
enumerative combinatorics that is both mysterious and extremely well studied” [MPP1]. We recall
it first starting from basic definitions.
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Let λ = (λ1, . . . , λ`), λ1 ≥ . . . ≥ λ` > 0 be an integer partition. We say that λ is a partition
of n, write λ ` n or |λ| = n, if λ1 + λ2 + . . .+ λ` = n. Here n is also called the size of λ. Let λ′

denotes the conjugate partition of λ. An example of λ = (4, 3, 1) and λ′ = (3, 2, 2, 1) is given in
Figure 1.

The Young diagram of a partition λ is a subset of N2 (visualized as the set of unit squares),
with λ1 squares in the first row, λ2 squares in the second row, etc. By tradition, a diagram is
drawn as in Figure 1, with the top left corner (1, 1). For a square u = (i, j) of the Young diagram,
we write (i, j) ∈ λ, with the first coordinate increasing downward and the second from left to
right.
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7

8

λ λ' A

Figure 1. Young diagram λ = (4, 3, 1), conjugate diagram λ′ = (3, 2, 2, 1), and
standard Young tableau A ∈ SYT(λ).

A standard Young tableau (SYT) of shape λ is an array A of shape λ with the numbers
1, . . . , n, where n = |λ|, each appearing once, increasing in rows and columns (see Figure 1).
Denote by SYT(λ) the set of standard Young tableaux of shape λ. The number

∣∣SYT(λ)
∣∣

is fundamental in Algebraic Combinatorics; it is equal to the dimension of the corresponding
irreducible representation of Sn and generalizes binomial coefficients, Catalan numbers and ballot
numbers. We refer to [Sta, Ch. 7] for background and further references.

The hook length hλ(i, j) := λi − i + λ′j − j + 1 of a square u = (i, j) ∈ [λ] is the number of

squares directly to the right or directly below u, including u. For a partition λ = (6, 6, 5, 4, 1)
and u = (2, 3), we have h(2, 3) = 6, see Figure 2. The celebrated hook-length formula by Frame,
Robinson and Thrall [FRT] states:

(1.1)
∣∣SYT(λ)

∣∣ = n!
∏
u∈λ

1

h(u)
,

(see §7.2). For example, for λ = (4, 3, 1) as in the figure, we have:∣∣SYT(4, 3, 1)
∣∣ =

8!

6 · 4 · 4 · 3 · 2
= 70.

1.2. Hook inequalities. We are now ready to state the first result which motivated much of
our study. Denote by h∗(i, j) = i + j − 1 the anti-hook length of the square u = (i, j) ∈ λ. It
is the number of squares directly to the left or directly above u, including u. For a partition
λ = (6, 6, 5, 4, 1) and u = (2, 3), we have h∗(2, 3) = 4, see Figure 2.

Theorem 1.1 ([MPP3, Prop. 12.1]). For every Young diagram λ, we have:∏
u∈λ

h(u) ≤
∏
u∈λ

h∗(u).

Moreover, the equality holds if and only if λ has a rectangular shape.

For example, for λ = (4, 3, 1) as in the figure, we have:

6 · 4 · 4 · 3 · 2 = 576 ≤ 4 · 4 · 3 · 3 · 3 · 2 · 2 = 1728.



HOOK INEQUALITIES 3

6 4

4

3

2

1

1

1

Hλ

1 2

3

4

2 3

3

4

H*
λ

Figure 2. Hook length h(2, 3) = 6, anti-hook length h(2, 3) = 4 for a partition
λ = (6, 6, 5, 4, 1). Table of hook numbers Hλ =

{
h(i, j)

}
and table of anti-hook

numbers H∗λ =
{
h∗(i, j)

}
for λ = (4, 3, 1) ` 8.

Remark 1.2. The theorem is a corollary of a much more general inequality we prove in [MPP3,
Thm 3.3], which in turn is a corollary of the Naruse hook-length formula for the number of
standard Young tableaux of skew shape. This formula was discovered by Naruse in the intersection
of Representation Theory and Schubert Calculus; see [MPP1, MPP2] for both algebraic and
combinatorial proof and further references. We refer to [Swa] for a purely combinatorial proof of
Theorem 1.1, from a very different point of view.

To really understand the above theorem, start with the following:

Observation 1.3. For every Young diagram λ, we have:∑
u∈λ

h(u) =
∑
u∈λ

h∗(u).

Proof. Note that both sides count the number of pairs of squares x, y ∈ λ, such that x is either
directly above y or directly to the left of y, or x = y. �

There are two implications of this observation. First, the theorem cannot have a “trivial”
proof by using monotonicity of anti-hooks over hooks. Second, this suggests the distribution of
hooks and anti-hooks have the same mean, but the variance of hooks is larger than the variance
of anti-hooks. That is, in fact, true and follows from our later results:

Corollary 1.4. For every Young diagram λ, we have:∑
u∈λ

h(u)2 ≥
∑
u∈λ

(
h∗(u)

)2
.

For example, for λ = (4, 3, 1) as above, we have:

62 + 42 + 42 + 32 + 22 + 12 + 12 + 12 = 84 ≥ 42 + 42 + 32 + 32 + 32 + 22 + 22 + 12 = 68.

1.3. More hook inequalities. Here is yet another corollary from our general results. For
(i, j) ∈ λ, let

a(i, j) :=
∣∣{(p, q) ∈ λ : i ≤ p, j ≤ q

}∣∣ and a∗(i, j) := i · j .

Here a(i, j) is the area of λ below and to the right of (i, j). Similarly, a∗(i, j) is the area of λ above
and to the left of (i, j). We refer to these as area and anti-area numbers. For λ = (6, 6, 5, 4, 1) and
u = (2, 3) as in Figure 2, we have a(2, 3) = 9 and a∗(2, 3) = 6. We have the equality analogous
to Observation 1.3 and the following analogue of Theorem 1.1.

Corollary 1.5. For every Young diagram λ, we have:∏
u∈λ

a(u) ≤
∏
u∈λ

a∗(u).
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For example, for λ = (4, 3, 1) as in the Figure 1, we have:

8 · 5 · 4 · 3 · 2 = 960 ≤ 6 · 4 · 4 · 3 · 3 · 2 · 2 = 3456.

The reader will have to wait until Section 3 to see how these results fit together.

2. Second story: The number of increasing trees and linear extensions

2.1. Increasing trees. Let τ be a rooted tree on n vertices, one of which is called the root
R ∈ V . We draw the trees as in Figure 3. An increasing tree of shape τ is a labeling of τ with the
numbers 1, . . . , n, each appearing once, increasing downwards, away from R. Denote by IT(τ)
the set of increasing trees of shape τ .

The number
∣∣IT(τ)

∣∣ famously has its own analogue of the “hook-length formula” (see §7.2).
For a vertex v ∈ τ , a branch in τ below v consists of vertices w ∈ τ such that the shortest path
from w to R goes through v; denote by b(v) the size of this branch. We have:

(2.1)
∣∣IT(τ)

∣∣ = n!
∏
v∈τ

1

b(v)
.

For example, for τ as in the figure, we have:∣∣IT(τ)
∣∣ =

8!

8 · 4 · 3 · 2
= 210.
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Figure 3. Rooted tree τ with n = 8 vertices, increasing tree T of shape τ , table
of branch sizes Bτ =

{
b(v)

}
and table of distances Dτ =

{
d(v)

}
.

We can now state the inequality analogous to Theorem 1.1. For a vertex v ∈ τ , denote by d(v)
the distance from v to the root R, defined as the number of vertices on the shortest path from v
to R (see Figure 3).

Theorem 2.1. For every rooted tree τ , we have:∏
v∈τ

b(v) ≤
∏
v∈τ

d(v).

Moreover, the equality holds if and only if τ is a path with an endpoint at R.

For example, for τ as in Figure 3, we have:

8 · 4 · 3 · 2 = 192 ≤ 4 · 4 · 3 · 3 · 2 · 2 · 2 = 1152.

The theorem is easier than Theorem 1.1 and has a straightforward proof by induction which
we leave to the reader. However, the following direct analogue of Observation 1.3 is a warning
that it is still nontrivial:

Observation 2.2. For every rooted tree τ , we have:∑
v∈τ

b(v) =
∑
v∈τ

d(v).
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We omit the easy double counting proof of the observation. Before we derive Theorem 2.1, let
us first state the analogue of Corollary 1.4, which is of independent interest.

Corollary 2.3. For every rooted tree τ , we have:∑
v∈τ

b(v)2 ≥
∑
v∈τ

d(v)2.

Again, we derive the corollary from our general results.

2.2. Linear extensions. Let P be a ranked poset on a finite set X, |X| = n, with linear ordering
denoted by ≺. The upper order ideal P�x := {y ∈ X : y � x} ⊆ P is the set of elements in P
greater or equal to x. Similarly, the lower order ideal P�x := {y ∈ X : y � x} ⊆ P is the set
of elements in P smaller or equal to x. A linear extension of P is a bijection f : X → {1, . . . , n}
such that f(x) < f(y) for all x ≺ y. Let LE(P) be the set of linear extensions of P.

Note that when P is a Young diagram λ or a rooted tree τ with natural ordering, the number∣∣LE(P)
∣∣ of linear extensions coincides with

∣∣SYT(λ)
∣∣ and

∣∣IT(τ)
∣∣, respectively. However, for

general posets the number
∣∣LE(P)

∣∣ is hard to find both theoretically and computationally. In

fact,
∣∣LE(P)

∣∣ is #P-complete to compute [BW] (see also [DP]), so no simple product formula is
expected to exist in full generality (cf. [Pro]).

Denote by r≺(x) :=
∣∣P�x∣∣ the number of elements in P greater or equal to x. We have the

following general inequality:

Theorem 2.4 ([HP, Cor. 2]). For every poset P, in the notation above, we have:∣∣LE(P)
∣∣ ≥ n!

∏
x∈P

1

r≺(x)
.

This lower bound was proposed by Stanley [Sta, Exc. 3.57] and proved by Hammett and Pittel
in [HP] by an involved probabilistic argument. Heuristically, the theorem says that events Ax :=
“random bijection f : X → {1, . . . , n} has f(x) < f(z) for all z � x” have positive correlation:

P (Ax ∩Ay) ≥ P (Ax) · P (Ay),

cf. [She].
When P is a rooted tree τ on n vertices, with the order “≺” increasing down, the inequality in

the theorem is an equality, and the sizes of upper order ideal are exactly the branch size numbers:
r≺(v) = b(v). When the order is reversed, we obtain the distance numbers: r�(v) = d(v). We
thus have:

n!
∏
v∈τ

1

b(v)
=
∣∣IT(τ)

∣∣ ≥ n!
∏
v∈τ

1

d(v)
,

which implies the inequality in Theorem 2.1.

3. Majorization approach

3.1. Definitions and background. Let a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Rn be two non-
increasing sequences a1 ≥ . . . ≥ an > 0 and b1 ≥ . . . ≥ bn > 0. We say that a majorizes b, write
a D b, if

(3.1)
a1 + . . . + ak ≥ b1 + . . . + bk for all 1 ≤ k < n, and

a1 + . . . + an = b1 + . . . + bn .

See [MOA] for a thorough treatment of majorization. We need the following important result:
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Theorem 3.1 (Karamata’s inequality). Fix a strictly convex function ϕ : R→ R. Let a,b ∈ Rn
be two sequences, s.t. a D b. Then

n∑
i=1

ϕ(ai) ≥
n∑
i=1

ϕ(bi).

Moreover, the equality holds if and only if a = b.

This result is classical and the converse also holds, but we will not need it. For streamlined
proofs and further references see e.g. [HLP, §3.17] and [BB, §28, §30].

Since our hook numbers do not have a natural ordering, we will need a multiset analogue of
majorization. For two multisets A and B with n real numbers, let a and b be non-increasing
ordering of A and B, respectively. We say that A majorizes B, write A D B, whenever a D b.
The following is a sufficient condition for majorization.

Lemma 3.2. Let A,B two multisets with n real numbers. Suppose for all B′ ⊆ B, there exist
A′ ⊆ A, such that |A′| = |B′| and ∑

x∈A′
x ≥

∑
y∈B′

y .

Then A D B.

The lemma is also standard and straightforward. Since we use it repeatedly, we include a
simple proof for completeness.

Proof. Let a and b be non-increasing ordering of A and B, respectively. Take B′ = {b1, . . . , bk}
and the corresponding A′ =

{
ai1 , . . . , aik

}
, where 1 ≤ i1 < · · · < ik ≤ n. We have:

b1 + . . . + bk ≤ ai1 + . . . + aik ≤ a1 + . . . + ak ,

as desired. �

3.2. Applications to hook inequalities. Using the notation of Section 1, we can now state
the following new result.

Theorem 3.3. Let λ be a Young diagram. Denote by Hλ =
{
h(i, j), (i, j) ∈ λ

}
the multiset of

hook numbers, and by H∗λ =
{
h∗(i, j), (i, j) ∈ λ

}
be the multiset of anti-hook numbers. Then

Hλ D H∗λ.

Here the equality part of majorization (3.1) is exactly Observation 1.3. The theorem will be
deduced in the next section from Lemma 3.2.

Now, since ϕ(z) = z2 is strictly convex, Theorem 3.3 and Theorem 3.1 imply Corollary 1.4.
Similarly, since ϕ(z) = − log(z) is strictly convex on R>0, we obtain Theorem 1.1 from Theo-
rem 3.3 and Theorem 3.1 by taking logs on both sides. The details are straightforward.

Theorem 3.4. Let λ be a Young diagram. Denote by Aλ =
{
a(i, j), (i, j) ∈ λ

}
the multiset

of area numbers, and by A∗λ =
{
a∗(i, j), (i, j) ∈ λ

}
the multiset of anti-area numbers. Then

Aλ D A∗λ.

By analogy with the argument above, we obtain Corollary 1.5 from Theorem 3.4 and Theo-
rem 3.1 by taking logs on both sides.

Theorem 3.5. Let τ be a rooted tree. Denote by Rτ =
{
r(v), v ∈ τ

}
the multiset of branch

numbers, and by Dτ =
{
d(v), v ∈ τ

}
the multiset of distance numbers. Then Rτ D Dτ .

Now Corollary 2.3 follows from Theorem 3.5 and Theorem 3.1 by taking ϕ(z) = z2, see the
argument above.
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4. Shuffling in the plane

4.1. Hook majorization. For a square (i, j) ∈ λ, denote by α(i, j) = λi − j the arm at (i, j),
and by β(i, j) = λ′j − i the leg at (i, j). Similarly, denote by α∗(i, j) = j and β∗(i, j) = i the

anti-arm and anti-leg. For a partition λ = (6, 6, 5, 4, 1) and u = (2, 3) as in Figure 2, we have
α(2, 3) = 3, α∗(2, 3) = 2, β(2, 3) = 2 and β∗(2, 3) = 1.

Shuffling in the plane. Let X ⊆ λ be a subset of squares. Perform two steps:
(1) Push all squares in X all the way up inside each column,
(2) Push all squares in X all the way left inside each row.

(1) (2)

Figure 4. Shuffling of 7 squares in λ = (4, 3, 3, 2).

Proof of Theorem 3.3. Take X = {x1, . . . , xk} ⊆ λ and shuffle it as above. After step (1), we
obtain set X ′ = {x′1, . . . , x′k} ⊆ λ, s.t.

(4.1)
α(x′i) ≥ α(xi), α∗(x′i) = α∗(xi) for all 1 ≤ i ≤ k, and

β(x′1) + . . . + β(x′k) ≥ β∗(x1) + . . .+ β∗(xk).

The first two inequalities hold by definition. The last inequality holds since all squares are pushed
up, where they maximize the legs (cf. the proof of Lemma 3.2).

Similarly, after step (2) applied to X ′, we obtain set Y = {y1, . . . , yk} ⊆ λ, s.t.

(4.2)
α(y1) + . . .+ α(yk) ≥ α∗(x′1) + . . .+ α∗(x′k), and

β(yi) ≥ β(xi), β∗(yi) = β∗(x′i) for all 1 ≤ i ≤ k.

Combining equations (4.1) and (4.2) we obtain:

(4.3)
α(y1) + . . .+ α(yk) ≥ α∗(x′1) + . . .+ α∗(x′k) = α∗(x1) + . . .+ α∗(xk),

β(y1) + . . . + β(yk) ≥ β(x′1) + . . . + β(x′k) ≥ β∗(x1) + . . . + β∗(xk).

Using
h(i, j) = α(i, j) + β(i, j) + 1, h∗(i, j) = α∗(i, j) + β∗(i, j) + 1

we can sum two equations in (4.3) to obtain

(4.4) h(y1) + . . .+ h(yk) ≥ h∗(x1) + . . .+ h∗(xk).

In summary, for every X ⊆ λ there exists Y ⊆ λ, |Y | = |X|, such that (4.4) holds. Now by
Lemma 3.2 we obtain the result. �

4.2. Proof deconstruction. Before we proceed to several generalizations let us reformulate the
proof of Theorem 3.3 using a different language.

Let h◦(i, j) = j + λ′j − i + 1 = α∗(i, j) + β(i, j) + 1 be the semi-hook length. For a given

subset X of squares in λ, denote by h(X), h◦(X) and h∗(X) the sums of hooks, semi-hooks and
anti-hook numbers, respectively.

In the proof above, the sum of inequalities in (4.1) and in (4.2), gives

h∗(X) ≤ h◦(X ′) and h◦(X ′) ≤ h(Y ),
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respectively. Combined, these give h∗(X) ≤ h(Y ), a consequence of inequalities in (4.3). This
implies majorization by Lemma 3.2. �

Note that in the proof we split hooks and anti-hooks into sums of arms/legs and anti-arms/anti-
legs, respectively. This is out of necessity as individually these parameters are easier to control.
The approach we take below is to split the generalized hooks into even more parameters.

4.3. Area majorization. We need new notation. For a square (i, j) ∈ λ and integers p, q ∈ Z,
denote

apq(i, j) :=

{
1 if (i+ p, j + q) ∈ λ,
0 otherwise.

Then
a(i, j) :=

∑
(p,q)∈N2

apq(i, j) , a∗(i, j) :=
∑

(p,q)∈N2

a−p,−q(i, j).

Indeed, think of subscript (p, q) as the vector shift. Then the first sum is the number of squares
in λ to the right and below (i, j), while the second sum is the number of squares in λ to the left
and above (i, j), as desired.

Proof of Theorem 3.4. We proceed as in the proof above. Let

a◦(i, j) :=
∑

(p,q)∈N2

ap,−q(i, j) .

For a subset of squares X ⊆ λ denote by

apq(X) :=
∑

(i,j)∈X

ap,q(i, j), a◦pq(X) :=
∑

(i,j)∈X

a◦p,−q(i, j), a∗pq(X) :=
∑

(i,j)∈X

a∗−p,−q(i, j).

Now consider the shuffling of squares X → X ′ → Y as in the proof above. For every (p, q) ∈ N,
we have:

a∗pq(X) ≤ a◦pq(X
′) ≤ apq(Y ).

This follows simply by the geometry of partitions: rows above are larger or equal than rows
below, and the columns to the left are larger or equal than columns to the right. Summing this
over all (p, q) ∈ N, we conclude:

a∗(X) ≤ a◦(X ′) ≤ a(Y ).

This implies majorization by Lemma 3.2. �

4.4. Generalization to weighted squares. We need new notation. Fix a function g : N2 → R+

non-increasing in both coordinates. For a square (i, j) ∈ λ, denote

ψpq(i, j) :=

{
g(p, q) if (p+ i, q + j) ∈ λ,
0 otherwise.

and
ψ(i, j) :=

∑
(p,q)∈N2

ψpq(i, j) , ψ∗(i, j) :=
∑

(p,q)∈N2

ψi−p,j−q(p, q).

Think of subscript (p, q) as the vector shift. Then ψ(i, j) is a sum of function g over the fourth
quadrant starting at (i, j), while ψ∗(i, j) is a sum of function g over the second quadrant starting
at (i, j).

For example, when g(p, q) = 1 we get the area and anti-area numbers: ψ(i, j) = a(i, j) and
ψ∗(i, j) = a∗(i, j). Similarly, let

(4.5) g(p, q) :=

{
1 if p = 0 or q = 0,

0 otherwise.
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Then we get the hook and anti-hook numbers in this case: ψ(i, j) = h(i, j) and ψ∗(i, j) = h∗(i, j).

Theorem 4.1. Let λ be a Young diagram and fix g : N2 → R+. Denote by

Ψ〈λ, g〉 :=
{
ψ(i, j), (i, j) ∈ λ

}
and Ψ∗〈λ, g〉 :=

{
ψ∗(i, j), (i, j) ∈ λ

}
the multisets of numbers defined above. Then Ψ〈λ, g〉 D Ψ∗〈λ, g〉.

This result is a common generalization of both Theorem 3.4 and Theorem 3.3. In the examples
above, when g(p, q) = 1 we have Ψ〈λ, g〉 = Aλ and Ψ∗〈λ, g〉 = A∗λ. Similarly, for g as in (4.5), we
have Ψ〈λ, g〉 = Hλ and Ψ∗〈λ, g〉 = H∗λ. Since the proof follows verbatim the proof of Theorem 3.4,
we omit the details.

5. Generalized shuffling

5.1. Hooks in space. In R3, solid partitions Λ are defined as lower order ideals of the poset(
N3,≺

)
, with the natural ordering making (0, 0, 0) the smallest (see §2.2). Here ‘down along the

x-axis’ means decreasing the x-coordinate, and similarly with ‘up’ and other axes.
Note that solid partitions generalize Young diagrams and can be viewed as arrangements of

unit cubes, such that whenever (i, j, k) ∈ Λ we also have (p, q, r) ∈ Λ for all p ≤ i, q ≤ j, and
r ≤ k.

Now, there are two natural notions of the hooks: 1- and 2-dimensional. More precisely, let

R(i, j, k) :=
∣∣{(p, j, k) ∈ Λ : i ≤ p

}
∪
{

(i, q, k) ∈ Λ : j ≤ q
}
∪
{

(i, j, r) ∈ Λ : k ≤ r
}∣∣

Q(i, j, k) :=
∣∣{(p, q, k) ∈ Λ : i ≤ p, j ≤ q

}
∪
{

(p, j, r) ∈ Λ : i ≤ p, k ≤ r
}

∪
{

(i, q, r) ∈ Λ : j ≤ q, k ≤ r
}∣∣

These are subsets of squares of Λ along the 1-dimensional rays or 2-dimensional quadrants ema-
nating from a cube (i, j, k) ∈ Λ. The anti-hooks R∗(i, j, k) and Q∗(i, j, k) are defined analogously,
with the direction of rays/quadrants reversed.

Theorem 5.1. Let Λ be a solid partition. Denote by RΛ, QΛ, R∗Λ, and Q∗Λ the multisets of
1- and 2-dimensional hook numbers and anti-hook numbers defined above. Then RΛ D R∗Λ and
QΛ D Q∗Λ.

We prove the theorems later in this section. But first, by analogy with the arguments in
Section 3, we obtain the following generalizations of Theorem 1.1.

Corollary 5.2. Let Λ be a solid partition. Then:∏
(i,j,k)∈Λ

R(i, j, k) ≤
∏

(i,j,k)∈Λ

R∗(i, j, k), and
∏

(i,j,k)∈Λ

Q(i, j, k) ≤
∏

(i,j,k)∈Λ

Q∗(i, j, k).

There is also volume and anti-volume numbers, generalizing area and anti-area numbers:

V (i, j, k) :=
∣∣{(p, q, r) ∈ Λ : i ≤ p, j ≤ q, k ≤ r

}∣∣,
V ∗(i, j, k) :=

∣∣{(p, q, r) ∈ Λ : p ≤ i, q ≤ j, r ≤ k
}∣∣.

Theorem 5.3. Let Λ be a solid partition. Denote by VΛ and V∗Λ the multisets of volume and
anti-volume numbers defined above. Then VΛ D V∗Λ.

This is a generalization of Theorem 3.4. By the same argument as above, we have the following
natural result generalizing Corollary 1.5.

Corollary 5.4. Let Λ be a solid partition. Then:∏
(i,j,k)∈Λ

V (i, j, k) ≤
∏

(i,j,k)∈Λ

V ∗(i, j, k) .
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This corollary has a curious implication. By Theorem 2.4, we have two lower bounds

(5.1)
∣∣LE(PΛ)

∣∣ ≥ n!
∏

(i,j,k)∈Λ

1

V (i, j, k)
, and

∣∣LE(PΛ)
∣∣ ≥ n!

∏
(i,j,k)∈Λ

1

V ∗(i, j, k)
,

where PΛ is the subposet of N3 restricted to Λ. Corollary 5.4 implies that the first of the bounds
in (5.1) is always sharper than the second. Of course, when Λ is a box these lower bounds
coincide.

5.2. Shuffling in space. We give a brief outline of the proof of theorems above. First, define
the shuffling in the space as follows.

Shuffling in N3. Let X ⊆ Λ be a subset of cubes. Perform three steps:
(1) Push all cubes in X all the way down along the x axis,
(2) Push all cubes in X all the way down along the y axis,
(3) Push all cubes in X all the way down along the z axis.

Let us concentrate on the 1-dimensional hook numbers. We introduce two intermediate hook
numbers: R◦(i, j, k) and R◦◦(i, j, k) with two rays pointing up along the y, z axes, and one ray
pointing up along the z axis, respectively. We then prove that∑

(i,j,k)∈X

R∗(i, j, k) ≤
∑

(i,j,k)∈X′
R◦(i, j, k) ≤

∑
(i,j,k)∈X′′

R◦◦(i, j, k) ≤
∑

(i,j,k)∈Y

R(i, j, k),

where X →(1) X
′ →(2) X

′′ →(3) Y is the result of making shuffling steps. Finally, by Lemma 3.2
we obtain the first part of Theorem 5.1. We omit the details.

5.3. Back to trees. Now that the reader is exhausted by 3-dimensional generalizations of the
hooks, the reader can restart anew with the following:

Shuffling in trees. Let X ⊆ τ be a subset of vertices and let w ∈ X be a vertex with the
smallest distance d(w). Perform the following steps:
• Move w into R. Now do the shuffling in each branch in τ rR by induction.

Sketch of proof of Theorem 3.5. For a set of vertices X ⊆ τ , denote by Y the result of the shuf-
fling. We need to show that ∑

v∈Y
d(v) ≤

∑
v∈X

r(v).

Observe that r(R) = |τ | ≥ d(w), so moving w to the root is always advantageous for the sum of
branch numbers. We continue by induction leaving the details to the reader. �

6. Greatest generalization

Let us now state the most general version of the hook inequalities that we promised in the
introduction. Denote by T1, . . . , Td infinite locally finite rooted trees. We view each Ti as a poset
with ordering towards the root Ri, and denote by di the distance function to Ri in the tree Ti.
Consider a poset P := T1 × . . .× Td with the natural ordering towards the root, and let Ω be a
finite lower ideal in P.

Let g : Nd → R+ be a fixed weight function non-increasing in all coordinates. We say that
elements v = (v1, . . . , vd) and w(w1, . . . , wd) in Ω have a m = (m1, . . . ,md) shift, if vi 4 wi and
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d(wi) − d(vi) = mi for all i. In this case we write v →m w . We can now define the hook and
anti-hook numbers

H(v) :=
∑

m∈Nd
g(m)

∑
w∈Ω

1{v→mw} , and

H∗(v) :=
∑

m∈Nd
g(m)

∑
w∈Ω

1{w→mv} .

Theorem 6.1. Let Ω be a lower order ideal in the product of trees T1 × . . . × Td poset. Fix
g : Nd → R+. Denote by HΩ,g :=

{
H(v), v ∈ Ω

}
and H∗Ω,g :=

{
H∗(v), v ∈ Ω

}
the multisets of

hook and anti-hook numbers defined above. Then HΩ D H∗Ω.

We leave to the reader to see how this result generalizes all previous results, and what inequal-
ities follow by Theorem 3.1. The shuffling in the product of trees is also straightforward: first
shuffle in T1, then in T2, etc. We omit the proof.

7. Final remarks

7.1. There is no universal agreement on the term “anti-hook”. While we follow e.g. [Jon], the
term “cohook” is also frequently used, see e.g. [BLRS, Sul]. Since both “cohook” and “anti-hook”
are also used in other contexts, we opted for the latter due to personal preferences.

7.2. The hook-length formula (1.1) has a number of different proofs (bijective, probabilistic,
analytic, etc.) as well as generalizations different from Naruse’s. The literature is too numerous
to include; see [CKP, §6.2] for a brief survey, and [Sta, Ch. 7] for further references.

The hook-length formula for trees (2.1) is due to Knuth [Knu, §5.1.4, Exc. 20], and can be
easily proved by induction via removing the root. Probabilistic and bijective proofs are given
in [SY] and [Beá], respectively.

7.3. Both hook-length formulas (1.1) and (2.1) have well understood q-analogues in terms of the
numbers of certain descents of the standard Young tableaux and increasing trees, respectively (see
e.g. [CKP, Sta, MPP1]). Since ϕ(n) := (n)q = 1+q+. . .+qn−1 = (1−qn)/(1−q) is logarithmically
concave in n, this gives a q-deformation of Theorem 1.1. It would be interesting to see if our
hook inequalities have natural q-analogues as polynomials in q (i.e. for each coefficient), cf. [Bre,
§2].

7.4. For solid partitions, there is no known closed formula for the number of linear extensions.
However, in this case both lower bounds (5.1) are not very sharp and weaker than other, more
elementary bounds (see [MPP3]).

7.5. Despite their origin, in some ways our hook inequalities have a different nature than the
inequalities usually studied in Enumerative and Algebraic Combinatorics, whose proofs are non-
robust and rely on the global algebraic structure (see e.g. [Brä, Pak]). Instead, they resemble
many isoperimetric and other geometric inequalities, where the proofs are obtained by incremental
improvements, sometimes disguised by the variational principle (see e.g. [BZ]). In fact, it is not
hard to give an analytic generalization of Theorem 4.1 to the case when λ is replaced by a
monotone curve, and g is replaced by a Lebesgue measurable non-negative function. It would be
interesting to see if there are any new applications of this generalization.

7.6. Swanson writes: “It would be interesting to find a bijective explanation of [Thm 1.1]” [Swa].
The methods of this paper are elementary, combinatorial in nature, but fundamentally non-
bijective. They are likely to be the most “bijective explanation” possible in this case. In fact, we
believe that our shuffling approach is truly a “proof from the book”.



12 IGOR PAK, FEDOR PETROV, AND VIACHESLAV SOKOLOV

Acknowledgements. We are grateful to Joshua Swanson for telling us about [Swa] and for the
careful reading of the manuscript. The first author is thankful to Alejandro Morales and Greta
Panova for numerous interesting conversations about the Naruse hook-length formula. We are
also grateful to BIRS in Banff, Canada, for hosting the first two authors at the Asymptotic Alge-
braic Combinatorics workshop in March 2019, when this paper was finalized. This collaboration
started when the first author asked a question on MathOverflow.1 The first author was partially
supported by the NSF. The second and the third authors were partially supported by the RSCF
(grant 17-71-20153).

References

[BLRS] K. Barrese, N. Loehr, J. Remmel and B. E. Sagan, m-level rook placements, J. Combin. Theory,
Ser. A 124 (2014), 130–165.
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