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Abstract of the Dissertation

Inequalities for connectivity events

in Bernoulli percolation

by

Nikita Gladkov

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2025

Professor Igor Pak, Chair

This thesis consists of six chapters based on papers on probabilities events in percolation

theory.

• Chapter 1 is based on paper [GP24] written with Igor Pak. There we study colored

percolation, a generalization of the classical percolation model.

• Chapter 2 is based on paper [GZ24] written with Aleksandr Zimin. There we show

that bond percolation does not simulate site percolation.

• Chapter 3 is based on paper [G24]. There we study percolation inequalities and decision

trees.

• Chapter 4 is based on paper [GPZ24] with Igor Pak and Aleksandr Zimin. There we

disprove the bunkbed conjecture. The appendix proves the bunkbed conjecture for the

case of 2 transversal vertices and wasn’t published before.

• Chapter 5 is based on an unpublished manuscript written with Aleksandr Zimin. There

we prove multiple inequalities of the form similar to the Harris–Kleitman inequality.

This work generalizes and supercedes a previous paper [G24b] by the author.
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• Chapter 6 contains an unpublished result related to the main body of work in the

thesis.
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CHAPTER 1

Positive dependence for colored percolation

1.1 Introduction

The study of percolation goes back to the 1957 paper by Broadbent and Hammersley [BH57]

and has been incredibly popular in the last few decades across the sciences. It remains

one of the most applied statistical models, reaching far corners of statistical physics and

probability, and fields as disparate a materials science, network theory and seismology, see

e.g. [G18, SCA05, Sah23].

Despite remarkable recent advances, many problems remain open and continued to be

actively pursued, see e.g. [1, D18a, Gri23, Mor17]. Note that specific models of percolation

wary greatly depending on the scientific context and applications. Here we consider the

colored bond (site) percolation, where each graph edge (vertex) takes random color, see

e.g. [KM17, SCA05, Zal77].

As one studies random events, one is naturally concerned about their correlations. This

led to correlation inequalities, the first of which, Harris–Kleitman inequality [H60, Kle66] was

discovered independently in probability and graph theory. It shows that every two increasing

(or two decreasing) random events on the same probability space are positively correlated.

On the other hand, when one event is increasing and another is decreasing, such events

are negatively correlated. Outside of its fundamental applications to statistical physics and

probability, this result has numerous applications in graph theory [Cha17, JLR00], order

theory [Fish92, She82] and algebraic combinatorics [CP23].

There are many generalizations and variations on the Harris–Kleitman inequality, see e.g.

1



[DS12, New80, Wer09], including intensely studied but largely mysterious generalizations to

multiple functions [Gla24, LS22, S08]. In this paper we consider k events Ui such that every

(k − 1) of them are mutually independent. To quantify correlations we study the ratio

µ :=
P(U1 ∩ · · · ∩ Uk)
P(U1) · · · P(Uk)

which, we call mutual dependence. We prove a general result extending the Harris–Kleitman

inequality from k = 2 to all k. We concentrate on the case k = 3, which is the first nontrivial

example and is of independent interest.

Our main application is to 4-colored percolation on infinite graphs and graphs with

symmetry. We show that µ ≥ 1 or that µ ≤ 1 depending on a situation, and in some

cases conjecture that our bounds are asymptotically tight. Additionally, we introduce a new

colored critical probability for infinite graphs which turns out to be closely related to the

usual critical probability.

1.2 Positive correlation in percolation

We first illustrate the Harris–Kleitman inequality. Let G = (V,E) be a simple graph,

which can be finite or infinite. Consider a p-percolation defined by independently at random

deleting edges of G with probability (1 − p). We write Pp(x ↔ y) for the probability that

vertices x, y ∈ V are connected.

In its basic application, the Harris–Kleitman inequality proves a positive correlation of

connectivity of two pairs of vertices:

Pp(x↔ y, u↔ v) ≥ Pp(x↔ y)Pp(u↔ v), (1.1)

for all x, y, u, v ∈ V . Equivalently, this says that the probability that two vertices are

connected increases if some other two vertices are connected, even if these two vertices

are far apart in the graph: Pp(x ↔ y |u ↔ v) ≥ Pp(x ↔ y). This implies that the critical

probability pc := sup
{
p : Pp(x↔∞) = 0

}
is independent on the vertex x in every connected

graph, see e.g. [BR06, G18]. The idea is that for two vertices x, y, the ratio Pp(x↔∞)

Pp(y↔∞)
can

2



not go below Pp(x ↔ y). For the case when G = Z2 is a square lattice, Harris used the

inequality to prove that pc ≥ 1
2

[H60]. Famously, Kesten [Kes80] established the equality

pc = 1
2

twenty years later.

Denote by 2E the collection of all subsets of E. A subcollection A ⊆ 2E is called closed

upward, if A + e ∈ A for every A ∈ A and e ∈ E ∖ A. Similarly, A is closed downward,

if A − e ∈ A for every A ∈ A and e ∈ A. We think of A as graph property, and write

Pp(A) for the probability that the property holds for a p-percolation. In this notation, the

Harris–Kleitman inequality states:

Pp(A ∩ B) ≥ Pp(A)Pp(B), (1.2)

for every two closed upward subcollections A,B. ForA = {H : x↔ y} and B = {H : u↔ v}
we obtain (1.1). Note that (1.2) holds also for every two closed downward A,B. Indeed,

their complements Ā and B̄ will be closed upwards and

Pp(A ∩ B) = 1−Pp(Ā)−Pp(B̄) + Pp(Ā ∩ B̄)

≥ 1−Pp(Ā)−Pp(B̄) + Pp(Ā)Pp(B̄) = Pp(A)Pp(B).

When A is closed upward and B is closed downward, the negative correlation follows by the

same argument.

Now, let U ,V ,W be pairwise independent events. We say that they have positive mutual

dependence if P(U ∩ V ∩W) ≥ P(U)P(V)P(W). Similarly, we say that they have negative

mutual dependence if P(U ∩ V ∩W) ≤ P(U)P(V)P(W).

1.3 Positive dependence in colored percolation

We are now ready to formalize the approach above to state the result in full generality.

Let f : E → {a, b, c, d} be a uniform random coloring of the edges of G, where each edge

is colored uniformly and independently. As before, denote by Es, s ∈ {a, b, c, d}, a subset of

edges of the corresponding color. Similarly, for every two distinct colors s, t ∈ {a, b, c, d}, let

3



Est := Es ∪Et. One can think of Est as either a 1
2
-percolation or a uniformly random subset

of edges of G, so that Gst = (V,Est) is a uniform random subgraph of G.

Theorem 1. Let U ,V ,W be closed upward graph properties. Denote by Uab, Vac and Wbc

the corresponding properties of Gab, Gac and Gbc, respectively. Then the events Uab, Vac and
Wbc are pairwise independent, but have negative mutual dependence:

P(Uab ∩ Vac ∩Wbc) ≤ P(Uab)P(Vac)P(Wbc), (1.3)

where the probability is over uniform random colorings f : E → {a, b, c, d}. Similarly, events

Uab, Vac and Wad are pairwise independent, but have positive mutual dependence:

P(Uab ∩ Vac ∩Wad) ≥ P(Uab)P(Vac)P(Wad), (1.4)

where Wad is the property of Ead. Additionally, for U ,V ,W closed downward graph proper-

ties, the inequalities in both (1.3) and (1.4) are reversed.

Since all Est are 1
2
-percolations, we can rewrite the RHS of both (1.3) and (1.4) as a more

symmetric product:

P 1
2
(U)P 1

2
(V)P 1

2
(W). (1.5)

The proof of the theorem is given in the appendix. After a quick argument proving pair-

wise independence, we now proceed to a number of applications of the theorem to many

percolation examples.

1.4 Proof of Theorem 1

Since Eab and Eac are independent 1
2
-percolations, this implies that events Uab and Vac are

also independent. This proves the pairwise independence part.

We prove (1.3) by induction on the number of edges in E. For E = ∅, the inequality

is trivial. Fix an edge e ∈ E. Consider the probability space of colorings of E − e. For an

event Xab ⊆ 2E, denote by X+
ab the subset of Xab such that f(e) ∈ {a, b}. Similarly, denote

by X−
ab the subset of Xab such that f(e) ∈ {c, d}.

4



By the symmetry, we have:

P
(
Xab : f(e) = a

)
= P(Xab : f(e) = b) = 2P 1

2
(X+),

P
(
Xab : f(e) = c

)
= P(Xab : f(e) = d) = 2P 1

2
(X−).

Clearly, P 1
2
(X ) = P 1

2
(X−) + P 1

2
(X+). When X is closed upward, we also have P 1

2
(X−) ≤

P 1
2
(X+). We use this notation for X ∈ {U ,V ,W} and all pairs of colors.

Considering all possible colors of e and using the induction hypothesis, we have:

P(Uab ∩ Vac ∩Wbc) = P
(
U+
ab ∩ V+

ac ∩W−
bc

)
+ P

(
U+
ab ∩ V−

ac ∩W+
bc

)
+ P

(
U−
ab ∩ V+

ac ∩W+
bc

)
+ P

(
U−
ab ∩ V−

ac ∩W−
bc

)
≤ 2

(
P
(
U+
ab

)
P
(
V+
ac

)
P
(
W−

bc

)
+ P

(
U+
ab

)
P
(
V−
ac

)
P
(
W+

bc

)
+ P

(
U−
ab

)
P
(
V+
ac

)
P
(
W+

bc

)
+ P

(
U−
ab

)
P
(
V−
ac

)
P
(
W−

bc

))
.

Simplifying the notation as above, the RHS is equal to:

2
(
P 1

2
(U+)P 1

2
(V+)P 1

2
(W−) + P 1

2
(U+)P 1

2
(V−)P 1

2
(W+)

+ P 1
2
(U−)P 1

2
(V+)P 1

2
(W+) + P 1

2
(U−)P 1

2
(V−)P 1

2
(W−)

)
=

(
P 1

2
(U+) + P 1

2
(U−)

)(
P 1

2
(V+) + P 1

2
(V−)

)(
P 1

2
(W+) + P 1

2
(W−)

)
−

(
P 1

2
(U+)−P 1

2
(U−)

)(
P 1

2
(V+)−P 1

2
(V−)

)(
P 1

2
(W+)−P 1

2
(W−)

)
≤ P 1

2
(U)P 1

2
(V)P 1

2
(W),

as desired. The proof of (1.4) goes along the same lines. Finally, the closed downward

version follows the inclusion exclusion argument earlier in the paper.

1.5 Variations and generalizations

First, note that we never use the graph structure, and the theorem can be viewed as a result

about abstract set systems, cf. [SA94]. Second, the pairwise independent 1
2
-percolation
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argument that we discussed after the theorem can be generalized in several ways. Notably,

it can be extended to the p-percolation for all 0 ≤ p ≤ 1, but the resulting coupling of

percolations then require seven colors and have somewhat inelegant probabilities.

Next, the theorem can be extended to a larger number of events. Start by taking k − 1

independent 1
2
-percolations E1, . . . , Ek−1 on the same graph. Define a new 1

2
-percolation

Ek :=
k−1⊕
i=1

Ei mod 2,

where the edge e is present if and only if it is present in an odd number of Ei’s. Observe

that every k − 1 of E1, . . . , Ek are mutually independent.

Then, for every closed downward properties X1, . . . ,Xk we have:

P
(
X1 ∩ · · · ∩ Xk

)
≥ P(X1) · · ·P(Xk). (1.6)

Once again, the proof follows verbatim the proof of the theorem. Note that for k = 2, we have

E1 = E2 and (1.6) is the Harris–Kleitman inequality (1.2). For k = 3, the inequality (1.6)

gives (1.4).

Finally, one can easily obtain a colored version with m = 2k−1 colors. For example, for

k = 4, take a uniform random edge coloring f : E → {1, . . . , 8}. Consider four pairwise

independent 1
2
-percolations E1234, E1256, E1357 and E1467 with natural labeling. Note that

every three of these are mutually independent. Then, for closed downward properties U ,V ,W
and X , the inequality (1.6) gives:

P(U1234 ∩ V1256 ∩W1357 ∩ X1467)

≥ P(U1234)P(V1256)P(W1357)P(X1467).

1.6 Probability of the majority

Let E1 and E2 be two independent 1
2
-percolations, and let E3 = E1 ⊕ E2 to be the new

1
2
-percolation where every edge is open if it is open in exactly one of E1, E2. Consider the

6



coloring

f(e) :=



a if e ∈ E1 ∩ E2

b if e ∈ E1, e /∈ E2

c if e ∈ E2, e /∈ E1

d if e /∈ E1, e /∈ E2

Then Eab = E1, Eac = E2, Ebc = E3, which implies the pairwise independence. This

observation is motivational and generalizes to k ≥ 2 mutually independent 1
2
-percolations

(see the appendix).

1.7 Crossing probabilities in a rectangle

Let G = (V,E) be a n× (n + 1) rectangle as in Figure 1. Consider a uniform random edge

coloring f : E → {a, b, c, d}. Note that Eab, Eac and Ead are pairwise independent bond

1
2
-percolations with free boundary conditions (BC). Let U = {12↔ 34} be the connectivity

property of the opposite sides of G, and recall that P 1
2
(Uab) = 1

2
, see e.g. [BR06]. Then (1.4)

gives:

P
(
Uab ∩ Uac ∩ Uad

)
≥ P 1

2
(U)3 = 1

8
, (1.7)

for all n ≥ 1. On the other hand, by the pairwise independence we have:

P
(
Uab ∩ Uac ∩ Uad

)
≤ P

(
Uab ∩ Uac

)
= P 1

2
(U)2 = 1

4
.

Note that as a function of p the crossing probability in a rhombus under p-percolation has

a sharp threshold [BR06], so the trivial lower bound is unhelpful:

P
(
Uab ∩ Uac ∩ Uad

)
≥ P(Ua) = P 1

4
(U) −−−→

n→∞
0

For n = 30, the sampling of N = 4 · 107 trials gives an approximation P
(
Uab ∩ Uac ∩ Uad

)
=

0.125098± 0.000052. We conjecture that this probability is 1
8

in the limit n→∞.

7



1.8 Crossing probabilities in a rhombus

Let G = (V,E) be a m-rhombus on the triangular lattice, see Figure 1. Consider a uni-

form random vertex coloring f : V → {a, b, c, d}. Note that Vab, Vac and Vad are pairwise

independent site 1
2
-percolations with free BC. Let U = {12 ↔ 34} and U ′ = {14 ↔ 23} be

connectivity properties of the opposite sides of G. Recall that P 1
2
(Uab) + P 1

2
(U ′

cd) = 1 by a

topological argument, so P 1
2
(U) = P 1

2
(U ′) = 1

2
by the symmetry. Then (1.3) and (1.4) give:

P
(
Uab ∩ Uac ∩ Ubc

)
≤ P 1

2
(U)3 = 1

8
,

P
(
Uab ∩ Uac ∩ Uad

)
≥ P 1

2
(U)3 = 1

8
,

(1.8)

for all m ≥ 1. We conjecture that

P
(
Uab ∩ Uac ∩ Ubc

)
and P

(
Uab ∩ Uac ∩ Uad

)
→ 1

8

as m→∞. If this holds, we also have other similar limits, e.g.

P
(
Uab ∩ Uac ∩ U ′

bc

)
= P 1

2
(U)2 −P

(
Uab ∩ Uac ∩ Uad

)
→ 1

8
.

This is in contrast with limits such as P
(
Uab∩Ubc∩Ucd

)
which can be computed using Watts’

formula [Watts96] (see also [Dub06, SW11]).

1.9 Crossing probabilities in a hexagon

Consider a regular hexagon G = (V,E) on the triangular lattice with side lengths ℓ, see

Figure 1. Consider a site 1
2
-percolations with free BC as above. Let U :=

{
∃x ∈ V : x ↔

12, x ↔ 34, x ↔ 56
}

be the joint connectivity property of the percolation graph. It was

computed by Simmons [Sim13] (see also [FZS15]), that P 1
2
(U) = 0.2556897... in the limit

ℓ→∞. Consider a uniform random vertex coloring f : V → {a, b, c, d}. Then (1.4) gives:

P 1
2
(U)2 = 0.0653772... ≥ P

(
Uab ∩ Uac ∩ Uad

)
≥ P 1

2
(U)3 = 0.0167162...
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in the limit ℓ→∞. Similarly, the inequality (1.3) gives:

P
(
Uab ∩ Uac ∩ Ubc

)
≤ P 1

2
(U)3 = 0.0167162...

in the limit ℓ→∞. For ℓ = 30, the sampling of N = 64000 trials gives P
(
Uab∩Uac∩Uad

)
=

0.0172±0.0005 and P
(
Uab∩Uac∩Ubc

)
= 0.0166±0.0005. We conjecture that both probabilities

are P 1
2
(U)3 = 0.0167162... in the limit ℓ→∞.

1.10 New critical probability

Recall the setting we discussed earlier. Let G = (V,E) be an infinite connected graph.

Consider a uniform random coloring f : E → {a, b, c, d}. For a vertex x ∈ V , consider

P (x) := P
(
x↔ab ∞, x↔ac ∞, x↔ad ∞

)
, (1.9)

where x ↔st ∞ means that x belongs to an infinite cluster of st-colored edges. Now (1.4)

gives:

P 1
2

(
x↔∞)2 ≥ P (x) ≥ P 1

2

(
x↔∞)3. (1.10)

1.11 Conclusions

The subject of positive dependence for colored percolation is largely unexplored and can be

viewed as a special case of algebraic inequalities for cumulants of positive functions. The

latter has been actively studied (see [Gla24, LS22] for recent references), but the type of

inequalities we consider are new.

In full generality, our results extend the Harris–Kleitman inequality (1.2) to multiple

pairwise independent events. This allows us to give lower and upper bounds on the mutual

dependence of these events, which are asymptotically tight for the (conjectured) crossing

probabilities of the colored percolation on lattices, exhibiting the same phenomenon as the

majority property.
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CHAPTER 2

Bond percolation does not simulate site percolation

2.1 Introduction

For a graph G = (V,E) we consider three independent opening models. The (inhomoge-

neous) Bernoulli bond percolation µ opens each edge e ∈ E with probability pe, whereas the

(inhomogeneous) Bernoulli site percolation σ opens each vertex v ∈ V with probability pv.

The parameters pe and pv may vary from edge to edge and from vertex to vertex throughout

the paper.

Finally, we shall occasionally need a third model. Given a hypergraph H = (V,E) – so

each e ∈ E is a finite subset of V – the (inhomogeneous) Bernoulli hyperedge percolation

η opens each hyperedge e with probability pe ∈ [0, 1], independently for different e. When

|e| = 2 for every hyperedge, this reduces to the bond model; thus hyperedge percolation

strictly contains bond percolation as a special case.

Observable vertices. Throughout the paper we work with a chosen subset Vobs ⊆ V called

the observable vertices. We care only about how these vertices are connected to each other.

Vertices in V \Vobs, which we call auxiliary, may lie on paths but never serve as endpoints in

the events we consider. In the bond and hyperedge models, we simply take Vobs = V . In the

site model we also set pv = 1 for every v ∈ Vobs, so each observable vertex is always open.

Definition 2.1.1 (Connectivity). Let ρ ∈ {µ, σ, η} be either percolation on G = (V,E) and

let u, v ∈ Vobs. We write

u ←→
ρ

v
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if there exists a path P = (w0 = u, . . . , wk = v) in G such that

• when ρ = µ (bond case), every edge wi, wi+1 of P is open;

• when ρ = σ (site case), every vertex wi of P is open, including the endpoints u and v;

• when ρ = η (hyperedge case), for each i there exists an open hyperedge ei ∈ E with

wi, wi+1 ⊆ ei.

We denote the probability of this event by

ρ(uv) := ρ(u←→
ρ
v).

One can ask many questions about the probabilistic properties of clusters connected via

open vertices and edges. There are well known inequalities comparing critical probabilities

of site and bond percolation on the same infinite graph [GS98].

To motivate our problem, recall Exercise 3.4 in [G18] (see also Exercise 6 in [D18b]):

”Show that bond percolation on a graph G may be reformulated in terms of site

percolation on a graph derived suitably from G.”

Here is a formal definition.

Definition 2.1.2 (Exact simulation). Let ρ be a percolation measure on a graph G = (V,E)

with observable set Vobs, and let ρ′ be a percolation measure on a (possibly different) graph

G′ = (V ′, E ′) with observable set V ′
obs. We say that ρ simulates ρ′ if there exists a map

f : Vobs → V ′
obs such that, for every Boolean combination of the events { vi ←→

ρ
vj} with

vi, vj ∈ Vobs,
ρ
(
E
)

= ρ′
(
E ◦ f

)
,

where E ◦ f is obtained from E by replacing each vi with f(vi) and each connectivity symbol

←→
ρ

with ←→
ρ′

.

11



Remark 2.1.3. By this definition, the simulation preserves events such as ”At least n out

of m vertices v1, . . . , vm are in the same cluster”, but is not guaranteed to preserve the

probability of ”There is a path from a to b avoiding vertex c”.

The following theorem [F61, FE61] solves Exercise 3.4 in [G18] by constructing a site

percolation that simulates any given bond percolation.

Theorem 2.1.4. For every graph G equipped with a bond percolation µ there exists a graph

G′ together with a site percolation σ that simulates µ.

Proof. Make a copy G′ of G and insert a new auxiliary vertex we in the middle of each edge

e = {u, v}. We declare all original vertices observable and open with probability 1, while each

auxiliary vertex we is declared open independently with probability pe. Two original vertices

are connected in σ iff every we on the corresponding path is open, i.e. exactly when every

edge e on that path is open in µ. Thus σ simulates µ in the sense of Definition 2.1.2.

Similarly, it is natural to ask whether site percolation can be simulated by bond per-

colation. Fisher [F61] noted that the other direction cannot be true since the argument

proving Theorem 2.1.4 is only invertible for line graphs. We make his argument precise in

Theorem 2.2.4 proved in Section 2.2. However, the question becomes more interesting if we

consider approximate simulations.

Definition 2.1.5 (Approximate simulation). Let {ρi} be a sequence of percolation measures

on graphs Gi = (Vi, Ei), each with observable set Vi,obs ⊆ Vi. Let ρ be a percolation measure

on a (possibly different) graph G = (V,E) with observable set Vobs ⊆ V .

We say that {ρi} approximately simulates ρ if there exist vertex maps

fi : Vobs −→ Vi,obs (i = 1, 2, . . . )

such that for every Boolean combination E of connectivity events { vj ←→
ρ
vk} with vj, vk ∈

Vobs,

ρi
(
E ◦ fi

)
−→ ρ

(
E
)

as i→∞,
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where E ◦fi is obtained from E by replacing each vj with fi(vj) and each instance of←→
ρ

with

←→
ρi

.

We denote by K1,n the star graph with one internal vertex and n leaves. Throughout

this section we work with the site percolation model on K1,n (n ≥ 3) whose observable set

is the collection of leaves. Every observable leaf is deterministically open (pv = 1), while

the unique internal (auxiliary) vertex is open with probability p ∈ (0, 1). Equivalently, this

model can be viewed as a full hyperedge percolation on the same leaf set: opening the internal

vertex corresponds to opening the single hyperedge {all leaves} with probability p; when that

hyperedge is closed (1− p), no two leaves are connected, whereas when it is open all leaves

belong to one common cluster.

The main results of the paper are the following theorems.

Theorem 2.1.6. Site percolation on K1,4 cannot be approximately simulated by bond perco-

lation.

Theorem 2.1.6 is deduced from Theorem 2.3.2.

Theorem 2.1.7. Site percolation on K1,3 cannot be approximately simulated by bond perco-

lation.

Theorem 2.1.7 follows from Theorem 2.4.6. Its proof relies on new inequalities for connectiv-

ity events. We introduce auxiliary events defined by decision trees to establish (2.7), and use

computer search to discover further inequalities, including (2.11) and (2.12) in Section 2.5.

2.2 Preliminary remarks

In what follows we mostly work with a hyperedge viewpoint on the site percolation on

K1,n introduced above, since for the full hyperedge percolation one can conveniently assume

Vobs = V . The next result justifies this flexibility.
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Theorem 2.2.1 (Site–hyperedge equivalence). Every Bernoulli hyperedge percolation mea-

sure can be simulated by a Bernoulli site percolation measure, and vice versa, in the sense

of Definition 2.1.2.

Proof. (i) Hyperedge simulated by site percolation. Let H = (V,E) be a hypergraph

equipped with Bernoulli hyperedge percolation η. Construct a graph G′ = (V ′, E ′) and a

site percolation measure σ as follows:

• Vertices: V ′ := V ∪ {we : e ∈ E}, adding auxiliary vertex we for each hyperedge e.

• Edges: for every e ∈ E and v ∈ e include {v, we} in E ′.

• Site probabilities: σ(v open) = 1 for v ∈ V and σ(we open) = pe.

Take observable set Vobs ⊆ V and set V ′
obs := Vobs together with the identity map f : Vobs →

V ′
obs, a σ-open path u − we1 − · · · − wem − v exists if and only if the hyperedges e1, . . . , em

are η-open. Hence σ simulates η.

(ii) Site simulated by hyperedge percolation. Let G = (V,E) carry Bernoulli site

percolation σ with σ(v open) = pv. Build a hypergraph H ′ = (V ′, E ′) and percolation η′ as

follows:

V ′ := V ∪ {we : e ∈ E}, E ′ := { ev : v ∈ V },

ev := {v} ∪ {we : v ∈ e}, η′(ev open) = pv.

Take observable set Vobs ⊆ V and set V ′
obs := Vobs; let g : Vobs → V ′

obs be the identity

inclusion.

If u, v ∈ Vobs are σ-connected, there is a path u = x0, x1, . . . , xk = v in G with all xi

open. Each step xixi+1 uses the auxiliary vertex wxixi+1
, so the open hyperedges exi give an

η′-path from g(u) to g(v).

Conversely, any η′-path between g(u) and g(v) alternates exi and wxixi+1
; hence u =

x0, x1, . . . , xk = v is a σ-open path in G. Thus connectivity events coincide, and η′ simulates

σ.
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Note that the hypergraph percolation in the sense of [WZ11] is more general than our

full hypergraph percolation and is capable of modeling more phenomena.

Now we know that simulating site percolation is equivalent to simulating full hyperedge

percolation. It is easy to see that bond percolation cannot simulate exactly even a hyperedge

of size 3 with probability 0 < p < 1, thus proving Fisher’s remark.

Fix a Bernoulli bond percolation µ on a graph G = (V,E) and write µ( · ) for probabilities

taken with respect to this measure.

Definition 2.2.2. For pairwise disjoint, non-empty vertex sets A1, . . . , Ak ⊆ V we write

A1|A2| . . . |Ak

for the event that

• all vertices inside each Ai lie in the same open cluster, and

• the clusters corresponding to different Ai’s are distinct (no vertex of Ai is connected

to a vertex of Aj for i ̸= j).

Remark 2.2.3. Throughout the paper we will use the following shortcuts:

µ(abc) := µ( {a, b, c} ), µ(ab|c) := µ({a, b}|{c}), µ(a|b|c) := µ({a}|{b}|{c}), . . .

Throughout, a vertical bar “|” indicates that the vertices on either side of the bar must be in

different clusters in the configuration and vertices between consecutive bars are in the same

connected cluster.

First, we show that the exact simulation for 3-hyperedges is impossible.

Theorem 2.2.4. Let G = (V,E) be any graph, let µ be a Bernoulli bond percolation on G,

and let a, b, c ∈ V . Then either

µ(abc) + µ(a|b|c) < 1 or max{µ(abc), µ(a|b|c)} = 1.
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Proof. Delete every edge whose parameter is 0 and contract every edge whose parameter

is 1; all remaining edges now have parameters strictly between 0 and 1.

Assume for a contradiction that

0 < µ(abc), µ(a|b|c) < 1 and µ(abc) + µ(a|b|c) = 1. (2.1)

Because µ(a|b|c) > 0, each of the mixed-cluster events

ab|c, ac|b, a|bc

must have probability 0, otherwise the left-hand side of (2.1) would be strictly smaller than 1.

Let us show that µ(ab|c) = 0 forces every a–b path in G to pass through c. Indeed, if a

path γ joining a to b while avoiding c existed in G, the configuration in which the edges of

γ are declared open and all other edges are declared closed would realise the event ab|c with

positive probability (all edge parameters lie in (0, 1)), contradicting µ(ab|c) = 0. Repeating

the same argument for the other two zero-probability events we deduce

• every a–b path visits c,

• every a–c path visits b, and

• every b–c path visits a.

These three properties cannot be satisfied simultaneously. Indeed, the first property forces

any a–b path to begin with an a–c sub-path; by the second property that sub-path must

pass through b before it reaches c. Hence any a–b path would have to contain vertex b twice,

which is impossible for a (simple) path in a graph. Thus these properties are impossible,

contradicting (2.1).

Consequently our assumption is false and the theorem follows.

The theorem implies that bond percolation cannot simulate a non-trivial hyperedge per-

colation on the graph containing exactly three vertices and a single hyperedge connecting
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these. Indeed, in such a hyperedge percolation, the probability that all three vertices are

connected equals p (the probability that the hyperedge is open), while the probability that

they are all disconnected equals 1 − p. Theorem 2.4 shows that no bond percolation can

achieve both these probabilities simultaneously.

Although Theorem 2.2.4 prohibits exact simulation of hyperedge percolation by bond

percolation, we consider whether it is possible to have an arbitrarily good approximation.

Question 2.2.5. For given k, p ̸∈ {0, 1} and ε > 0, does there exist a graph G = (V,E),

containing vertices x1, . . . , xk and a bond percolation µ on it with µ(x1x2 . . . xk) > p− ε and
µ(x1|x2| . . . |xk) > 1− p− ε?

In Section 2.3 we show that approximate simulation is impossible for k ≥ 4 using a lemma

due to Hutchcroft [H21], thus proving Theorem 2.1.6. Finally, we develop a new technique

using decision trees to resolve Question 2.2.5 for k = 3 (thereby proving Theorem 2.1.7) in

Section 2.4.

2.3 Simulating k-hyperedge for k ≥ 4

In [H21], the following theorem is proved using the vdBK inequality [BK85], where Ku is

the cluster containing vertex u, and for each finite subset Λ ⊆ V

|Kmax(Λ)| = max{|Kv ∩ Λ| : v ∈ V }

is the maximal number of vertices from Λ belonging to the same cluster.

Theorem 2.3.1 ([H21, Theorem 2.3]). Let G = (V,E) be a countable graph and let Λ ⊆ V

be finite and non-empty. Then for any Bernoulli bond percolation µ on G one has

µ(|Kmax(Λ)| ≥ 3kλ) ≤ µ(|Kmax(Λ)| ≥ λ)3
k−1+1 (2.2)

and

µ(|Ku ∩ Λ| ≥ 3kλ) ≤ µ(|Kmax(Λ)| ≥ λ)3
k−1

µ(|Ku ∩ Λ| ≥ λ) (2.3)
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for every λ ≥ 1 (not necessarily integer), integer k ≥ 0 and u ∈ V .

This allows us to prove that one cannot even approximately simulate the 4-hyperedge.

Theorem 2.3.2. For any δ > 0 there exists an ε > 0 such that, for every graph G = (V,E),

every Bernoulli bond percolation µ on G, and every choice of four vertices a, b, c, d ∈ V , at

least one of the following holds:

(i) µ(abcd) ≥ 1− δ;

(ii) µ(a|b|c|d) ≥ 1− δ;

(iii) µ(abcd) + µ(a|b|c|d) < 1− ε.

Proof. Let δ > 0 and set ε = δ2/2. Suppose for some graph G, bond percolation µ, and

vertices a, b, c, d we have

µ(abcd) ≤ 1− δ and µ(a|b|c|d) ≤ 1− δ.

Write t = µ(a|b|c|d) ∈ [0, 1− δ]. Then (2.2) with λ = 4
3

and Λ = {a, b, c, d} gives

µ(abcd) ≤ µ(ab ∪ ac ∪ ad ∪ bc ∪ bd ∪ cd)2. (2.4)

Since ab ∪ ac ∪ ad ∪ bc ∪ bd ∪ cd is the complement of a|b|c|d, its probability is 1− t, so

µ(abcd) ≤ (1− t)2.

Hence

µ(abcd) + µ(a|b|c|d) = µ(abcd) + t ≤ min{ 1− δ + t, t+ (1− t)2}.

If t ≤ δ/2 then 1− δ + t ≤ 1− δ/2 ≤ 1− ε, while if t ≥ δ/2 then

t+ (1− t)2 = 1− t(1− t) ≤ 1− δ
2
δ = 1− ε.

In either case µ(abcd) + µ(a|b|c|d) ≤ 1− ε, which is alternative (iii).
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Remark 2.3.3. Another proof of (2.4) can be obtained by applying the vdBK inequality

directly. For two events A, B, their disjoint occurrence A□B is defined as the event consisting

of configurations x whose memberships in A and in B can be verified on disjoint subsets of

edges. In this case, vdBK inequality asserts that

µ(A□B) ≤ µ(A)µ(B).

Let E be the event ab∪ac∪ad∪bc∪bd∪cd. Then E□E represents the event where there

exist two edge-disjoint paths between the vertices a, b, c, and d. Hutchcroft’s argument in

this context reduces to demonstrating that abcd ⊆ E□E, which is established in the following

lemma.

Lemma 2.3.4. Let G be a connected graph, and let a1, a2, a3, a4 be any four vertices in G.

Then, it is always possible to partition these vertices into two disjoint pairs, {ai1 , ai2} and

{aj1 , aj2}, such that there exist edge-disjoint paths γ1 and γ2 in G, where γ1 connects ai1 to

ai2 and γ2 connects aj1 to aj2.

Proof. Partition the vertices a1, a2, a3, a4 into two disjoint pairs, {ai1 , ai2} and {aj1 , aj2},
such that the sum of edge distances, d(ai1 , ai2) + d(aj1 , aj2), is minimized across all possible

partitions. Without loss of generality, assume that the vertices in the first pair are a1 and

a2, and the vertices in the second pair are a3 and a4.

Let γ1 and γ2 be the shortest paths connecting a1 to a2 and a3 to a4, respectively. Suppose

the edge uv belongs to both paths. Without loss of generality, we assume that the order of

vertices in γ1 is a1 → u→ v → a2; otherwise, we can swap the labels of a1 and a2. Similarly,

we assume that the order of vertices in γ2 is a3 → u→ v → a4.

Then, we calculate the following:

d(a1, a3) + d(a2, a4) ≤
(
d(a1, u) + d(u, a3)

)
+
(
d(a2, v) + d(v, a4)

)
=

(
d(a1, u) + d(v, a2)

)
+
(
d(a3, u) + d(v, a4)

)
=

(
d(a1, a2)− 1

)
+
(
d(a3, a4)− 1

)
.
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This inequality contradicts the selection of the pairs, as the pairs {a1, a2} and {a3, a4}
were chosen to minimize d(a1, a2) + d(a3, a4). Therefore, the paths γ1 and γ2 must be edge-

disjoint.

Proof of Theorem 2.1.6. Fix an arbitrary p ∈ (0, 1) and let σp be the site percolation on the

star K1,4 in which the centre is open with probability p while the four leaves a, b, c, d are

always open. Then

σp(abcd) = p, σp(a|b|c|d) = 1− p, σp(abcd) + σp(a|b|c|d) = 1.

Choose δ := 1
2

min{p, 1−p} > 0 and let ε > 0 be the constant provided by Theorem 2.3.2.

Assume, for contradiction, that σp can be approximately simulated by some bond-percolation

measure µ. Make the simulation so accurate that

|µ(abcd)− p| < δ, |µ(a|b|c|d)− (1− p)| < δ, |µ(abcd) + µ(a|b|c|d)− 1| < ε/2.

Because each of µ(abcd) and µ(a|b|c|d) lies in (δ, 1− δ), conditions (1) and (2) of Theo-

rem 2.3.2 fail. The third bound yields µ(abcd) + µ(a|b|c|d) > 1− ε, so condition (3) fails as

well. This contradiction shows that no bond percolation can approximately simulate σp.

2.4 Simulating 3-hyperedge: human proof

Now we see that it is impossible to even approximately simulate site percolation on K1,4

with bond percolation, as promised in Theorem 2.1.6. To prove Theorem 2.1.7, we need the

following lemma.

Definition 2.4.1. For two configurations C1, C2 ∈ Ω = 2[E] and a set S ⊆ E we denote by

C1→S C2 the configuration which coincides with C1 on S and C2 on its complement S.

Lemma 2.4.2. Consider two independent Bernoulli bond percolations C1 and C2 having the

same distribution µ on the same graph G. Let a decision tree T select each edge and reveal

it in both C1 and C2. Furthermore, allow on each step, before revealing, to decide if this edge
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will go to the set S (thus dependent on C1 and C2) or to its complement S. Then C1→S C2

is independent of C1→S̄ C2 and both of them are distributed as µ.

Example 2.4.3. If the graph is a path of length 2 from a to b, then the tree T in Figure 2.1

builds a set S of all edges with one end in the component of a in C1.

Proof of Lemma 2.4.2. For every pair of configurations C3, C4 and given decision tree T there

exist unique C1 and C2 such that C1→S(C1,C2)C2 = C3 and C1→S̄(C1,C2)C2 = C4. Indeed, the

path in T leading to C1→S(C1,C2)C2 = C3 and C1→S̄(C1,C2)C2 = C4 is determined uniquely

at each step, and the probability of this path is equal to µ(C3)µ(C4), which is equal to

µ(C1)µ(C2) since the probability in Bernoulli percolation is a product of probabilities for

individual edges.

Example 2.4.4. One can take T querying all the edges from the vertices already known

to connect to the vertex a in C1. It will assign all these edges to S and then discover the

remaining edges, assigning them to S̄. Then S will be the set of all open and closed edges

with at least one edge in the component of a.

Note that this set S depends only on C1. Given this, the configuration C1→S C2 can be

interpreted as follows. We take the configuration C1 and resample all the edges not connected

to the cluster of a. Lemma 2.4.2 claims that the resulting configuration has a distribution

µ. Moreover, if instead we resampled the edges connected to the cluster of a, it would also

result in measure µ.

Remark 2.4.5. Notice that the Markov chain method from [BHK06] is based on the fact

that resampling edges in S from Example 2.4.4 preserves the measure restriction µ|a|b. In

our notation, it means that for A = a|b and any B, one has

µ(C1 ∈ A and C1→
S
C2 ∈ B) = µ(C1→

S
C2 ∈ A ∩B) = µ(A ∩B) (2.5)

Theorem 2.4.6. For any δ > 0 there exists an ε > 0 such that, for every graph G = (V,E),

every Bernoulli bond percolation µ on G, and every choice of three vertices a, b, c ∈ V , at

least one of the following holds:
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a b
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Figure 2.1: T corresponding to the Example 2.4.3
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Ka

Kb Kc

e

Ka

Kb Kc

e

Ka

Kb Kc

e

Figure 2.2: S1, S2 and S3 for the case C1 ∈ a|b|c. Regions surrounding

a, b, c depict Ka, Kb and Kc. Respective sets are in blue and their com-

plements are in red.

(i) µ(abc) ≥ 1− δ;

(ii) µ
(
a|b|c

)
≥ 1− δ;

(iii) µ(abc) + µ
(
a|b|c

)
< 1− ε.

Remark 2.4.7. It is worth noting that Theorem 2.4.6 directly implies Theorem 2.3.2.

Proof. We will need multiple sets Si for our purpose. So, we define sets S1, S2 and S3, which

are somewhat complex (See Figure 2.2).

To build S1, we query all edges connected to c and put them in S. Then we query all not

queried edges connected to a (this is vacuous if a was connected to c) and put them in S̄.

Then we query all not queried edges connected to b and put them in S. Finally, we put the

rest of the edges in S̄. We denote by Kx the set of vertices connected to x via edges open in

C1. Then,

S1 =


E ∩

(
Kc × V ∪Kb ×Ka

)
if C1 ∈ a|b|c;

E ∩
(
Kc × V

)
if C1 is in abc, a|bc or ab|c;

E ∩
(
(Kb ∪Kc)× V

)
if C1 ∈ ac|b.

The only case we will actually use is a|b|c. S2 is defined analogously with b and c

interchanged.
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S2 =


E ∩

(
Kb × V ∪Kc ×Ka

)
if C1 ∈ a|b|c;

E ∩
(
Kb × V

)
if C1 is in abc, a|bc or ac|b;

E ∩
(
(Kb ∪Kc)× V

)
if C1 ∈ ab|c.

Finally, for S3 we put all edges connected to a in S̄, all not queried edges connected to b

or c to S and the rest of the edges to S̄.

S3 =


E ∩

(
(Kb ∪Kc)×Ka

)
if C1 ∈ a|b|c or a|bc;

∅ if C1 ∈ abc;

Something else otherwise.

The key observation is the following:

Proposition 2.4.8. For any two configurations C1 and C2 such that

C1 ∈ a|b|c and C1→
S3

C2 ∈ ab ∪ ac,

one has either C1→S1 C2 ∈ ab or C1→S2 C2 ∈ ac.

Proof. Consider a path P from a to b or c in C1→S3 C2. Along this path, consider the first

edge uv incident to a vertex v in Kb ∪Kc. Denote by e the set of all the vertices of G which

do not belong to Ka, Kb or Kc. The segment of P before uv is contained in the complement

of Kb ∪ Kc, which is Ka ∪ e, and thus it is contained in all of the sets S̄1, S̄2, and S̄3 (see

Figure 2.2: the sets Ka and e are shown in red, along with all the edges between them, in

all the sets Si).

The vertex u belongs to Ka ∪ e. We now show that u must be in Ka. Indeed, suppose

it is not; then the edge uv connects e with Kb ∪Kc. In C1→S3 C2, this edge comes from C1

(on Figure 2.2, all such edges are blue). However, in C1 the edges between e and Kb ∪Kc

are closed, which would imply uv is closed in C1→S3 C2, a contradiction since uv lies on the

open path P .

24



Therefore, u ∈ Ka and v ∈ Kb ∪Kc. Depending on whether v ∈ Kb or v ∈ Kc, the edge

uv belongs to S̄1 or S̄2. Since all internal edges in Kb and Kc belong to S1 and S2, it follows

that C1→S1 C2 ∈ ab or C1→S2 C2 ∈ ac.

The consequence of the Proposition 2.4.8 is the following inequality:

µ
(
C1 ∈ a|b|c and C1→

S3

C2 ∈ (ab ∪ ac)
)

≤ µ(C1 ∈ a|b|c and C1→
S1

C2 ∈ ab) + µ(C1 ∈ a|b|c and C1→
S2

C2 ∈ ac). (2.6)

Let’s proceed to estimate the probabilities of these events. For C1 ∈ a|b|c, we have

C1→S1 C2 ∈ a|c, so

µ(C1 ∈ a|b|c and C1→
S1

C2 ∈ ab) ≤ µ(C1→
S1

C2 ∈ ab|c) = µ(ab|c).

Similarly,

µ(C1 ∈ a|b|c and C1→
S2

C2 ∈ ac) ≤ µ(ac|b).

Finally, we estimate µ (C1 ∈ a|b|c and C1→S3 C2 ∈ (ab ∪ ac)). If C1 belongs to a|b ∩ a|c,
then S̄3 contains a cut from a to b and c, so C1→S̄3

C2 also belongs to a|b ∩ a|c.

µ
(
C1 ∈ a|b|c and C1→

S3

C2 ∈ (ab ∪ ac)
)

≥ µ
(
C1 ∈ (a|b ∩ a|c) and C1→

S3

C2 ∈ (ab ∪ ac)
)
− µ(a|bc)

= µ
(
C1→

S3

C2 ∈ (a|b ∩ a|c) and C1→
S3

C2 ∈ (ab ∪ ac)
)
− µ(a|bc)

= µ(a|b ∩ a|c)µ(ab ∪ ac)− µ(a|bc).

Substituting our bounds into (2.6), we conclude

µ(a|b ∩ a|c)µ(ab ∪ ac) ≤ µ(ab|c) + µ(ac|b) + µ(a|bc). (2.7)
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To conclude the proof of Theorem 2.4.6, assume that alternatives (i) and (ii) both fail,

and verify that alternative (iii) holds. Let δ > 0 and put

ε =
δ2

4
.

Suppose for some graph G, Bernoulli percolation µ, and vertices a, b, c we have

µ(abc) ≤ 1− δ and µ(a|b|c) ≤ 1− δ.

Since trivially µ(ab∪ ac) ≥ µ(abc) and µ(a|b∩ a|c) ≥ µ(a|b|c), the displayed inequality gives

µ(abc)µ(a|b|c) ≤ µ(ab|c) + µ(ac|b) + µ(a|bc) = 1− µ(abc)− µ(a|b|c).

Hence

µ(abc) + µ(a|b|c) ≤ 1− µ(abc)µ(a|b|c).

If µ(abc) ≤ δ/2 (or similarly µ(a|b|c) ≤ δ/2), then

µ(abc) + µ(a|b|c) ≤ δ

2
+ (1− δ) = 1− δ

2
< 1− δ2

4
= 1− ε.

Otherwise µ(abc), µ(a|b|c) ≥ δ/2 and so

µ(abc) + µ(a|b|c) ≤ 1− δ

2
· δ

2
= 1− δ2

4
= 1− ε.

In either case µ(abc) + µ(a|b|c) ≤ 1 − ε, which is precisely alternative (iii). This completes

the proof.

From the equation (2.7), one can conclude that if µ(abc) and µ(a|b|c) are simultaneously

greater than p, then p(1− p) ≤ 1− 2p and so p ≤ 3−
√
5

2
≈ 0.382. If we denote the maximal

possible value of min
(
µ(abc), µ(a|b|c)

)
for any bond percolation by α3, we get an estimate

α3 < 0.382, which we improve in the next section. The lower bound α3 > 0.29065 is given

in Appendix 2.7.
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2.5 Simulating 3-hyperedge: computer-assisted proof

Consider a bond percolation on a graph G with specified vertices a, b, and c. We exam-

ine a set of decision trees Tk for k = 1, . . . , n. These trees generate the sets Sk and Sk.

Each tree maps every pair of configurations C1 and C2 on G into a product space J2, with

J = {a|b|c, a|bc, ac|b, ab|c, abc}. The first coordinate maps the partition of vertices a, b, c in

the graph C1→Sk
C2 into connected clusters, and the second coordinate corresponds to the

partition of vertices in the graph C1→Sk
C2.

1

The bond percolation on G induces a joint probability distribution ρ on (J2)n. However,

it is important to note that ρ may be restricted in several ways. Not every combination of

partitions (pk, p̄k) for k = 1, . . . , n corresponds to a pair of actual configurations C1 and C2

that satisfy conditions C1→Sk
C2 = pk and C1→Sk

C2 = p̄k. Denote by F ⊆ (J2)n the set of

all feasible combinations of these partitions. Thus, the support of ρ is contained within F .

Let µ be a probability distribution on J induced by bond percolation on G. Lemma 2.4.2

implies that all the marginal projections of ρ onto each (J2)k are identical and equal to µ×µ.

Given these restrictions, we can formulate a necessary condition for the implementability of

the distribution µ on J , expressed through the feasibility of a linear programming problem.

Proposition 2.5.1. For any feasible distribution µ on J , there exists a distribution ρ(p) ≥ 0

defined on the set p ∈ F , satisfying the following condition:

∑
p∈F :

pk=q, pk=q

ρ(p) = µ(q) · µ(q̄) for all k = 1, . . . , n, and for each pair (q, q) ∈ J2. (2.8)

The above proposition does not offer a necessary condition that can be expressed solely

in terms of µ without the introduction of additional variables. To achieve a formulation that

depends only on µ, we consider the dual linear programming problem to the one considered

in Proposition 2.5.1.

1Take into account that there is a trivial tree T that generates the set of all the edges S = E; for this
tree, C1→S C2 = C1 and C1→S C2 = C2.
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Definition 2.5.2. Feasible potentials are the collection of functions φk : J2 → R satisfying

the inequalities
n∑
k=1

φk(pk, pk) ≥ 0 for all feasible p ∈ F . (2.9)

Each function φk can be interpreted as a variable dual to the marginal projection constraint

(2.8).

Next, we utilize the principle that the feasibility of the primal linear program is equivalent

to the boundedness of the dual linear program.

Theorem 2.5.3. Let φk be feasible potentials. Then, any feasible distribution µ on J satisfies

the inequality
n∑
k=1

∑
(p,p)∈J2

φk(p, p)µ(p)µ(p) ≥ 0. (2.10)

Proof. Let µ be a feasible distribution on J . By Proposition 2.5.1, we can find a joint law ρ

supported on the set F of feasible combinations of partitions with all marginal projections

equal to µ× µ. The latter condition implies that

n∑
k=1

∑
(p,p)∈J2

φk(p, p)µ(p)µ(p) =
n∑
k=1

∑
p∈F

φk(pk, pk)ρ(p).

By the definition of feasible potentials, the inequality

n∑
k=1

φk(pk, pk) ≥ 0

holds for all p ∈ F ; thus, the right-hand side of the equation above is non-negative.

This theorem allows to prove the inequality

µ(a|b ∩ a|c)µ(ab ∪ ac) ≤ µ(ab|c) + µ(ac|b) + µ(a|bc)− µ(ab|c)2 − µ(ac|b)2, (2.11)

which is obviously better than inequality (2.7) and leads to an estimate α3 ≤ 0.369. More-

over, surprisingly, this theorem also proves the inequality

µ(abc)µ(a|b|c) ≥ µ(ab|c)µ(ac|b) + µ(ab|c)µ(a|bc) + µ(ac|b)µ(a|bc), (2.12)
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which was first conjectured in an unpublished work by Erik Aas and proved in [Gla24]. It is

stronger than what the Harris–Kleitman inequality can tell about these events.

To prove the inequality (2.11), we formulate it in terms of the feasible distribution µ.

Proposition 2.5.4. Any feasible distribution µ on J satisfies the inequality

µ(ab ∪ ac) · µ(a|b ∩ a|c) + µ(ac|b)2 + µ(ab|c)2 ≤ µ(a|bc) + µ(ac|b) + µ(ab|c).

Proof. Consider the decision trees constructing the sets S1, S2, S3, and their complements

as introduced in the proof of Theorem 2.4.6. In addition, we include a trivial decision tree

that constructs the sets S0 = E and S0 = ∅, so that C1→S0 C2 = C1 and C1→S0
C2 = C2.

Define functions φk : J2 → R, for k = 0, . . . , 3, as follows:

φ0(p, p) = 1[p = a|bc],

φ1(p, p) = 1[p = ab|c],

φ2(p, p) = 1[p = ac|b],

φ3(p, p) = −1[p ∈ ab ∪ ac and p ∈ a|b ∩ a|c]− 1[p = p = ac|b]− 1[p = p = ab|c].

For each vertex u ∈ G, let Ku be the cluster in C1 containing u. Denote by Eu the set of

open edges within Ku in C1. Additionally, denote by Ẽu the set of all edges in G for which at

least one endpoint is in Ku. By construction, the states of all the edges in Ẽc are identical in

the configurations C1 and C1→S1 C2; therefore, any event of the form “there is an open path

between u and c”, where u is any vertex of G, occurs simultaneously in the configurations

C1 and C1→S1 C2. Similarly,

• C1 and C1→S2 C2 coincide on Ẽb; thus, whether an open path between u and b exists

is consistent across both C1 and C1→S2 C2 for any vertex u.

• C1 and C1→S3
C2 coincide on Ẽa; therefore, the existence of an open path between u

and a is the same in both C1 and C1→S3
C2 for any vertex u.
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Finally, we recall an important observation from the proof of Theorem 2.4.6: if C1 ∈ a|b|c
and C1→S3 C2 ∈ ab ∪ ac, then either C1→S1 C2 ∈ ab or C1→S2 C2 ∈ ac.

Now, we are ready to prove that the functions φk are feasible potentials: the inequality

3∑
k=0

φk(pk, pk) ≥ 0

holds for any feasible combination of partitions (pk, pk). Since only φ3 can take negative

values, it is sufficient to consider the following cases where φ3 contributes negatively:

• p3 ∈ ab ∪ ac and p3 ∈ a|b ∩ a|c,

• p3 = p3 = ab|c,

• p3 = p3 = ac|b.

In each of these cases, it is sufficient to demonstrate that either p0 = a|bc, or p1 = ab|c, or

p2 = ac|b.

Consider the first case: p3 ∈ ab∪ac and p3 ∈ a|b∩a|c. Since C1 and C1→S3
C2 coincide on

Ẽa, and because the partition of C1→S3
C2 is p3 ∈ a|b∩ a|c, we conclude that C1 ∈ a|b∩ a|c.

This implies that either C1 ∈ a|bc or C1 ∈ a|b|c.

In the case where C1 ∈ a|bc, we have p0 = a|bc. Alternatively, if C1 ∈ a|b|c and

C1→S3 C2 ∈ ab ∪ ac, then by Proposition 2.4.8 from the proof of Theorem 2.4.6, either

C1→S1 C2 ∈ ab or C1→S2 C2 ∈ ac. This condition translates to either p1 ∈ ab or p2 ∈ ac.
Furthermore, since C1 and C1→S1 C2 coincide on Ẽc and C1 ∈ c|a ∩ c|b, it follows that

C1→S1 C2 ∈ c|a ∩ c|b and hence p1 ∈ c|a ∩ c|b. Similarly, p2 = b|a ∩ b|c. Thus, C1 ∈ a|b|c
and C1→S3 C2 ∈ ab ∪ ac implies that either p1 = ab|c or p2 = ac|b, covering all scenarios

that ensure that the sum φk(pk, pk) is non-negative. This completes the analysis for the first

case.

Consider the second case: p3 = p3 = ab|c. Repeating the argument that the configura-

tions C1 and C1→S3
C2 coincide on Ẽa, we find that there is an open path between a and b

in C1, and a and c are in different clusters. Thus, C1 ∈ ab|c, implying that p0 = ab|c as well.
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Next, we observe that if C1 ∈ ab|c, then the set S1 coincides with Ẽc. This specifically

implies that C1→S1 C2 ∈ c|a ∩ c|b, and we need only to verify that C1→S1 C2 ∈ ab.

Consider an open path γ between a and b in the configuration C1→S3 C2. Note that no

vertex from this path can belong to Kc; otherwise, since the component Kc is connected in

C1→S3 C2, it would imply that C1→S3 C2 ∈ abc, which contradicts our assumption. There-

fore, all the edges of γ must belong to E \ Ẽc. Given that C1 ∈ ab|c, the set S3 contains

all edges from E \ Ẽc; thus, the edge states of γ are derived from the configuration C2,

ensuring that γ is an open path in C2. Additionally, since S1 = E \ Ẽc, all edge states of γ

in C1→S1 C2 are also from C2, confirming that γ is an open path in C1→S1 C2, which implies

C1→S1 C2 ∈ ab.

Therefore, C1→S1 C2 ∈ c|a ∩ c|b ∩ ab = ab|c, translating to p1 = ab|c. The third case,

where p3 = p3 = ac|b, is fully symmetric, leading to p2 = ac|b.

Altogether, this demonstrates that the functions φk are feasible potentials. According to

Theorem 2.5.3, any feasible distribution µ on J must satisfy the inequality:

3∑
k=0

∑
(p,p)∈J2

φk(p, p)µ(p)µ(p) = µ(a|bc) + µ(ac|b) + µ(ab|c)

− µ(ab ∪ ac) · µ(a|b ∩ a|c)− µ(ac|b)2 − µ(ab|c)2 ≥ 0.

Remark 2.5.5. Notice that feasible potentials form a convex cone. An interesting compu-

tational task is to enumerate all its extreme rays. We have performed this numerically for

the decision trees constructing the sets Sk for k = 0, . . . , 3, and their complements, find-

ing exactly three non-trivial rays that form this cone. The first two are responsible for the

inequalities (2.11) and (2.12). The final one leads to the inequality:

µ(ab ∪ ac) · µ(a|b ∩ a|c) + µ(a|bc)2 + µ(ac|b)2 + µ(ab|c)2

≤ µ(a|bc) + µ(ac|b) + µ(ab|c) + µ(abc) · µ(a|bc),
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which is very similar to (2.11). The potentials leading to these inequalities can be found on

GitHub.2

2.6 Further questions

Inequalitites (2.7) and (2.11) prove that if all three probabilities µ(ab|c), µ(ac|b) and µ(a|bc)
are 0, then one of µ(abc) and µ(a|b|c) should be 0. In fact, the stronger statement holds:

Proposition 2.6.1. If µ(ab|c) = 0, then

µ(a|b|c)µ(abc) = µ(ac|b)µ(a|bc) and µ(abc) = µ(ac)µ(bc).

Proof. As in the proof of Theorem 2.2.4, we first delete the edges having probability 0 and

contract the edges having probability 1. Now all paths from a to b should pass through c,

otherwise, there will be a nonzero probability of one such path being open and the rest of the

edges closed. This means c splits the graph in two parts with a and b belonging to different

parts. Thus, the events ac and bc are determined by different sets of edges and consequently

are independent.

However, contrary to the inequalitites (2.7) and (2.11), this proof tells nothing when

µ(ab|c) < ε. So, we pose two conjectures increasing in strength:

Conjecture 2.6.2. For any ε > 0 there exists δ > 0 such that if µ(ab|c) < δ and µ(ac|b) < δ,

then µ(abc) or µ(a|b|c) is less than ε.

Conjecture 2.6.3. For any ε > 0 there exists δ > 0 such that if µ(ab|c) < δ, then

µ(abc)− µ(ac)µ(bc) < ε.

2https://github.com/Kroneckera/bunkbed
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Remark 2.6.4. On the contrary, if µ(abc)− µ(ac)µ(bc) < ε, then, by inequality (2.12), one

gets

µ(ab|c)
(
µ(abc) + µ(ac|b) + µ(a|bc)

)
≤ µ(abc)

(
µ(abc) + µ(ab|c) + µ(ac|b) + µ(a|bc) + µ(a|b|c)

)
−

(
µ(abc) + µ(ac|b)

)(
µ(abc) + µ(ab|c)

)
which simplifies to

µ(ab|c) < ε

µ(ac or bc)
.

And for the final question, finding the exact value for α3 would also be interesting. The

best boundaries are given in the Appendix 2.7.

2.7 Appendix: optimizing α3

Let us recall that α3 denotes the largest possible value of min
(
µ(abc), µ(a|b|c)

)
for the bond

percolation. Let us restrict ourselves to the triangle graph with all three probabilities equal

to p. Then µ(a|b|c) = (1 − p)3 and µ(abc) = p3 + 3p2(1 − p). These numbers coincide for

p ≈ 0.3473, and we get α3 ≥ µ(abc) = µ(a|b|c) ≈ 0.278, a root of the equation x3 − 24x2 +

3x+ 1 = 0.

Figure 2.3: Graph for α3.

One can do better by utilizing the graph in Figure 2.3 where each red-blue edge has a

probability of 0.32537 and both blue-blue edges have a probability of 0.19231. This way we

get µ(abc) ≈ µ(a|b|c) ≈ 0.29065.
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Our computer search using algorithms from Wagner [W21] wasn’t able to beat this esti-

mate (See the best min
(
µ(abc), µ(a|b|c)

)
achieved on each training epoch in Figure 2.4).

Figure 2.4: Best min
(
µ(abc), µ(a|b|c)

)
achieved on each training epoch.

In fact, if µ(abc) = µ(a|b|c), it seems this probability can only lie in a narrow range from

0.27 to 0.291. Indeed, in this case inequality (2.12) gives the lower bound of 2−
√

3 ≈ 0.2679.
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CHAPTER 3

Percolation inequalities and decision trees

3.1 Introduction

In percolation theory, key tools include the Harris–Kleitman (HK) and van den Berg–Kesten

(vdBK) inequalities. These tools give lower and upper bounds on various connection prob-

abilities for Bernoulli bond and site percolation on finite and infinite graphs.

Most percolation results hold for specific graphs such as lattices or Cayley graphs. HK and

vdBK inequalities are rare exceptions that apply to general graphs. Other inequalities include

those proved by van den Berg, Kahn, and Häggström in [BK01, BHK06] and the author in

[Gla24] and their corollaries. The recent work by Kozma and Nitzan [KN24] proposes a

conjectured inequality for percolation on general graphs that would imply θ(pc) = 0 for

bond percolation on Zd, which is an old conjecture. They prove a plethora of corollaries of

the inequalities above, aimed to prove their conjecture. The celebrated bunkbed conjecture

can also be seen as an inequality for connection probabilities in a general graph.

The OSSS inequality is an inequality originating from the analysis of Boolean functions

[OSSS05]. It was first applied to percolation models in [DRT17] and was the key component

in the proofs of several results about critical exponents [H20, DRT19]. This allowed discus-

sions about an “OSSS method” [K20]. The method uses the concept of a (random) decision

tree, that reveals the edges in an order dependent on the already revealed edges.

In [GZ24], Aleksandr Zimin and the author have built several decision trees querying

the edges in different order. We used them to build multiple percolation configurations.

Their independence properties turn out to be enough to prove several new inequalities for
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connection probabilities for bond percolation in general graphs, including the proof that it

is impossible for three vertices a, b, c to be in the same cluster with probability 0 < p < 1

and in three different clusters with probability 1 − p − ε for small enough ε. In this paper,

we explore the dependencies between the percolation configurations obtained by the same

tree and prove the decision tree generalizations of the HK and vdBK inequalities, as well as

the inequality from [GP24a] and the correct form of the inequality from [R04]. This allows

us to prove new inequalities for connection probabilities in graph percolation.

The structure of the paper is as follows. Section 3.2 introduces notation and the def-

initions for our method. Section 3.3 illustrates the method and proves the version of the

HK inequality for decision trees. Section 3.4, analogously, proves the version of the vdBK

inequality. Section 3.5 utilizes the Cauchy–Schwarz inequality and finishes the groundwork

for proving the inequalities we are interested in.

Put together, these results allow us to show in Section 3.6 the following inequality (see the

full version in Theorem 3.6.2). In what follows, let G = (V,E) be a locally finite connected

simple graph and P is the probability in a Bernoulli bond percolation model where each

edge e ∈ E is assigned a probability pe of being open.

Theorem 3.1.1 (see Theorem 3.6.2). Let a, b, c be distinct vertices of graph G. Then

P(abc)2 ≤ 8P(ab)P(ac)P(bc), (3.1)

where P(abc) is the probability that a, b and c are in the same percolation cluster.

The proof of this inequality combines together the decision tree versions of HK and vdBK

inequalities as well as ideas from Section 3.5. This inequality can be seen as the
√

8 bound

on the Delfino–Viti constant for every graph [DV11]. Moreover, when the graph G is planar

and a, b and c belong to the same face, we bring the constant 8 in (3.1) down to 2.

Next, in Section 3.7, we prove the following technical asymmetric inequality on connection

probabilities.
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Lemma 3.1.2. For vertices a, b and c in G one has

P(a|b|c) + P(a|b ∪ a|c)2 ≥ P(a|b|c)2
P(a|b ∪ b|c) +

P(a|b|c)2
P(a|c ∪ b|c) , (3.2)

where P(a|b|c) is the probability that a, b and c are in three different clusters and v|u denotes

the event that vertices u and v are in two different clusters.

This lemma allows us to resolve the following conjecture:

Theorem 3.1.3 (formerly [GZ24, Conj. 6.2]). For ε > 0, there exists δ > 0, such that

[
P(ab|c) < δ and P(ac|b) < δ

]
=⇒

[
P(abc) < ε or P(a|b|c) < ε

]
,

where P(a|b|c) is the probability that a, b and c are in three different clusters, P(abc) is the

probability that a, b and c are in the same cluster, P(ab|c) is the probability that a and b are

in the same cluster different from the cluster of c and P(ac|b) is the probability that a and c

are in the same cluster different from the cluster of b.

In fact, we believe the stronger Conjecture 3.10.1 ([GZ24, Conj. 6.3]). It describes the rela-

tion between four other connection events dependent on vertices a, b and c when P(ab|c) < δ.

Substituting P(ac|b) < δ into it recovers the Theorem 3.1.3.

In Section 3.8, we use decision trees to prove the main technical result (Main Lemma 3.8.1),

that generalizes the proofs of the decision tree versions of the HK and vdBK inequalities.

This general form makes it easier to prove various generalizations of the vdBK inequal-

ity. Additional implications include the positive mutual dependence for colored percolation

(Theorem 3.8.6), proved in [GP24a] as well as an inequality from [R04].

In Section 3.9 we turn to inequalities concerning connection probabilities for just two

points. We study the events of the form ab□n, which stands for the existence of n disjoint

open paths between a and b. It is easy to see from the vdBK inequality, that for every n

and m we have

P(ab□n+m) ≤ P(ab□n)P(ab□m).

In other words, f(n) = P(ab□n) is submultiplicative.
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Conjecture 3.1.4. The function f(n) is log-concave. Moreover, log(f(n))/n is decreasing.

We provide a partial result in the direction of Conjecture 3.1.4.

Theorem 3.1.5 (cf. Theorem 3.9.1). Let G be planar. Suppose a and b belong to the same

face. Then

P(ab□3)2 ≤ P(ab□2)3. (3.3)

We also believe a stronger statement, see Conjecture 3.10.2.

3.2 Definitions and notation

Throughout this paper, G = (V,E) is a locally finite connected simple graph. We also assume

that a, b, c, d ∈ V are distinct vertices of G. A percolation configuration C = (C(e) : e ∈ E)

on G is a function from E to {0, 1}. If ωe = 1, the edge e is said to be open, otherwise e

is said to be closed. We deal with a bond percolation measure µ on the probability space

Ω = {0, 1}E of all percolation configurations. We assume that µ is a product measure, where

each edge e has its own probability pe of being open. This model is called the Bernoulli bond

percolation. We have P refer to the probability of an event with respect to µ. We also use

the following notation from [GZ24].

Definition 3.2.1. We denote by “v11v12 . . . v1i1|v21 . . . v2i2 | . . . |vn1 . . . vnin” the event that the

vertices v11, . . . , v1i1 ∈ V belong to the same cluster, vertices v21, . . . , v2i2 belong to the same

cluster, . . . , vertices vn1, . . . , vnin belong to the same cluster, and, moreover, these clusters

are all different. By P(v11v12 . . . v1i1|v21 . . . v2i2| . . . |vn1 . . . vnin) we denote the probability of

this event in the underlying bond percolation. In particular, P(abc) denotes the probability

that vertices a, b, c ∈ V lie in the same cluster, and P(a|b|c) is the probability that a, b and

c belong to 3 different clusters.

Definition 3.2.2. We call the event A ⊆ 2Ω closed upward if for every percolation configu-

ration C1 ∈ A and every other configuration C2 such that C1 ≤ C2 coordinatewise, one has
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C2 ∈ A. For example, events ab and abc are closed upward.

Definition 3.2.3. For two percolation configurations C1, C2 ∈ Ω and a set S ⊆ E we denote

by C1→S C2 the configuration that coincides with C1 on S and C2 on its complement S.

C1→
S
C2(e) =


C1(e), if e ∈ S,

C2(e), otherwise.

(3.4)

The OSSS inequality introduced the concept of decision trees from computer science to

percolation. A decision tree is an algorithm using a tree-like flowchart. Each node of the tree

tests an edge of G whether it is open or closed and uses this information to move to the next

node. The tree decides an event A if for all the configurations leading to the same leaf node

L, event A is either simultaneously true or simultaneously false. Since we are working with

probabilistic configurations, it can be beneficial to think that initially the states of edges are

closed from us and an edge is revealed when it is queried by the tree.

Until Section 3.8, we deal with the decision trees that accept two configurations C1, C2

and build a set S ⊂ E based on them. Each node can make a decision based only on the

edges revealed so far.

Definition 3.2.4. Let G = (V,E) be finite. Let T be a decision tree, where each node

selects an edge, decides whether this edge goes to the set S or S and reveals it in both C1

and C2. In this case, we say that the set S = S(C1, C2) is built by T .

Formally, a tree T on a finite graph G is an oriented network, containing nodes of two

types – decision nodes and leaf nodes. Each decision node N contains an edge e that it

queries, a decision D ∈ {“S”, “S”} and 4 links to descendants indexed by {00, 01, 10, 11}.
All nodes should be accessible via links from the initial node N0 and the nodes on every

path from N0 should query pairwise distinct edges. The set S(C1, C2) is then built using

Algorithm 1.

Example 3.2.5. Assume that T first reveals the edges adjacent to some specific vertex a.

Then T reveals the edges connected to the vertices connected to a via the revealed open edges
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Algorithm 1 Building Set S by Decision Tree T

1: procedure BuildSet(T,C1, C2)

2: S ← ∅
3: N ← N0 ▷ Start from the root node N0 of the decision tree T

4: while N is a decision node do

5: e← edge queried by N

6: if decision of N is “S” then

7: S ← S ∪ {e}
8: end if

9: if C1(e) = 1 and C2(e) = 1 then

10: N ← N11 ▷ Both configurations have edge e open

11: else if C1(e) = 1 and C2(e) = 0 then

12: N ← N10 ▷ Configuration C1 has edge e open and C2 has it closed

13: else if C1(e) = 0 and C2(e) = 1 then

14: N ← N01 ▷ Configuration C1 has edge e closed and C2 has it open

15: else

16: N ← N00 ▷ Both configurations have edge e closed

17: end if

18: end while

19: return S

20: end procedure

and so on, until all edges with one end in the cluster of a are revealed. This is the breadth-first

search (BFS) algorithm, as opposed to the depth-first search (DFS) Algorithm 2. Assume

that T puts all the revealed edges in S. Then the set S built by T is the set of edges with

at least one end in the cluster of a.

For a more detailed and visual example, see [GZ24, Figure 1].
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3.3 HK inequality for decision trees

The key lemma used by Zimin and the author is the following independence result:

Lemma 3.3.1 ([GZ24, Lemma 4.2]). Let G be finite. Let S(C1, C2) be built by some decision

tree. Then C1→S C2 is independent of C2→S C1 = C1→S̄ C2 and both are distributed as µ.

This lemma alone is enough to justify some inequalities of the new type. Moreover,

it turns out that many classic correlation inequalities can be transferred to work with the

events of type C1→S C2. First, we prove a positive correlation result. When S is the set of

all edges E, this result gives the usual HK inequality.

The HK inequality was independently discovered by Harris [H60] in the context of per-

colation and Kleitman [Kle66] in the context of set families. It ensures that every two closed

upward events have a nonnegative correlation. The HK inequality was later generalized to

the broader class of measures by Fortuin, Kasteleyn and Ginibre in [FKG71], so it is often

also called the FKG inequality.

Theorem 3.3.2 (Decision tree HK inequality). Let G be finite. Let S(C1, C2) be built by

some decision tree. Assume A and B are some events in Ω closed upward. Then

P(C1 ∈ A,C1→
S
C2 ∈ B) ≥ P(C1 ∈ A)P(C1→

S
C2 ∈ B) = µ(A)µ(B).

Proof. We use induction on the number of nodes in T with D(N) = “S”. In case when T

always sends edges to S, the inequality becomes an equality. Otherwise, consider all nodes

of T with D(N) = “S” and choose out of them a node N with edge e(N) lying on the lowest

level. Then, all descendants of N send their edges to S. Consider the tree T ′ building a set

S ′ that coincides with T in all nodes except for N , with the distinction that D(N ′) = “S̄ ′”.

Now, let Ω′ be the probability space for all edges except for e. For each configuration C in

Ω′ there are two ways to extend it to a configuration on Ω, namely C+ where the edge e is

open and C− where e is closed.
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Now assume that the restriction of C1×C2 to Ω′×Ω′ is fixed. We will get the induction

step inequality

P(C1 ∈ A,C1→
S
C2 ∈ B) ≥ P(C1 ∈ A,C1→

S′
C2 ∈ B) (3.5)

by summing over all restrictions. Since all edges, that were not queried until node N , are

sent to S, the configuration C1→S C2 is defined up to edge e. We will call the possible

configurations C+
3 and C−

3 .

C+
3 = C+

1 →
S
C−

2 = C+
1 →

S
C+

2 = C−
1 →
S′
C+

2 = C+
1 →
S′
C+

2 ,

and

C−
3 = C−

1 →
S
C−

2 = C−
1 →

S
C+

2 = C−
1 →
S′
C−

2 = C+
1 →
S′
C−

2 .

Moreover, since B is closed up, we have three possibilities: both C+
3 and C−

3 belong to B,

none of them belong to B or only C+
3 does. In the first case,

P(C1 ∈ A,C1→
S
C2 ∈ B) = P(C1 ∈ A) = P(C1 ∈ A,C1→

S′
C2 ∈ B).

In the second case,

P(C1 ∈ A,C1→
S
C2 ∈ B) = 0 = P(C1 ∈ A,C1→

S′
C2 ∈ B).

Finally, the third case is split into 3 subcases as well. If both C+
1 and C−

1 belong to A or do

not belong to A, the induction step is still trivial. The only nontrivial subcase is when C+
1

belongs to A, but C−
1 does not. In this case, C1 ∈ A,C1→S C2 ∈ B means that e is open in

C1. At the same time, C1 ∈ A,C1→S′ C2 ∈ B means that e is open in both C1 and C2. So,

inequality (3.5) holds in this case. Finally, summing over all the restrictions on Ω′ × Ω′ we

prove the inequality (3.5) and complete the induction.

3.4 Decision tree vdBK inequality

The counterpart to the HK inequality is the vdBK inequality, which can be thought of as

a sort of negative correlation inequality. For decision trees, these inequalities can beauti-
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fully work together, providing simple lower and upper bounds on the probabilities of events

dependent on S.

Definition 3.4.1. For a space Ω =
∏n

i=1 Ωi, a witness of an event A in a configuration C is

a subset I of [n], such that for any configuration C ′ that has the same coordinate as C for

all Ωi for i ∈ I one has C ′ ∈ A.

One defines the disjoint occurrence of A and B denoted by A□B as

A□B := {C ∈ Ω, s.t. there exist I, J ⊂ [n]

s.t. I is a witness of A in C, J is a witness of B in C and I ∩ J = ∅}.

The natural generalization to the decision trees involves the set S.

Definition 3.4.2. For the decision trees setup, the disjoint occurrence A□S B is given by

A□S B := {C1, C2 ∈ Ω, s.t. there exist I, J ⊂ [n]

s.t. I is a witness of A in C1, J is a witness of B in C1→
S
C2 and I ∩ J ⊆ S}.

For S = E, this definition turns into the usual disjoint occurrence of A and B in C1. For

S = ∅, the event A□S B coincides with A×B.

Theorem 3.4.3 (Decision tree vdBK inequality). Let G be finite. Let the decision tree

T build a set S(C1, C2) and A and B be two closed upward events. Then P (A □S B) ≤
P (A)P (B).

Proof. As in the proof of Theorem 3.3.2, we induct on the number of nodes in T sending

their edge to S. Again, N is such a node lying on the lowest level, e is an edge N sends to

S, T ′ coincides with T in all nodes except for e and Ω′ is the probability space for all edges

except for e.

Again, we assume that the restriction of C1×C2 to Ω′×Ω′ is fixed and prove the inequality

P
(
(C1, C2) ∈ A□S B

)
≤ P

(
(C1, C2) ∈ A□S′ B

)
(3.6)
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for each restriction.

Assume that (C1, C2) ∈ A□SB, but (C1, C2) ̸∈ A□S′B. Since A and B are closed upward,

that means that e is open in C1 and the set J used in the witness for (C1, C2) ∈ A □S B
contains e. Moreover, one can see that C1 has e closed and C2 has e open. Then notice that

the configuration (C−
1 , C

+
2 ) has the same probability as (C1, C2), has the same restriction

to Ω′ × Ω′, but it would, in contrast, lie in A □S′ B, but not A □S B. Indeed, if (I, J) was

the witness for (C1, C2) ∈ A □S B, then one can assume I does not contain e since A is

closed upward. So, (I, J) would witness (C−
1 , C

+
2 ) ∈ A□S′ B. Also, assume (I ′, J ′) witnesses

(C−
1 , C

+
2 ) ∈ A □S′ B. Then again by upward closeness we assume that I ′ does not contain

e, but J ′ does and so the pair (I ′ ∪{e}, J ′ \ {e}) is the witness for (C1, C2) ∈ A□S B. Thus,

for each restriction, the inequality (3.6) holds, and so the induction step is complete.

3.5 Approach via Cauchy–Schwarz inequality

By Definition 3.2.4, the decision tree can have some leaf nodes such that not all edges are

queried on the path leading to them. According to Algorithm 1, such edges are not assigned

to S and therefore are assigned to S. If we replace some of the leaf nodes with the subtrees,

we will get a new tree. We say that the new tree is a continuation of the old tree.

Definition 3.5.1. We say that the decision tree T2 continues decision tree T1, when T1 is

a subset of nodes of T2, where with each node N ∈ T2, T1 includes all its ancestors. So all

nodes of T1 put their edges in S or S the same way as their counterparts in T2. In particular,

if T1 builds the set S1 and T2 builds the set S2, then S1(C1, C2) ⊆ S2(C1, C2). We also say

that the decision tree T decides an event A ⊆ Ω, when for every leaf L of T , the set of

edges revealed on the path from the root to L witnesses either the event C1 ∈ A or the event

C1 ̸∈ A.

By this definition, T2 is able to decide finer events than T1.

Theorem 3.5.2. Let G be finite. Let T1 and T2 be decision trees for events C1 ∈ A and
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C1 ∈ B respectively, such that T2 continues T1 and B ⊂ A is an intersection of A with an

increasing or decreasing event in Ω. In addition, assume that all nodes of T1 send the edges

to S. Then

P(C1 ∈ B,C1→
S2

C2 ∈ B) ≥ P(B)2

P(A)
. (3.7)

Proof. Let δ(N) be the probability that T1 visits node N . We cal; it the influence of N . It

is easy to see that the sum of the influences of the leaves of T1 is equal to 1. Then we can

write the probabilities of A and B as a sum over the leaves of T1. Denote the set of leaves

of T1 where T1 concludes A by X. Then,

P(A) =
∑
N∈X

δ(N). (3.8)

Since B is a subset of A, we can break the probability of B by which node of X it came

through in T2.

P(B) =
∑
N∈X

δ(N)P(B | T2 goes through N). (3.9)

Finally, since T1 only sent the vertices to S, for each N ∈ X we can consider the subtree

TN of T2 after the node N and apply Lemma 3.3.1 there to conclude that the conditional

distributions of C1 and C1→C2 coincide. Since B is an intersection of A with a monotone

event, B is monotone in TN . By Theorem 3.3.2 applied to TN and the events C1 ∈ B and

C1→S2 C2 ∈ B we get the representation

P(C1 ∈ B,C1→
S2

C2 ∈ B) ≥
∑
N∈X

δ(N)P(B | T2 goes through N)2. (3.10)

Let us enumerate the nodes in X and consider the vectors −→v and −→w indexed by X:

−→v = {
√
δ(N)}N∈X ,

−→w = {
√
δ(N)P(B | T2 goes through N)}N∈X .

Finally, applying the Cauchy–Schwarz inequality to these vectors and using equations

(3.8), (3.9) and (3.10), we get (3.7).
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Corollary 3.5.3. Assume that some tree T first queries the edges from the component of a

in C1 and puts them in S. Then, regardless of what it does further,

P(C1 ∈ a|b|c, C1→
S
C2 ∈ a|b|c) ≤

P(a|b|c)2
P(a|b ∪ a|c) (3.11)

and

P(C1 ∈ a|bc, C1→
S
C2 ∈ a|bc) ≤

P(a|bc)2
P(a|b ∪ a|c) . (3.12)

Proof. Indeed, let T1 be the subtree of T cut at the moment where T queries all the edges

from the component of a. By Theorem 3.5.2 applied to the trees T1 and T and the decreasing

events A = a|b ∪ a|c and B = a|b|c, we get Equation (3.11).

To obtain equation (3.12), consider the same trees and A = a|b ∪ a|c and B = A ∩ bc =

a|bc.

3.6 Delfino–Viti constant for general graphs is less than 2
√

2

If graph G is planar, we can say more about bond percolation on it. First, it allows for

some graph simplifications like the star–triangle transformation, the effect of which on bond

percolation is explained in [W81]. In the context of the bunkbed conjecture, the star–triangle

transformations were also used by Linusson in [Lin11] (See also [L19]).

What is more, the assumption of planarity allows the decision trees to use the right-hand

and left-hand rules for solving mazes: put your right (left) hand on the wall and keep it there

until you find an exit. In our setup, it means the following: query the edges in the order

of the depth-first search (DFS) and in each vertex choose the node visiting order starting

from where you came, right to left (left to right). When the initial node is on the outer face,

we choose the visiting order right to left (left to right) starting from the outer face. The

DFS with the right order together with the theorems from the previous sections gives the

following results.
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Theorem 3.6.1. Let G be a finite planar graph and a, b, c lie on the outer face. Then

P(abc)2 ≤ 2P(ab)P(bc)P(ac).

For nonplanar graphs, there are two ways to prove a weaker inequality.

Theorem 3.6.2 (cf. Theorem 3.1.1). For Bernoulli bond percolation on a graph G with

vertices a, b, c one has

P(abc)2 ≤ 8P(ab)P(ac)P(bc) (3.13)

and

P(abc)2 ≤ 2P(ab ∪ ac)2P(bc). (3.14)

3.6.1 Proof of Theorem 3.6.1

Assume that a, b and c lie on the outer face in this clockwise order. Let us build a decision

tree T using the DFS decision tree from Algorithm 2 as

T = DFS Decision tree(G, a, visitede = ∅, S = ∅, right-hand rule, decision),

where decision returns “S” if c is not yet visited and “S” otherwise.

So our tree would first use a right-hand rule to build a route from a to c in C1 and add

it to S. With probability P(a|c), the tree queries the whole component of a in C1, since it

does not contain c. If this is the case, we stop T . Suppose that this is not what happens.

Then we effectively stop T anyway after reaching c, adding the rest of the edges to S. The

vertices visited by T until this moment then will be the vertices to the right of the rightmost

path by open edges from a to c. Denote this path by P . All edges of P belong to S as well

as all edges to the right of it.

Let T ′ be the continuation of T that reveals the remaining edges and puts them in S.

Then T ′ can decide C1 ∈ abc. We are interested in P(C1 ∈ abc, C1→S C2 ∈ abc). Applying

Theorem 3.5.2 for T1 = T , T2 = T ′ and the increasing events A = ac and B = abc, we get

P(C1 ∈ abc, C1→
S
C2 ∈ abc) =

P(abc)2

P(ac)
. (3.15)
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Algorithm 2 DFS Decision Tree

1: procedure DFS Decision tree(G, x,&visited e,&S, order decider, decision) ▷

Graph G, source vertex x, reference to list of visited edges visitede, reference to set S, function

order decider deciding the order of neighbors, function decision outputting D ∈ {“S”, “S”}
2: visitedv ← array of size |V (G)| initialized with false

3: stack ← empty stack

4: Push(stack, x)

5: while stack is not empty do

6: v ← Pop(stack)

7: if visitedv[v] is false then

8: visitedv[v]← true

9: neighbors← order decider({neighbors of v}, v, stack, visitede, visitedv)
10: for each u ∈ neighbors do

11: if visitede[vu] is false then

12: Put vu in decision(vu, v, stack, visitede, visitedv) ▷ Decision node

13: if visited[u] is false then

14: Push(stack, u)

15: end if

16: end if

17: end for

18: end if

19: end while

20: end procedure
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On the other hand, assume C1 ∈ abc and C1→S C2 ∈ abc occurred. Then there is a path

from b to a in C1. The first time this path intersects with P , it must do it from the left side

of P and so all the edges before this point belong to S. Denote this initial fragment of the

path by P1. Similarly, we consider a path from b to a in C1→S C2 and its initial fragment

before meeting P and denote it by P2. So there are paths P1 and P2, consisting of edges

from S such that they both connect b to P and the edges of P1 are open in C1 and the edges

of P2 are open in C2.

Let v1 be the vertex in P that is connected to b through P1 and v2 be the vertex on

P connected to b via P2. If on the path P the vertex v1 lies closer to a than v2, denote

the segments of path P by a ⇝P v1, v1 ⇝P v2, v2 ⇝P c. Then the paths a ⇝P v1 ∪ P1

and v2 ⇝P c ∪ P2 are witnesses of the events ab and bc respectively and their intersection

belongs to S. It shows that (C1, C1→S C2) ∈ (ab □S bc). On the contrary, if v2 is closer

to c than v1, the paths v1 ⇝P c ∪ P1 and v2 ⇝P a ∪ P2 are the witnesses that prove

(C1, C1→S C2) ∈ (bc□S ac). Altogether, we get the estimate

P(C1 ∈ abc, C1→
S
C2 ∈ abc) ≤ P(ab□S bc ∪ bc□S ab). (3.16)

By Theorem 3.4.3, the right side is bounded from above by 2P(ab)P(bc). Combining

with (3.15), we get P(abc)2

P(ac)
≤ 2P(ab)P(bc), which is equivalent to the theorem statement.

Remark 3.6.3. By Theorem 3.8.3 one is able to improve over the vdBK estimate of the

right side in (3.16) and show P(abc)2

P(ac)
≤ 2P(ab)P(bc)−P(abc)2.

3.6.2 Proof of Theorem 3.6.2

Assume G is finite. We first prove the inequality (3.14). Let tree T perform a DFS starting

with the vertex a and put the edges it meets in S. With probability P(a|b ∪ a|c), the tree

queries the whole component of a in C1 since it does not contain b or c. After reaching b or

c, the tree T stops (and so puts the rest of the edges in S).

Backtracking the DFS order leaves us with a path P from a to either b or c. Note that T

queries all the edges of the path P and puts them to S. Let Q be the set of vertices visited
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by the DFS that are not in P . The set S witnesses that all vertices from Q are connected

to a. Also, since vertices from Q do not belong to the final path P , it means that the DFS

queried all edges from Q before backtracking and so all of these edges, including those closed

in C1, belong to S.

Consider the tree T ′ continuing T that reveals the remaining edges putting them in S̄

and so is able to decide the event abc. Now, by Theorem 3.5.2 applied to the trees T and T ′

and the events ab ∪ ac and abc,

P(C1 ∈ abc, C1→
S
C2 ∈ abc) ≥

P(abc)2

P(ab ∪ ac) .

On the other hand, as in the previous proof, P(C1 ∈ abc, C1→S C2 ∈ abc) is bounded from

above by 2P(ab ∪ ac)P (bc), by Theorem 3.4.3. It proves the inequality in the form (3.14).

Now we prove (3.13). Denote by Rb the event that T connects a to b and by Rc the

event that T connects a to c. It is easy to see that P(Rb) + P(Rc) = P(ab∪ ac) and further

P(Rb) ≤ P(ab) and P(Rc) ≤ P(ac). Also, by Theorem 3.5.2 we have

P(C1 ∈ Rb ∩ abc, C1→
S
C2 ∈ Rb ∩ abc) ≥

P(Rb ∩ abc)2
P(Rb)

and

P(C1 ∈ Rc ∩ abc, C1→
S
C2 ∈ Rc ∩ abc) ≥

P(Rc ∩ abc)2
P(Rc)

.

On the other hand, we can estimate the LHS of the two inequalities, as in the previous

proof, using Theorem 3.4.3:

P(C1 ∈ Rb ∩ abc, C1→
S
C2 ∈ Rb ∩ abc) ≤ 2P(ac)P(bc)

and

P(C1 ∈ Rc ∩ abc, C1→
S
C2 ∈ Rc ∩ abc) ≤ 2P(ab)P(bc).

Combining these four inequalities, we get

P(abc) = P(Rb ∩ abc) + P(Rc ∩ abc)

≤
√

2P(ac)P(bc)P(Rb) +
√

2P(ab)P(bc)P(Rc) ≤ 2
√

2P(ab)P(ac)P(bc),
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which implies (3.13). This completes the proof for finite G. For infinite G, both (3.14) and

(3.13) follows by passing to the limit.

Remark 3.6.4. By the specific randomized ordering choice of vertices in DFS (called PDFS

in [GP24a]), one can ensure that

P(Rb ∩ abc) = P(Rc ∩ abc) =
P(abc)

2
.

Not only does it the proof more straightforward, it also gives a slightly tighter bound

P(abc) ≤
√

2P(ac)P(bc)

(
P(ab|c) +

P(abc)

2

)
+

√
2P(ab)P(bc)

(
P(ac|b) +

P(abc)

2

)
.

3.6.3 Implications

An interesting case emerges when one applies this to the critical mode of percolation on Z2.

From the box-crossing (RSW) inequalities (see [Gri99, Section 11.7]) and the HK inequality,

one can show that P(abc)√
P(ab)P(ac)P(bc)

is bounded. Our method allows for better estimates on

this bound. According to the conjectured integral formula from [DV11]1, for the critical

regime on Z2 this quantity converges to approximately 1.022 as a, b and c tend from each

other. This number is consistent with our upper bound of 2
√

2.

Moreover, as per the earlier result in [SZK09, BI12], for the bond percolation on the upper

half-plane, if a, b and c lie on the real line, the scaling limit of P(abc)√
P(ab)P(ac)P(bc)

converges to

2
7
2π

5
2

3
3
4 Γ(1

3
)
9
2

≈ 1.02992 . . .

In this case, our Theorem 3.6.1 is applicable and gives a consistent upper bound of
√

2.

For the supercritical mode, denote by θ the density of the infinite cluster. Then equation

(3.13) tends to θ6 ≤ 8θ6 as a, b and c tend away from each other.

In the non-integrable cases, our inequality still leads to an inequality on the three-point

exponent. Denote by D(a, b, c) the maximum distance between a, b and c:

D(a, b, c) = max(D(a, b), D(a, c), D(b, c)).
1The proof of this formula for critical site percolation on triangular lattice was recently announced by

Morris Ang, Gefei Cai, Xin Sun and Baojun Wu (personal communication, 10 Aug 2024)

51



Corollary 3.6.5. Let G be a vertex-transitive infinite graph and C and α be the constant

such that P(ab) < CD(a, b)α. Then

P(abc) < (2C)
3
2D(a, b, c)

3
2
α.

Note that for G being a two-dimensional lattice in the critical mode, [LSW02], assuming

conformal invariance, establishes that P(ab) = D(a, b)−2η+o(1), where η = 5
48

is the one-arm

exponent. The P(abc), in turn, grows as D(a, b, c)−3η+o(1), which coincides with our bound.

Note that the conformal invariance is only known for site percolation on the triangular lattice

as per the celebrated result of Smirnov[S01].

3.7 Proof of Theorem 3.1.3

3.7.1 Proof of Lemma 3.1.2

We slightly modify the proof of Theorem 4.2 in [GZ24] and use the better bound from

Theorem 3.5.2. Assume G is finite. The following lemma was a keystone in the proof:

Lemma 3.7.1. Let the decision function S always output “S” and the decision function S̄
always output “S”. Let S1, S2 and S3 be given by the decision trees from Figure 3.1.

Then if C1 ∈ a|b|c and C1→S3 C2 ∈ ab ∪ ac, one has C1→S1 C2 ∈ ab or C1→S2 C2 ∈ ac.

We use this lemma, and as in [GZ24], we bound the probability of the first event from

above by

P(C1 ∈ a|b|c and C1→
S3

C2 ∈ ab ∪ ac)

≤ P(ab ∪ ac)P(a|b ∩ a|c)−P(a|bc) = P(a|b|c)−P(a|b ∩ a|c)2.

Now, using Theorem 3.5.2 we can get a better lower bound for the probabilities of the

two latter events. Indeed,
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Algorithm 3 S1 Decision Tree

1: procedure DFS Decision tree(G, a, b, c)

2: visitede ← array of size |E(G)| initialized with false, S ← ∅

3: DFS Decision tree(G, c, visitede, S, id,S)
4: DFS Decision tree(G, a, visitede, S, id, S̄)
5: DFS Decision tree(G, b, visitede, S, id,S)
6: return S

7: end procedure

Algorithm 4 S2 Decision Tree

1: procedure DFS Decision tree(G, a, b, c)

2: visitede ← array of size |E(G)| initialized with false, S ← ∅

3: DFS Decision tree(G, b, visitede, S, id,S)
4: DFS Decision tree(G, a, visitede, S, id, S̄)
5: DFS Decision tree(G, c, visitede, S, id,S)
6: return S

7: end procedure

Algorithm 5 S3 Decision Tree

1: procedure DFS Decision tree(G, a, b, c)

2: visitede ← array of size |E(G)| initialized with false, S ← ∅

3: DFS Decision tree(G, a, visitede, S, id, S̄)
4: DFS Decision tree(G, b, visitede, S, id,S)
5: DFS Decision tree(G, c, visitede, S, id,S)
6: return S

7: end procedure

Figure 3.1: Trees building S1, S2, S3
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P(C1 ∈ a|b|c and C1→
S1

C2 ∈ ab)

≤ P(a|b|c)−P(C1 ∈ a|b|c and C1→
S1

C2 ∈ a|b|c) = P(a|b|c)− P(a|b|c)2
P(a|c ∪ b|c)

and

P(C1 ∈ a|b|c and C1→
S2

C2 ∈ ac)

≤ P(a|b|c)−P(C1 ∈ a|b|c and C1→
S2

C2 ∈ a|b|c) = P(a|b|c)− P(a|b|c)2
P(a|b ∪ b|c) .

Combining these bounds, we get the needed equation (3.2).

For infinite G, the theorem follows by passing to the limit.

Now we are equipped to prove Theorem 3.1.3.

3.7.2 Proof of Theorem 3.1.3

By interchanging vertices a and b in (3.2), we get

P(a|b|c) + P(a|b ∪ b|c)2 ≥ P(a|b|c)2
P(a|b ∪ a|c) +

P(a|b|c)2
P(a|c ∪ b|c) . (3.17)

We rewrite it as

P(a|b|c) + (P(a|b|c) + P(ac|b))2 ≥ P(a|b|c)2
P(a|b|c) + P(a|bc) +

P(a|b|c)2
P(a|b|c) + P(ab|c) .

Assume the contrary: let ε be the counterexample to the conjecture. We will show that

small enough δ contradicts this inequality. Since P(ab|c) < δ and P(ac|b) < δ, we get

P(a|b|c) + (P(a|b|c) + δ)2 ≥ P(a|b|c)2
P(a|b|c) + δ

+
P(a|b|c)2

1−P(abc)
.
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Let us move the summands:

P(a|b|c)− P(a|b|c)2
P(a|b|c) + δ

≥ P(a|b|c)2
1−P(abc)

− (P(a|b|c) + δ)2.

Converting to the common denominator:

δ ≥ δP(a|b|c)
P(a|b|c) + δ

≥ −2δP(a|b|c)− δ2 + P(abc)(P(a|b|c) + δ)2

1−P(abc)
.

Finally, we multiply both parts by 1 − P(abc) and estimate assuming P(abc) ≥ ε and

P(a|b|c) ≥ ε:

4δ ≥ δ − δP(abc) + 2δP(a|b|c) + δ2 ≥ P(abc)(P(a|b|c) + δ)2 ≥ P(abc)P(a|b|c)2 ≥ ε3.

Now we see that δ < ε3

4
contradicts Lemma 3.1.2, thus proving the conjecture.

3.7.3 Remarks on the result

We hope that our tools can attack the notorious Conjecture 3.10.1. For now, we can only

say using Theorem 3.6.2 that

P(ab|c) < δ =⇒ P(abc)− 8P(ac)P(bc) < ε.

However, we improved the bounds on min
(
P(abc),P(a|b|c)

)
. In [GZ24] this quantity was

called α3 and the upper bound on it was 0.369. Without loss of generality,

P(a|b ∪ a|c) = min(P(a|b ∪ a|c),P(a|b ∪ b|c),P(a|c ∪ b|c)).

Then from the inequality (3.2), we get the upper bound t on α3. Indeed, the optimum is

achieved when P(a|b∪a|c) and P(a|b|c) are as large as possible and P(a|b∪ b|c),P(a|c∪ b|c)
are as small as possible. It leads us to an equation

t+

(
t+

1− 2t

3

)2

≥ 2
t2

t+ 1−2t
3

.
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This can be simplified to
t3 − 42t2 + 12t+ 1

t+ 1
≥ 0,

and the only root of the numerator on the (0, 1) interval is ≈ 0.356. This is better than the

previous upper bound on α3, but is still quite apart from the best lower bound of 0.29065.

3.8 General form of decision tree inequalities

Here we consider a generalized setup, where the decision tree generates a configuration as

it goes rather than reveals what was hidden. Assume that at each decision node N of the

decision tree T , it chooses an edge e(N) of the graph and makes a decisionD(N) ∈ {1, 2}, and

then generates a random element of one of two probability spaces Ω1(e) or Ω2(e) according

to the measures µ1(e) or µ2(e) respectively. If N is a decision node, it also has links to

|Ωi| vertices, where i = D(N). Assume that each path from N0 to a leaf node contains all

edges once. So, every edge is assigned an element of Ω1(e) or Ω2(e), and the tree T builds

a random configuration C ∈ Ω =
∏

e∈E
(
Ω1(e) ∪ Ω2(e)

)
. We use P to refer to the induced

distribution.

Assume that event A ⊆ Ω is such that for every edge e and every configuration C ∈ Ω

the probability of A is bigger if e is resampled from µ2(e) rather than if it is resampled from

µ1(e). It turns out to be the common setup for the HK, vdBK and other inequalities.

Main Lemma 3.8.1. Let T be a decision tree in the setup above building configuration C.

Let A be an event in Ω. Let e be an arbitrary edge and C ∈ Ω an arbitrary configuration.

Denote by X1 = X1(C, e) the subset of such x ∈ Ω1 and by X2 = X2(C, e) the subset of such

x ∈ Ω2 that C→E\{e} x ∈ A. Assume that for every e and C one has

µ1(X1) ≤ µ2(X2). (3.18)

Then

P(C1 ∈ A) ≤ P(C ∈ A) ≤ P(C2 ∈ A). (3.19)
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Proof. The proof generalizes the proofs of Theorems 3.3.2 and 3.4.3. We only prove the first

inequality of (3.19), since the second inequality is proved in the same manner. We induct

on the number of nodes of T with D(N) = 2. If no such nodes exist, the inequality turns

into equality. Otherwise, consider the lowest node N with D(N) = 2. Let tree T ′ coincide

with T up to the vertex N , but the node N ′ has D(N ′) = 1 and so its children should now

be indexed by Ω1(e(N)). We achieve it by copying an arbitrary child of N with its subtree

under all children of N ′, so that after getting to N ′ the edges that were not yet assigned

would be assigned a random element of the corresponding Ω1.

Now we see that each path in T not passing through N exists in T ′ as well and has the

same probability there. For paths in T passing throughN and the paths in T ′ passing through

N ′ the configuration C is the same except for the edge e(N) = e(N ′). This happens with

probability δ(N) and, conditional on passing through N , the probability of A is µ1(X1(C, e))

for T and µ2(X2(C, e)) for T ′. So,

P(C(T ) ∈ A)−P(C(T ′) ∈ A) = δ(N)
(
µ1

(
X1(C, e)

)
− µ2

(
X2(C, e)

))
≥ 0,

by condition (3.18). Now, from the induction hypothesis we obtain P(C(T1) ∈ A) ≤
P(C(T ′) ∈ A) ≤ P(C(T ) ∈ A). The second inequality in (3.19) is proved analogously.

Theorems 3.3.2 and 3.4.3 follow from the Main Lemma 3.8.1 with the correct choice of µ1

and µ2. In Theorem 3.3.2 Ω1(e) = Ω2(e) = {00, 01, 10, 11}. If p is the probability of e being

open in the original percolation, then µ1 assigns probabilities of (1 − p)2, p(1 − p), p(1 − p)
and p2 to the elements respectively and µ2 assigns probabilities of 1− p, 0, 0 and p.

In Theorem 3.4.3, unary nodes generate a random element of Ω1(e) = {0, 1} and binary

nodes generate a random element of Ω2(e) = {00, 01, 10, 11}. We consider the event A□S B

on Ω, where S is the set of edges generated by unary nodes. It is easy to check that condition

(3.18) holds. Thus, Main Lemma 3.8.1 proves Theorem 3.4.3. In fact, the extra generality

helps to spot further generalizations.

Theorem 3.8.2. Assume each edge e ∈ E is assigned some p(e) ∈ [0, 1]. Let Ω1(e) be the set

0, 1, 2 and µ1 assign the probabilities (1−p)2, 2p(1−p) and p2 to these outcomes, respectively.
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Let Ω2 be the set {00, 01, 10, 11} and µ2 assign the probabilities (1 − p)2, p(1 − p), p(1 − p)
and p2. Let A and B be two increasing events on {0, 1}E. Denote by A ▷◁ B the following

event on
∏

e∈E(Ω1(e) ∪ Ω2(e)):

A ▷◁ B =

{
C ∈

∏
e∈E

(Ω1(e) ∪ Ω2(e)) s.t. ∃w1, w2 ⊆ E s.t. Ind[w1] ∈ A, Ind[w2] ∈ B,

and C(e) ∈


{1, 2, 10, 11}, if e ∈ w1,

{1, 2, 01, 11}, if e ∈ w2,

{2, 11}, if e ∈ w1 ∩ w2.

} (3.20)

Let C1, C and C2 be the configurations built by decision trees as above. Then,

P(C1 ∈ A ▷◁ B) ≤ P(C ∈ A ▷◁ B) ≤ P(C2 ∈ A ▷◁ B).

Informally, A ▷◁ B is the same as A□B, but there is an extra probability p2 for a unary

node to produce a double edge that can be used in both witnesses.

Proof. We need to prove the condition (3.18). Consider a configuration C on
∏

e∈E(Ω1(e) ∪
Ω2(e)), defined up to some edge e.

Note that Ω1 has a natural linear ordering and Ω2 has a natural partial ordering. These

orders agree with the definition of ▷◁ in the sense that if x < y and C→E\{e} x ∈ A ▷◁ B,

then C→E\{e} y ∈ A ▷◁ B. Let X1 be the subset of such x ∈ Ω1 and X2 be the subset of such

x ∈ Ω2 that C→E\{e} x ∈ A ▷◁ B. Then both X1 and X2 are closed upward. The theorem

statement is then equivalent to µ1(X1) ≤ µ2(X2).

So now there are four possibilities for X1. It can be either ∅, {2}, {1, 2}, or {0, 1, 2}. We

analyze these cases separately.

(i) X1 = ∅: then, obviously, 0 = µ(X1) ≤ P(X2).

(ii) X1 = {2}: then 11 ∈ X2. Indeed, consider the witnesses w1, w2 for C→E\{e} 2 ∈
A ▷◁ B. Same w1, w2 would witness C→E\{e} 2 ∈ A ▷◁ B, because the definition
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(3.20) does not distinguish between 2 and 11. So, the probability of X2 is at least

µ2(11) = p2 = µ1(2).

(iii) X1 = {1, 2}: then 01 ∈ X2 or 10 ∈ X2. Indeed, let w1, w2 be the witnesses for

C→E\{e} 1 ∈ A ▷◁ B. At most one of them should contain e and they can not both not

contain it, because otherwise they would be witnesses for C→E\{e} 0 ∈ A ▷◁ B as well.

Without loss of generality, e ∈ w1. Then w1 and w2 are a witness for C→E\{e} 10 ∈
A ▷◁ B and 10 ∈ X2 as well as 11. So, µ2(X2) ≥ µ2(10) + µ2(11) = p = µ1(X1). Note

that this case contributes to the inequality if X2 = {10, 01, 11}, since in other cases we

can actually prove µ1(X1) = µ2(X2).

(iv) X1 = {0, 1, 2}: then 00 ∈ X2. Indeed, let w1, w2 be the witnesses for C→E\{e} 0 ∈ A ▷◁

B. Both of them avoid e, so they witness C→E\{e} 00 ∈ A ▷◁ B as well. So X2 = Ω2

and µ1(X1) = 1 = µ2(X2).

Along with the vdBK inequality, the paper [BK85] shows the following stronger result:

Theorem 3.8.3 ([BK85, eq. (3.6)]). Let A1, . . . , An and B1, . . . , Bn be increasing events

on {0, 1}E.

Then

P(A1 □B1 ∪ · · · ∪ An □Bn) ≤ P(A1 ×B1 ∪ · · · ∪ An ×Bn),

where the second event is a subset of {00, 01, 10, 11}E with the probability measure as in

Theorem 3.8.2.

We note that the proof of Theorem 3.8.2 also proves the similar statement:

Theorem 3.8.4 (cf. Main Lemma 3.8.1). In the conditions of Theorem 3.8.2, for every
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increasing event A1, . . . , An and B1, . . . , Bn on {0, 1}E one has

P(C1 ∈ A1 ▷◁ B1 ∪ · · · ∪ An ▷◁ Bn)

≤ P(C ∈ A1 ▷◁ B1 ∪ · · · ∪ An ▷◁ Bn)

≤ P(C2 ∈ A1 ▷◁ B1 ∪ · · · ∪ An ▷◁ Bn).

Now we continue applications of our method with the decision tree version of the main

theorem from [GP24a]. In notation from this paper, f : E → {a, b, c, d} is a uniform random

coloring of the edges of G, where each edge is colored uniformly and independently. Denote

by Es, s ∈ {a, b, c, d}, a subset of edges of the corresponding color. Similarly, for every

two distinct colors s, t ∈ {a, b, c, d}, let Est := Es ∪ Et. One can think of Est as either a

1
2
-percolation or a uniformly random subset of edges of G, so that Gst = (V,Est) is a uniform

random subgraph of G.

Theorem 3.8.5 ([GP24a, first part of Theorem 1]). Let U ,V ,W be closed upward graph

properties. Denote by Uab, Vac and Wbc the corresponding properties of Gab, Gac and Gbc,

respectively. Then the events Uab, Vac and Wbc are pairwise independent, but have negative

mutual dependence:

P(Uab ∩ Vac ∩Wbc) ≤ P(Uab)P(Vac)P(Wbc), (3.21)

where the probability is over uniform random colorings f : E → {a, b, c, d}.

From Main Lemma 3.8.1 we get the decision tree version. Let Ω1 be the set of triplets

{000, 011, 101, 110} and µ1 be the measure assigning 1
8

to each element of Ω2. Similarly, let

Ω2 be the full set of triplets

{000, 001, 010, 011, 100, 101, 110, 111}

and µ2 be the measure that assigns 1
4

to each element of Ω2. We say that an element C

of
∏

e∈E(Ω1(e) ∪ Ω2(e)) belongs to U × V ×W if the configuration E1 ∈ {0, 1}E formed by

the first digits on the edges belongs to U , the configuration E2 formed by the second digits
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on the edges belongs to V and the configuration E3 formed by the third digits on the edges

belongs to W .

Theorem 3.8.6. Let C1, C and C2 be the configurations built by decision trees as above.

Then,

P(C1 ∈ U × V) = P(C ∈ U × V) = P(C2 ∈ U × V). (3.22)

and

P(C1 ∈ U × V ×W) ≤ P(C ∈ U × V ×W) ≤ P(C2 ∈ U × V ×W). (3.23)

Proof. The “pairwise independent” part of Theorem 3.8.5 is an easy part. It also general-

izes to the decision tree setup as (3.22), since, without the third coordinate, the first two

coordinates are uniformly distributed in both µ1 and µ2.

If C ∈ ∏
e∈E Ω1(e), then by the choice of Ω1, we see that E3 = E1 ⊕ E2 is an edgewise

exclusive or of independent E1 and E2, just like Ebc = Eab ⊕ Eac. So, the probability on

the left coincides with P(Uab ∩ Vac ∩ Wbc). The event on the right is an intersection of

three independent events depending on E1, E2 and E3, so its probability coincides with

P(Uab)P(Vac)P(Wbc).

LetX1 be the subset of such x ∈ Ω1 andX2 be the subset of such x ∈ Ω2 that C→E\{e} x ∈
U × V ×W . Note that X1 = X2 ∩ Ω2, so we only need to analyze the possibilities for X2.

Since the condition for x ∈ U ×V×W splits into 3 independent conditions for 3 coordinates,

X2 is a Cartesian product of 3 sets. Moreover, since U , V and cW are increasing, X2 is also

increasing. This leaves us with a few options, up to the coordinate permutation.

(i) X2 = ∅: then X1 = ∅ and µ1(X1) = 0 = µ2(X2).

(ii) X2 = {111}: then X1 = ∅ and µ1(X1) = 0 < 1
8

= µ2(X2). Note that this is the only

case where the inequality is strict.

(iii) X2 = {111, 110}: then X1 = {110} and µ1(X1) = 1
4

= µ2(X2).

(iv) X2 = {111, 110, 101, 100}: then X1 = {110, 101} and µ1(X1) = 1
2

= µ2(X2).
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(v) X2 = Ω2: then X1 = Ω1 and µ1(X1) = 1 = µ2(X2).

By Main Lemma 3.8.1, we are done.

The last application is somewhat similar. Let

Ω1 = Ω2 = {000, 001, 010, 011, 100, 101, 110, 111}.

Let µ1 be the mixture of the uniform distribution µ11 on {000, 111} with the coefficient

2
3

and the uniform distribution µ12 on Ω1 with the coefficient 1
3
. Let µ2 be the mixture

of the uniform distribution µ21 on {000, 011, 100, 111} with the coefficient 1
3
, the uniform

distribution µ22 on {000, 010, 101, 111} with the coefficient 1
3
, and the uniform distribution

µ23 on {000, 001, 110, 111} with the coefficient 1
3
.

Theorem 3.8.7. Let C1, C and C2 be the configurations built by decision trees as above.

Then,

P(C1 ∈ U × V ×W) ≥ P(C ∈ U × V ×W) ≥ P(C2 ∈ U × V ×W). (3.24)

Proof. Let X be the subset of such x ∈ Ω1 = Ω2 that C→E\{e} x ∈ U × V ×W . As in the

previous proof, X can only be an increasing product of three events. By Main Lemma 3.8.1,

we are left to check that µ1(X) ≥ µ2(X). So, without loss of generality, we have the following

cases.

(i) X = ∅: then µ1(X) = 0 = µ2(X).

(ii) X = {111}: then µ1(X) = 9
24
> 1

4
= µ2(X). Note that this is one of the two cases

where the inequality is strict.

(iii) X = {111, 110}: then µ1(X1) = 10
24
> 4

12
= µ2(X2). Note that this is one of the two

cases where the inequality is strict.

(iv) X = {111, 110, 101, 100}: then µ1(X1) = 1
2

= µ2(X2).

(v) X = Ω2: then µ1(X1) = 1 = µ2(X2).
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Remark 3.8.8. This final application of Main Lemma 3.8.1 stems from the work of Richards

[R04]. His paper provides an incorrect proof for the inequality

2P(U∩V∩W)+P(U)P(V)P(W) ≥ P(U)P(V∩W)+P(V)P(U∩W)+P(W)P(V∩U) (3.25)

The proof mimics the proof of the HK inequality and utilizes induction. The induction

step implicitly worked in the space of triples of configurations and effectively was equivalent to

equation (3.24). Inequality (3.25) is still a conjecture. Sahi [S08] generalized this inequality

to a series of conjectured inequalities. There are partial results in the direction of these

conjectures [LS22].

3.9 Inequalities for disjoint paths between two vertices

3.9.1 Proof of Theorem 3.1.5

Finally, after studying the connectivity events for 3 vertices, we study the minimal case –

inequalities concerning connections for just two points. Although it may seem that there is

not enough variation – a and b can be either connected or disconnected, we study the events

of the form ab□n := ab□ ab□ · · ·□ ab (n times). Note that in general □ is not associative,

but this particular event means that there are n nonintersecting paths from a to b passing

through open edges. Thus, this definition does not depend on the order of operations. When

b is a ghost vertex, P(ab□n) is related to the monochromatic arms exponents.

Proof of Theorem 3.1.5. Let G be finite. Without loss of generality, the face to which a and

b both belong is an outer face. This allows us to run a right-hand rule walk on it and to

talk about the “right” and “left” side of every path. Let T be a decision tree that runs a

right-hand rule walk starting from a, until it runs into b, and put its edges in S. If the walk

reaches b, then part of the edges in this walk form the path P1 that is the rightmost path

from a to b. It means that for every path P from a to b, all vertices of P1 lie on P or to the
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right of it. In this case, run the second right-hand rule path from a, not taking the edges

already considered. If this walk also reaches b, then part of the edges in the walk should

form the path P2 which is the second rightmost path from a to b. It means that for all paths

P and Q that don’t share edges and Q lies to the right of P , the path P2 lies to the right of

P .

Now T is a decision tree for the event ab□2. If this event occurs, then we can continue T

to the tree T ′ that runs the right-hand rule walk from a once again. Then T ′ is a decision

tree for the event ab□3. Now, from Theorem 3.5.2 we get

P(C1 ∈ ab□3, C1→
S
C2 ∈ ab□3) ≥

P(ab□3)2

P(ab□2)
. (3.26)

Also, from Theorem 3.4.3, we get the other estimate. Indeed, if C1 ∈ ab□3 and C1→S C2 ∈
ab□3, then there are paths P3 in C1|S that completes the triple of nonintersecting paths P1,

P2 and P3 in C1 and P ′
3 in C2|S that completes the triple of nonintersecting paths P1, P2 and

P ′
3 in C1→S C2. So we have a pair of witnesses (P1 ∪P3, P2 ∪P ′

3) for the event ab□2□S ab□2.

Now by Theorem 3.4.3 we get

P(C1 ∈ ab□3, C1→
S
C2 ∈ ab□3) ≤ P(ab□2 □S ab

□2) ≤ P(ab□2)2. (3.27)

Combining equations (3.26) and (3.27), we get the needed (3.3).

For the infinite G, the result follows by standard limit arguments.

3.9.2 Generalization of Theorem 3.1.5

Theorem 3.9.1. Let G be planar. Assume a and b belong to the same face, n is a natural

number and k, l,m ≤ n are such that k + l +m = 2n. Then

P(ab□n)2 ≤ P(ab□k)P(ab□l)P(ab□m) (3.28)
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Proof. The proof is analogous to the previous one. Let T be a decision tree that runs k

right-hand rule walks from a and puts the edges it meets in S. Then T is a decision tree for

ab□k. By Theorem 3.5.2, we get

P(C1 ∈ ab□n, C1→
S
C2 ∈ ab□n) ≥ P(ab□n)2

P(ab□k)
. (3.29)

On the other hand, if C1 ∈ ab□n and C1→S C2 ∈ ab□n, then there are n−k nonintersecting

paths from a to b in C1|S and other n − k nonintersecting paths from a to b in C2|S. We

add them to witnesses w1, w2 of ab□l □S ab□m. Now we split the k paths from S into n−m
and n− l paths (we can do it since n−m + n− l = k) and add these paths to w1 and w2,

respectively. Now this construction gives an estimate

P(C1 ∈ ab□n, C1→
S
C2 ∈ ab□n) ≤ P(ab□l □S ab

□m) ≤ P(ab□l)P(ab□m). (3.30)

Combining equations (3.29) and (3.30), we get the needed (3.28).

3.10 Open problems

Section 3.7 leaves some open questions. Despite Theorem 3.1.3, the more precise question

remains open:

Conjecture 3.10.1. For ε > 0, there exists δ > 0, such that

P(ab|c) < δ =⇒
(
P(abc)P(a|b|c)−P(ac|b)P(a|bc) < ε

)
.

Numerical simulations confirm this conjecture, which is as natural as could be.

We also propose a strengthening of the Conjecture 3.1.4 on the probabilities of ab□k.

Consider the example where G consists just of the vertices a and b connected via N edges

(or disjoint paths, to keep G simple), each having a probability of λ
N

. Then as N →∞, the

distribution of the number of paths between a and b tends to the Poisson distribution with

parameter λ, so we have P(ab□k)→∑∞
i=k

λi

i!eλ
.
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Conjecture 3.10.2. For a given graph G we define the implied λk as the unique number

such that

P(ab□k) =
∞∑
i=k

λik
i!eλk

.

We conjecture that {λk} is a decreasing sequence.
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CHAPTER 4

The bunkbed conjecture is false

4.1 Introduction

The bunkbed conjecture (BBC) is a celebrated open problem in probability introduced by

Kasteleyn in 1985, see [BK01, Remark 5]. The conjecture is both natural and intuitively

obvious, but has defied repeated proof attempts; it is known only in a few special cases.

In this paper we disprove the conjecture without resorting to computer experiments (cf.

Section 4.7).

Let G = (V,E) be a connected graph, possibly infinite and with multiple edges. In

Bernoulli bond percolation, each edge is deleted independently at random with probability

1 − p, and otherwise retained with probability p ∈ [0, 1]. Equivalently, this model gives a

random subgraph of G weighted by the number of edges. For p = 1
2

we obtain a uniform

random subgraph of G. See [BR06, Gri99] for standard results and [D18a, Wer09] for recent

overview of percolation.

Let Pp[u ↔ v] denote the probability that vertices u, v ∈ V are connected. It is often

of interest to compare these probabilities, as computing them exactly is #P-hard [PB83].

For example, the classical Harris–Kleitman inequality, a special case of the FKG inequality,

implies that Pp[u ↔ v] ≤ Pp[u ↔ v |u ↔ w] for all u, v, w ∈ V , see e.g. [AS16, Ch. 6].

Harris used this to prove that the critical probability pc(G) := inf{p : Pp(G) > 0} satisfies

pc(Z2) ≥ 1
2

[H60], in the first step towards Kesten’s remarkable exact value pc(Z2) = 1
2

[Kes80], where Pp(G) denotes the probability that there exists an infinite percolation cluster.

Considerations of percolation monotonicity on Z2 (see §4.8.4), led Kasteleyn to the following
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problem.

Fix a finite connected graph G = (V,E) and a subset T ⊆ V . A bunkbed graph G =

(V ,E) is a subgraph of the graph product G×K2 defined as follows. Take two copies of G,

which we denote G and G′ = (V ′, E ′), and add all edges of the form (w,w′), where w ∈ T
and w′ is a corresponding vertex in T ′; we denote this set of edges by T . The resulting

bunkbed graph has V = V ∪ V ′ and E = E ∪ E ′ ∪ T .

In the bunkbed percolation, the usual bond percolation is performed only on edges in G

and G′, while all edges in T are retained (i.e., not deleted). We use Pbb
p [u↔ v] to denote the

connecting probability in this case. The vertices in T are called transversal and the edges

in T are called posts, to indicate their special status. See e.g. [Lin11, RS16], for these and

several other equivalent models of the bunkbed percolation. We refer also to [Gri23, §4.1],

[Pak22, §5.5] and [Rud21] for recent overviews and connections to other areas.

Conjecture 4.1.1 (bunkbed conjecture). Let G = (V,E) be a connected graph, let T ⊆ V ,

and let 0 < p < 1. Then, for all u, v ∈ V , we have:

Pbb
p [u↔ v ] ≥ Pbb

p [u↔ v′ ].

The bunkbed conjecture is known in a number of special cases, including wheels [Lea09],

complete graphs [dB16, dB18, HL19], complete bipartite graphs [Ric22], and graphs symmet-

ric w.r.t. the u↔ v automorphism [Ric22]. It is also known for one [Lin11, Lemma 2.4] and

for two transversal vertices (Theorem 4.9.3, see also [Lohr18, §6.3]). Finally, the conjecture

was recently proved in the p ↑ 1 limit [HNK23, Hol24a].

Theorem 2. There is a connected planar graph G = (V,E) with |V | = 7222 vertices and

|E| = 14442 edges, a subset T ⊂ V with three transversal vertices, and vertices u, v ∈ V ,

such that

Pbb
1
2

[u↔ v ] < Pbb
1
2

[u↔ v′ ].

In particular, the bunkbed conjecture is false.
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The result is surprising since analogous inequalities for simple random walks and for

the Ising model on bunkbed graphs were proved by Häggström [Häg98, Häg03], cf. §4.8.5.

Recall that three is the smallest number of transversal vertices we can have to disprove the

conjecture. On the other hand, the total number of vertices is unlikely to be optimal, see

Remark 4.4.2 and Section 4.7.

The proof of the theorem is based on an example of Hollom [Hol24b] refuting the 3-

uniform hypergraph version of the BBC. Unfortunately, Hollom’s example alone cannot

disprove the conjecture since it is impossible to find a gadget graph simulating a single

3-hyperedge using bond percolation [GZ24, Thm 1.5].

We give a robust version of Hollom’s construction using the approach in [Gla24, GZ24].

The proof of Theorem 2 occupies most of the paper. It is self-contained modulo Hollom’s

result which is small enough to be checked by hand. In Section 4.6, we extend the theorem

to the case when the set of transversal vertices is not fixed but chosen uniformly at ran-

dom from V , see Theorem 3. We conclude with discussion of our computer experiments in

Section 4.7, and final remarks in Section 4.8.

4.2 Notation

In percolation, deleted edges are called closed while retained edges are called open. Note that

there are several different models of percolation and variations on the bunkbed conjecture

(BBC), see §4.8.1.

A hypergraph is a collection of subsets of vertices; to simplify the notation we use the

same letter to denote both. The hypergraph is called uniform if all hyperedges have the

same size. A path in a hypergraph is a sequence (v0 → v1 → . . . → vℓ) of vertices, such

that vi−1, vi lie in the same hyperedge, for all 1 ≤ i ≤ ℓ. We say that two vertices in a

hypergraph are connected if there is there is a path between them. For further definitions

and results on hypergraphs, see e.g. [Ber89, §1.2].
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The notion of hypergraph percolation is is a natural extension of graph percolation, and

goes back to the study of random hypergraphs, see e.g. [SPS85]. In recent years, the study

of hypergraph percolation also emerged in probabilistic and statistical physics literature, see

e.g. [WZ11] and [BD24], respectively.

4.3 Hypergraph percolation

4.3.1 Hollom’s example

Let H be a finite connected hypergraph on the set V of vertices. We use Pp[u ↔ v ] to

denote probability of connectivity of vertices u, v ∈ V in the hypergraph percolation, where

each hyperedge e in H is retained with probability p, or deleted with probability 1− p.

Let T ⊆ V be the set of transversal vertices. Denote by H be the bunkbed hypergraph

with levels H ≃ H ′, and vertical posts which are the (usual) edges. Note that H has

horizontal hyperedges and vertical posts.

In [Hol24b], Hollom considers the following natural hypergraph generalization of the

Alternative BBC, see §4.8.1. In the alternative bunkbed hypergraph percolation, each hyper-

edge e in H is either deleted while the corresponding hyperedge e′ in H ′ is retained with

probability 1
2
, or vice versa: the hyperedge e is retained and e′ is deleted.

Lemma 4.3.1 (Hollom [Hol24b, Claim 5.1]). Let H be the hypergraph with six 3-edges as in

the Figure 4.1, and let T = {u2, u7, u9} be the set of transversal vertices. In the alternative

bunkbed hypergraph percolation, we have:

Palt[u1 ↔ u′10 ] =
13

64
and Palt[u1 ↔ u10 ] =

12

64
.

We give a robust version of Hollom’s construction.
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Figure 4.1: Hollom’s 3-uniform hypergraph H.

4.3.2 Robust hyperedge lemma

Note that in Hollom’s example, each hyperedge has exactly one transversal vertex. We

explore this structure.

Consider the following WZ hypergraph percolation model introduced by Wierman and Ziff

in [WZ11] (see also [GZ24]). We define this model only for the graph H. Let e = (a, b, c)

be a hyperedge where a is a transversal vertex. We will fix the order of vertices in each

hyperedge precisely in (4.5). In the model, hyperedge e is set to have

◦ probability pabc to connect all three vertices,

◦ probability pa|b|c to not connect any of the vertices,

◦ probability pa|bc to connect two non-transversal vertices, and

◦ probability pab|c = pac|b to connect a transversal to a nontransversal vertex,

and these events are independent on all hyperedges.

Finally, we assume that these five probabilities sum up to 1:

pabc + pa|b|c + pa|bc + pab|c + pac|b = 1.
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It is easy to see that the hypergraph percolation on H is a partial case of the WZ model,

where pabc = p and pa|b|c = 1− p.

Definition 4.3.2 (Configurations in the WZ model). A configuration in the WZ model is

an assignment of one of the five states {abc, a|b|c, a|bc, ab|c, ac|b} to each hyperedge in

H ∪H ′. Equivalently, we can represent it by a function

ψ : H ∪H ′ → Υ where Υ = {abc, ab|c, ac|b, a|bc, a|b|c}.

The probability of a configuration ψ is given by

P(ψ) =
∏

e∈H∪H′

pψ(e),

where pα denotes the probability of the state α ∈ Υ.

We say that vertices u and v are connected (written u ↔ v) if they are connected by

a path in the bunkbed hypergraph H in a way that every two vertices on a hyperedge are

connected by the rules above. We use Pwz[u↔ v ] to denote these connection probabilities,

omitting the superscript if the model is clear from context.

Lemma 4.3.3. Let H be Hollom’s hypergraph in the Figure 4.1, H be the bunkbed hypergraph

built on it, and let T = {u2, u7, u9} be the set of transversal vertices. Consider the WZ

hypergraph percolation as described above, where the connection probabilities satisfy

400pa|bc ≤ pabc pa|b|c − pab|cpac|b . (4.1)

Then we have:

Pwz(u1 ↔ u10) < Pwz(u1 ↔ u′10). (4.2)

It was noted in [Gla24, Cor. 3.6], that the RHS in (4.1) is nonnegative if the hyperedge

is simulated by a gadget in Bernoulli edge percolation:

pab|c pac|b = p2ab|c ≤ pabc pa|b|c . (4.3)
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This is a consequence of the Harris–Kleitman (HK) inequality. In fact, a slightly stronger

inequality always holds (ibid.) Since the LHS in (4.1) is nonnegative, one can view this

assumption as strengthening the HK inequality in this case (cf. §4.8.2). Also, it is easy to

see that the hypergraph model satisfies the condition (4.1), since two of these terms become

zero.

4.3.3 Refining the State Space

Let C be the set of configurations ψ that contain a path u1 ↔ u10, and let C ′ be the set of

those containing a path u1 ↔ u′10. The probabilities of sets C and C ′ are given by

P(C) :=
∑
ψ∈C

P(ψ) and P(C ′) :=
∑
ψ∈C′

P(ψ).

Our goal is to prove P(C) < P(C ′) by constructing a suitable map from C to C ′.

Since each hyperedge in H has a symmetric counterpart, one can view a configuration not

as a function ψ : H → Υ, but as a function from H to Υ2. For each hyperedge e in H, there

are 25 possibilities for a pair (ψ(e), ψ(e′)). To handle certain configurations more precisely,

we refine the pairs (abc, a|b|c) and (a|b|c, abc) by splitting each into two disjoint sub-events:

(abc, a|b|c) 7→ (abc, a|b|c)+ ∪ (abc, a|b|c)−, (a|b|c, abc) 7→ (a|b|c, abc)+ ∪ (a|b|c, abc)−.

The probabilities (or weights) of these refined events are given by:

P
[
(abc, a|b|c)+

]
= pab|c · pac|b , P

[
(abc, a|b|c)−

]
= pabc · pa|b|c − pab|c · pac|b , (4.4)

and similarly for (a|b|c, abc)+ and (a|b|c, abc)−. This refinement increases the total number

of possible pairs in Υ2 from 25 to 27, resulting in the extended state space

Υ2
ext := Υ2∖

{
(a|b|c, abc), (abc, a|b|c)

}
∪
{

(abc, a|b|c)+, (abc, a|b|c)−, (abc, a|b|c)+, (abc, a|b|c)−
}
.

In the original model, ψ(e) and ψ(e′) were sampled independently from Υ. After the refine-

ment, however, we consider a new framework where by configuration we mean a function
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Ψ : H → Υ2
ext. In the new model, the state of a pair (e, e′) is sampled directly from Υ2

ext inde-

pendently with probabilities given by equation (4.4) for refined pairs and P
[
(α, β)

]
= pαpβ

for non-refined pairs. Then the states ψ(e) and ψ(e′) are defined by Ψ(e).

Building on the refinement of Υ2 to Υ2
ext, we now focus on a particularly important subset

of states. Specifically, we consider a smaller set of interest:

Λ := {abc, ab|c, ac|b, a|b|c}.

The Cartesian product Λ2 := Λ × Λ consists of all ordered pairs of states in Λ, giving

4× 4 = 16 elements. To incorporate the refined structure introduced earlier, we replace the

pairs (abc, a|b|c) and (a|b|c, abc) in Λ2 with their “+” counterparts.

Definition 4.3.4 (Refined Pair Set Λ2
+). The refined set of pairs Λ2

+ is defined as:

Λ2
+ :=

{
(α, β) ∈ Λ2 : (α, β) /∈ {(abc, a|b|c), (a|b|c, abc)}

}
∪
{

(abc, a|b|c)+, (a|b|c, abc)+
}
⊂ Υ2

ext .

4.3.4 Involutions on Extended State Spaces

To proceed with the construction of a map from C to C ′, we define two weight-preserving

involutions on the extended state space Υ2
ext.

Definition 4.3.5 (Reflection Involution). The reflection involution R is defined on the

extended state space Υ2
ext. For a pair Ψ(e) ∈ Υ2

ext, it swaps the states of e and e′, and is

formally given by:

R
(
(α, β)

)
:= (β, α).

Additionally, for refined states, the reflection involution R is defined to preserve the sign.

The reflection involution R is weight-preserving because the weight of each configuration

is symmetric under the swapping of ψ(e) and ψ(e′). While R works by simply swapping

states, making it straightforward to handle symmetry, the half-reflection involution η requires

a more detailed approach. It is constructed to modify vertex connections as described in

Proposition 4.3.7, while preserving weights.
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Partition the set of pairs Λ2
+ = Ω0 ∪ Ω1 ∪ Ξ into the following three subsets:

Ω0 :=

 (abc, ac|b), (ac|b, abc), (a|b|c, ab|c), (ab|c, a|b|c),

(abc, abc), (a|b|c, a|b|c), (ab|c, ab|c), (ac|b, ac|b)

 ,

Ω1 :=
{

(abc, ab|c), (ab|c, abc), (a|b|c, ac|b), (ac|b, a|b|c)
}
, and

Ξ :=
{

(abc, a|b|c)+, (a|b|c, abc)+, (ab|c, ac|b), (ac|b, ab|c)
}
.

Definition 4.3.6 (Half-Reflection Involution). The half-reflection involution η is defined on

the set Λ2
+ as follows:

• On Ω0, the involution η is the identity map.

• On Ω1, the half-reflection coincides with the reflection involution R defined earlier.

• On Ξ, the half-reflection involution η is given by:

η
(
(abc, a|b|c)+

)
:= (ab|c, ac|b), η

(
(ab|c, ac|b)

)
:= (abc, a|b|c)+ ,

η
(
(a|b|c, abc)+

)
:= (ac|b, ab|c), η

(
(ac|b, ab|c)

)
:= (a|b|c, abc)+ .

This involution is weight-preserving because it satisfies the following conditions:

◦ On Ω0, the involution is constant, making it trivially weight-preserving.

◦ On Ω1, the involution coincides with the reflection involution R, which has already

been shown to preserve weights.

◦ On Ξ, the involution swaps pairs in such a way that the probabilities remain balanced.

Specifically, since

P
(
(abc, a|b|c)+

)
= P

(
(a|b|c, abc)+

)
= pab|c · pac|b,

swapping (abc, a|b|c)+ with (ab|c, ac|b), and (a|b|c, abc)+ with (ac|b, ab|c), does not alter

the total probability.
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After defining the half-reflection involution η, we examine how it modifies connectivity

in configurations. The following proposition describes the effect of η on states in Λ2
+.

Proposition 4.3.7. Let Ψ be a configuration and e = (a, b, c) ∈ H such that Ψ(e) ∈ Λ2
+.

Let Ψ′ be any configuration such that

Ψ′(e) = η(Ψ(e)).

Then, the following properties hold:

i. If b and c are connected in Ψ within e, then b and c′ are connected in Ψ′. Similarly, if

b′ and c′ are connected in Ψ within e′, then b′ and c are connected in Ψ′.

ii. If a and b are connected in Ψ within e, then they remain connected in Ψ′. Similarly, if

a′ and b′ are connected in Ψ within e′, then they remain connected in Ψ′.

iii. If a and c are connected in Ψ within e, then a′ and c′ are connected in Ψ′. Similarly,

if a′ and c′ are connected in Ψ within e′, then a and c are connected in Ψ′.

Proof. We will prove only the first part of each statement. The second part follows directly

from the symmetry of η. In particular, the relation

η
(
R
(
Ψ(e)

))
= R

(
η
(
Ψ(e)

))
guarantees that the roles of e and e′ are interchangeable under η.

For (i), suppose b and c are connected in Ψ within e, which implies ψ(e) = abc. In Ψ′,

we claim there exists a path b→ a→ a′ → c′. This holds if:

◦ The first component of η
(
Ψ(e)

)
belongs to {abc, ab|c}, and

◦ The second component of η
(
Ψ(e)

)
belongs to {abc, ac|b},

whenever ψ(e) = abc. These conditions follow directly from the definition of η and its action

on Ω0, Ω1, and Ξ.
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For (ii), assume a and b are connected in Ψ within e, which implies ψ(e) ∈ {ab|c, abc}. In

Ψ′, we verify that a and b remain connected within e. This requires that the first component

of η
(
Ψ(e)

)
belongs to {ab|c, abc}, whenever ψ(e) ∈ {ab|c, abc}. Again, this follows from the

definition of η.

For (iii), suppose a and c are connected in Ψ within e, which implies ψ(e) ∈ {ac|b, abc}.
In Ψ′, we claim a′ and c′ are connected within e′. This is satisfied if the second component

of η
(
Ψ(e)

)
belongs to {ac|b, abc}, whenever ψ(e) ∈ {ac|b, abc}. The result follows directly

from the definition of η.

4.3.5 Proof of Lemma 4.3.3

We define the subset of configurations X as:

X :=
{

Ψ : Ψ(e) ∈ Λ2
+ for some e ∈ H

}
.

Our goal is to construct a weight-preserving involution ϕ : X → X , which satisfies:

Ψ ∈ C =⇒ ϕ(Ψ) ∈ C ′, and Ψ ∈ C ′ =⇒ ϕ(Ψ) ∈ C.

To define ϕ, we begin by introducing the red path ρ from u1 to u10, as shown in Figure 4.1.

Observe that ρ traverses every hyperedge exactly once and avoids transversal vertices. Fix

the order on the hyperedges of H according to their appearance along the path ρ:

(u2, u1, u3), (u9, u3, u6), (u7, u6, u5), (u2, u5, u4), (u7, u4, u8), (u9, u8, u10). (4.5)

This notation also establishes a fixed ordering for the vertices within each hyperedge.

Specifically, if a hyperedge e = (a, b, c) corresponds to an entry (ui, uj, uk) in the sequence

above, then the vertices of e are assigned as a = ui, b = uj, and c = uk, preserving the order

within each tuple. In particular, the first vertex a = ui in each tuple is a transversal vertex.

The map ϕ : X → X is defined as follows. Let e = (a, b, c) be the first hyperedge along ρ

such that Ψ(e) ∈ Λ2
+. The configuration Ψ′ = ϕ(Ψ) is constructed according to the following
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rule:

Ψ′(h) =


Ψ(h) if h appears before e along ρ,

η
(
Ψ(h)

)
if h = e,

R
(
Ψ(h)

)
if h appears after e along ρ.

Since both η and R are weight-preserving by their respective definitions, ϕ is also a weight-

preserving involution.

Next, we establish that ϕ maps configurations in C to configurations in C ′, and vice versa.

Lemma 4.3.8. Let Ψ ∈ X ∩ C, and let Ψ′ be the configuration obtained by applying the

involution ϕ to Ψ. Then, Ψ′ ∈ C ′. Conversely, if Ψ ∈ X ∩ C ′, then Ψ′ ∈ C.

Proof. We have V = {u1, . . . , u10} and T = {u2, u7, u9}. Let L ⊆ (V \ T )∪ (V ′ \ T ′) denote

the set of nontransversal vertices that lie along the path ρ between u1 and b, inclusively,

along with their counterparts from the other level. Similarly, let R := (V \T )∪ (V ′ \T ′)\L.

For any path γ in Ψ, we construct a corresponding path γ′ in Ψ′ as follows. For all vertices

ui ∈ R on γ, replace ui with its counterpart u′i in γ′, and vice versa: for all u′i ∈ R on γ,

replace u′i with ui in γ′.

To confirm that γ′ is a connected path in Ψ′, consider two sequential vertices xk and xk+1

in γ and their corresponding images yk and yk+1 in γ′. We analyze the connectivity in the

following cases:

◦ Transversal edge: If xkxk+1 is a transversal edge in γ, then it remains unchanged

under ϕ. The corresponding edge ykyk+1 in γ′ is also transversal, ensuring connectivity.

◦ Hyperedge before e: If xk and xk+1 are connected in Ψ through a hyperedge h before

e in ρ, then yk = xk, yk+1 = xk+1, and Ψ′(h) = Ψ(h). The connection is preserved in

γ′.

◦ Hyperedge after e: If xk and xk+1 are connected in Ψ through a hyperedge h after e

in ρ, then yk = x′k, yk+1 = x′k+1, where the prime indicates the symmetric component
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(not necessarily in H ′). Since ϕ applies the reflection involution R to hyperedges after

e, we have Ψ′(h′) = Ψ(h), ensuring that yk and yk+1 remain connected in Ψ′.

◦ Hyperedge e: If xk and xk+1 are connected in Ψ through the hyperedge e, Proposi-

tion 4.3.7 ensures that the connectivity is appropriately modified in Ψ′.

Thus, for every sequential pair of vertices xk, xk+1 in γ, their images yk, yk+1 in γ′ are

connected in Ψ′. Moreover, the mapping constructed to transform γ into γ′ always maps u1

to itself and u10 to u′10. Consequently, if γ connects u1 to u10, then γ′ connects u1 to u′10,

and vice versa. This completes the proof.

With ϕ established as a weight-preserving involution on X and Lemma 4.3.8 proving that

ϕ maps C ∩ X to C ′ ∩ X and vice versa, it follows that:

P(C ∩ X ) = P(C ′ ∩ X ).

This equivalence allows us to focus on the complementary subset of configurations, X c, which

consists of all Ψ such that for every hyperedge e ∈ H, the pair Ψ(e) belongs to Υ2
ext \ Λ2

+.

Explicitly, the set Υ2
ext \ Λ2

+ is described by the following pairs:

(abc, a|b|c)−, (a|b|c, abc)− with probability pabc · pa|b|c − pac|b · pab|c,

(a|bc, ∗), (∗, a|bc), and (a|bc, a|bc), where ∗ ∈ Λ.

In this setting, the WZ hypergraph percolation model conditioned on X c has the following

probabilities for each remaining possible value of Ψ(e):

(abc, a|b|c)−, with probability 1
Z

(
pabcpa|b|c − pab|cpac|b

)
,

(a|b|c, abc)−, with probability 1
Z

(
pabcpa|b|c − pab|cpac|b

)
,

(a|bc, ∗), with probability 1
Z
pa|bc · p∗, for ∗ ∈ Λ,

(∗, a|bc), with probability 1
Z
pa|bc · p∗, for ∗ ∈ Λ,

(a|bc, a|bc), with probability 1
Z
p2a|bc,
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where the normalizing constant is:

Z := 2 pabc · pa|b|c − 2 pab|c · pac|b + 2 pa|bc − p2a|bc.

We denote the corresponding conditional probabilities by PX c . This notation emphasizes

the restriction to the subset X c, making the context of these probabilities explicit.

Denote by A the subset of events that for all e ∈ H, the value of Ψ(e) belongs to

{(abc, a|b|c)−, (a|b|c, abc)−}. Using the inequality (1−x)a ≥ 1−ax and the assumption (4.1)

from the lemma, we compute PX c(A) as follows:

PX c(A) =

(
1 −

2pa|bc − p2a|bc
2(pabc pa|b|c − pab|c pac|b) + 2pa|bc − p2a|bc

)6

≥
(

1− pa|bc
(pabc pa|b|c − pab|c pac|b) + pa|bc

)6

≥ 1− 6pa|bc
(pabcpa|b|c − pab|c pac|b) + pa|bc

>(4.1) 1− 6pa|bc
401pa|bc

>
64

65
.

Conditioning on A effectively transforms the WZ model into the alternative bunkbed

hypergraph percolation model. By Hollom’s result (Lemma 4.3.1), we have:

PX c(u1 ↔ u10 | A) − PX c(u1 ↔ u′10 | A) = Palt(u1 ↔ u10) − Palt(u1 ↔ u10)

=Lemma 4.3.1
12
64
− 13

64
= − 1

64
.

Now, we combine these results:

PX c(u1 ↔ u10)−PX c(u1 ↔ u′10)

≤ PX c(A) + PX c(A)
(
PX c(u1 ↔ u10 | A)−PX c(u1 ↔ u′10 | A)

)
< 1

65
− 1

64
· 64
65

= 0.

This completes the proof.
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4.4 Disproof of the Bunkbed Conjecture

4.4.1 Hyperedge simulation

In this section, we construct a graph that simulates a hyperedge in the sense of WZ hyper-

graph percolation, adhering to the conditions of the Lemma 4.3.3. We prove the following

technical result for the weighted percolation.

Lemma 4.4.1. Let n ≥ 3 and 0 < p < 1. Consider a weighted graph Gn on (n+ 1) vertices

given in Figure 4.2. Denote b := v1 and c := vn. Then pab|c = pac|b and

pabc pa|b|c − pab|c pac|b >
(
n 1−p

1+p
− 1

)
pa|bc , (4.6)

where

pabc := Pp[a↔ b↔ c], pa|bc := Pp[a↮ b↔ c], pab|c := Pp[a↔ b↮ c],

pac|b := Pp[a↔ c↮ b] and pa|b|c := Pp[a↮ b↮ c↮ a].

a

v1

v2

v3 vn−2

vn−1

vn

. . .

1−
p 1−

p

1
− p

1
−
p 1−

p
1−

p

p

p p

p

Figure 4.2: Graph Gn with n+ 1 vertices.

We prove the lemma in the next section, see Proposition 4.5.4.

4.4.2 Proof of Theorem 2

In notation of Lemma 4.3.3, let p = 1
2

and let n := 3 · 401 + 1 = 1204. The resulting graph

Gn is planar, has 1205 vertices and 2407 edges.
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Take Hollom’s hypergraph H from Figure 4.1 and substitute for each 3-hyperedge with a

graph Gn from Lemma 4.4.1, placing it so a is a transversal vertex while b = v1 and c = vn

are the other two vertices. The resulting graph is still planar, has 10 + 6 · 1202 = 7222

vertices and 6 · 2407 = 14442 edges.

By Lemma 4.4.1, the 1
2
-percolation on Gn satisfies conditions of Lemma 4.3.3. Thus, by

Lemma 4.3.3, we have:

P(u1 ↔ u10) < P(u1 ↔ u′10),

as desired.

Remark 4.4.2. Due to the multiple conditionings and the gadget structure, the difference

of probabilities given by the counterexample in Theorem 2 is less than 10−4331, out of reach

computationally. A computer-assisted computation shows that one can use Gn with p = 1
2

and n = 14, giving a relatively small graph on 82 vertices. However, even in this case, the

difference of the probabilities in the BBC is on the order 10−47. This and other computations

are collected on the author’s website, see §4.8.2.

Since Weighted BBC is equivalent to BBC (see §4.8.1), once can instead take weighted

graph Gn with p = 1
2n

and n = 402. This graph is still too large to analyze experimentally.

A computer-assisted computation shows that one can use Gn with p = 0.0349 and n = 5,

giving a rather small graph on 28 vertices. However, even in this case, the difference of the

probabilities in the Weighted BBC are on the order 10−78.

4.5 Proof of Lemma 4.4.1

We prove the lemma as a consequence of elementary calculations.

Lemma 4.5.1. We have:

Pp(a↔ vn) =
1− p2n
1 + p

.
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Proof. Let pn := Pp(a ↔ vn) as in the lemma. We establish a recurrence relation for pn.

There are two cases:

(1) The edge (a, vn) is open. This occurs with probability 1− p. In this case, vertices a and

vn are directly connected.

(2) The edge (a, vn) is closed. This occurs with probability p. In this case, vertex vn can

only connect to a through the edge (vn−1, vn), which is open with probability p. If this edge

is closed, vertex vn is isolated from a. If it is open, the probability that a and vn−1 are in

the same connected component is pn−1 .

Combining these cases, we obtain the following recurrence relation:

pn = (1− p) + p2pn−1 ,

with the initial condition p0 = 0. The result follows by induction.

Lemma 4.5.2. We have:

Pp(a↔ v1 ↔ vn) =
1− p2n
(1 + p)2

+
n(1− p)p2n−1

1 + p
.

Proof. Let pn := Pp(a ↔ v1 ↔ vn) denote the probability as in the lemma. We calculate

this probability by analyzing whether edges (a, v1) and (a, vn) are open or closed. There are

four cases:

(1) Both edges (a, v1) and (a, vn) are open, each with probability 1 − p. Then a is directly

connected to both v1 and vn. Thus, the probability is (1− p)2.

(2) Edge (a, vn) is closed. If the edge (a, vn) is closed, vertex vn is connected to the rest

of the graph through the edge (vn−1, vn), which is open with probability p. This reduce the

problem to Gn−1 . Thus, the probability is p2pn−1.

(3) The edge (a, v1) is closed. Similarly, if the edge (a, v1) is closed (with probability p).

Thus, the probability is p2pn−1.
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(4) Both edges (a, v1) and (a, vn) are closed. If both edges (a, v1) and (a, vn) are closed (each

with probability p), v1 must connect to v2 by the edge (v1, v2), and vn must connect to vn−1

by the edge (vn−1, vn). The problem reduces to finding the probability that a, û1 = v2, and

ûn−2 = vn−1 are in the same connected component in the graph Ĝn−2, the restriction of Gn

to the vertices a, v2, . . . , vn−1. Thus, the corresponding probability is p4pn−2.

Using inclusion-exclusion of these four cases, we obtain the following recurrence relation:

pn = (1− p)2 + 2p2pn−1 − p4pn−2,

with initial conditions p0 = 0 and p1 = 1− p. The result follows by induction.

Lemma 4.5.3. We have:

Pp(a↮ v1 ↔ vn) = p2n−1.

Proof. If the vertices v1 and vn are in the same connected component that does not contain

vertex a, they must be connected by the path γ := (v1 → v2 → . . . → vn). The probability

that this path is open is pn−1. In addition, any edge (a, vk) must be closed for all 1 ≤ k ≤ n,

as otherwise vertex a is connected to the path γ. The probability that all these edges are

closed is pn. Thus, the probability in the lemma is p2n−1.

We conclude with the following result which immediately implies Lemma 4.4.1.

Proposition 4.5.4. In notation of Lemma 4.4.1, we have pa|bc = p2n−1 and

pabc pa|b|c − pac|b pab|c ≥
(
n 1−p

1+p
− 1

)
p2n−1.

Proof. The first part is given by Lemma 4.5.3. For the second part, using Lemmas 4.5.1,
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4.5.2 and 4.5.3 and pabc ≤ 1, we have:

pabc pa|b|c − pac|b pab|c = pabc − (pabc + pab|c)(pabc + pac|b) − pabc pa|bc

= Pp(a↔ v1 ↔ vn) − Pp(a↔ v1) ·Pp(a↔ vn) − pabc pa|bc

≥
(

1−p2n
(1+p)2

+ n(1−p)p2n−1

1+p

)
−

(
1−p2n
1+p

)2

− p2n−1

≥ p2n(1−p2n)
(1+p)2

+ n(1−p)p2n−1

1+p
− p2n−1

≥
(
n(1−p)
1+p

− 1
)
p2n−1,

as desired.

4.6 Complete BBC

In notation of the Bunkbed Conjecture 4.1.1, one can ask if a version of the BBC holds

for uniform T ⊆ V . This is equivalent to 1
2
-percolation on the product graph G ×K2 . To

distinguish from BBC, we call this Complete BBC, see §4.8.1. It turns out that the proof of

Theorem 2 extends to the proof of Complete BBC, but a counterexample is a little larger:

Theorem 3. There is a connected graph G = (V,E) with |V |, |E| < 106, and vertices

u, v ∈ V , such that for the 1
2
-percolation on G×K2 we have:

P 1
2
[u↔ v ] < P 1

2
[u↔ v′ ].

In particular, the complete bunkbed conjecture is false.

Proof. Recall that Hollom’s Model 4.3 in [Hol24b] is the hypergraph version of the Complete

BBC. Hollom disproves it in [Hol24b, §5.1] by showing that his 3-hypergraph in Figure 4.1

is minimal in a sense that bunkbed probabilities P[u ↔ v ] and P[u ↔ v′ ] are equal for

all subsets {u2, u7, u9} ⊂ T ⊆ {u1, . . . , u10}. He then makes k = 102 “clones” of vertices

{u2, u7, u9} to make sure at least one is always in the percolation cluster with high probability.

We notice that our counterexample has a similar minimal structure because of the form

of the gadget used in its construction. The only path ρ from u1 to u10 avoiding transversal
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vertices still passes through all nontransversal vertices. From this point on, proceed as in

the proof of Theorem 2. In notation of the proof of Lemma 4.3.3, we have that the only two

ways we can have a nonzero probability gap is if one of the vertices {u2, u7, u9} is not in T

or all the vertices along the red path ρ are not in T .

Now consider the difference of probabilities δ := P(u1 ↔ u10) − P(u1 ↔ u′10) for the

graph G and T = {u2, u7, u9}. Then for the graph G where T is a random subset containing

{u2, u7, u9} one has P(u1 ↔ u10) − P(u1 ↔ u′10) = δ · 2−|G|+3.

For each of the vertices t ∈ {u2, u7, u9} replace it with the gadget – add k additional

vertices wt,i for i ∈ [k] and connect then to t. This gadget imitates a single vertex t having

a probability of being transversal increased from 1
2

to 1 − 1
2

(
7
8

)k
. Let A be the event that

all imitated vertices are transversal. Then P(A) ≥ 1− 3
2

(
7
8

)k
. We have:

P 1
2
[u↔ v ] − P 1

2
[u↔ v′ ] ≤ 1−P(A) + P(A) · δ · 2−|G|+3 ≤ 3

2

(
7

8

)k

+
1

2
δ · 2−|G|+3.

This is negative if δ · 2−|G|+3 < −3
(
7
8

)k
. It is obvious such k exists. We use the computer

estimate from Remark 4.4.2 that δ < −10−4332 to say that this is true for k ≥ 112182.

Therefore, for the graph G′ obtained from G by adding 3k = 336546 vertices and edges, we

have

P 1
2
[u↔ v ] < P 1

2
[u↔ v′ ],

as desired.

4.7 Experimental testing

Versions of the bunkbed conjecture were repeatedly tested by various researchers, although

failed attempts remain largely unreported, see e.g. [Rud21, §3.1]. In this section we describe

our own attempt to refute the conjecture using a large scale computer computation.
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4.7.1 Initial tests

We started with a series of brute force tests of the Polynomial BBC, see §4.8.1. We exhaus-

tively tested all connected graphs with at most 8 vertices, and connected graph with at most

15 edges from the House of Graphs database, see [CDG23]. In each case, the Polynomial

BBC held true. At this point we chose to develop a more refined approach.

4.7.2 The algorithm

Our starting point is the machine learning algorithm by Wagner [W21], which we adjusted

and modified. Roughly, the algorithm inputs a neural network used in a randomized graph

generating algorithm, various constraints and a function to optimize. It outputs new weights

for the neural network with the function improved. In his remarkable paper, Wagner de-

scribes how he was able to disprove five open problems in graph theory, so we had high hopes

that this approach might help to disprove the bunkbed conjecture.

To give a quick outline of our approach, we consider a graph G = (V,E) on n = |V |
vertices, with the set of transversal vertices T ⊂ V , and fixed u, v /∈ W . Flip a fair coin for

each edge e ∈ E. Depending on the outcome, either retain e and delete e′, or vice versa.

Check whether u ↔ v and u ↔ v′. Repeat this N times to estimate the corresponding

probabilities p and p′, respectively. Based on these probabilities, use Wagner’s algorithm to

obtain the next iteration. Repeat M times or until a potential counterexample with p < p′

is found.

4.7.3 Implementation and results

We first used Wagner’s original code on a laptop computer, but when that proved too slow

we made major changes. To speed up the performance and tweak the code, we implemented

Wagner’s algorithm in Julia.

We then ran the code on a shared UCLA Hoffman2 Cluster, which is a Linux compute

cluster consisting of 800+ 64-bit nodes and over 26,000 cores, with an aggregate of over
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174 TB of memory.1 Each run of the algorithm required about 2 hours. After six runs with

different parameters, the results were too similar to continue.

Specifically, we ran the algorithm on graphs with n = 20 and n = 30 vertices, and for 3, 4

and 5 transversal vertices. Although we started with relatively dense graphs, the algorithm

converged to relatively sparse graphs with about 100 edges. We used N = 4000, pruning the

Monte Carlo sampling when the desired probabilities were far apart.

We used M = 2000, after which the probabilities p, p′ rapidly converged to 1
2

and became

nearly indistinguishable. More precisely, the probability gap p− p′ became smaller than 0.01

getting close to the Monte Carlo error, i.e. the point when we would need to increase N

to avoid false positives. At all stages, we had p > p′ suggesting validity of the bunkbed

conjecture. At the time of the experiments and prior to this work, we saw no evidence that

an experimental approach could ever succeed.

4.7.4 Analysis

Having formally disproved the bunkbed conjecture, it is clear that our computational ap-

proach was misguided. For the uniform weights we tested, we could never have reached

graphs of size anywhere close to that in Theorem 2, of course. Even when the number of

vertices is optimized to 82 as suggested in Remark 4.4.2, the number of edges is still very

large while the probability gap in the theorem is on the order of 10−47, thus undetectable in

practice.2

In hindsight, to reach a small counterexample we should have used the weighted bunkbed

percolation rather than the more efficient alternative model, with some edges having a very

large weight and some very small weight. Of course, by Remark 4.4.2, the probability gap

in the theorem is still prohibitively small, at least for the graphs we consider.

1The system overview is available here: www.hoffman2.idre.ucla.edu/About/System-overview.html
2Johann Beurich showed that a 25 vertex modification of our construction can disprove the Weighted

BBC with the probability gap on the other of 6.1 · 10−95, thus again undetectable in practice (personal
communication).
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4.7.5 Conclusions

It seems, the Bunkbed Conjecture has some unique features making it very poorly suited for

computer testing. In fact, one reason we stopped our computer experiments is that in our

initial rush to testing we failed to contemplate societal implications of working with even

moderately large graphs.

Suppose we did find a potential counterexample graph with only m = 100 edges and

the probability gap was large enough to be statistically detectable. Since analyzing all

of 2m ≈ 1030 subgraphs is not feasible, our Monte Carlo simulations could only confirm

the desired inequality with high probability. While this probability could be amplified by

repeated testing, one could never formally disprove the bunkbed conjecture this way, of

course.

This raises somewhat uncomfortable questions whether the mathematical community is

ready to live with an uncertainty over validity of formal claims that are only known with high

probability. It is also unclear whether in this imaginary world the granting agencies would

be willing to support costly computational projects to further increase such probabilities

(cf. [GBCST16, Zei93]). Fortunately, our failed computational effort avoided this dystopian

reality, and we were able to disprove the bunkbed conjecture by a formal argument.

4.8 Final remarks

4.8.1 Variations on the BBC

Although the version of the Bunkbed Conjecture 4.1.1 given in [BK01] is considered the

most definitive, over the years several closely related versions has been studied:

(0) Counting BBC, where one compares the number of subgraphs connecting vertices u, v

and those that do not. This conjecture is a restatement of the BBC in the case p = 1
2
.

(1) Weighted BBC, where the edge probabilities pe = pe′ can depend on e ∈ E. This
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conjecture is equivalent to the BBC by [RS16], since edge probabilities can be approximated

by series-parallel graphs.

(2) Polynomial BBC, where the edge probabilities above are viewed as variables. In this

case the conjecture claims that the difference of polynomials corresponding to P[u↔ v ] and

P[u ↔ v′ ] is a polynomial with nonnegative coefficients. This conjecture is stronger than

Weighted BBC as there are polynomials positive on [0, 1] which have negative coefficients

such as (x − y)2. Although we did not find a counterexample on a graph with at most 8

vertices, it is likely that there is a sufficiently small counterexample in this case. Cf. [Ric22],

where the difference is a sum of squares.

(3) Computational BBC, where one asks if the counting version of the probability gap is

in #P, i.e. has a combinatorial interpretation, see [Pak22, Conj. 5.6]. Clearly, this conjec-

ture implies BBC. We refer to [IP22] for a formal treatment of this problem for general

polynomials.

(4) Alternative BBC, where fair coin flips determine whether the edge e is deleted and e′

retains or vice versa. This conjecture implies BBC [Lin11, Prop. 2.6].

(5) Complete BBC, where one takes all T = V and performs the weighted percolation on

the full G := G×K2 , i.e. on all edges in G including the posts. The conjecture in this case

is weaker than the BBC, see e.g. [Lin11, Prop. 2.2].

In all but the last case, the corresponding conjecture is refuted by Theorem 2. In Com-

plete BBC, the corresponding conjecture is refuted by Theorem 3 by a more involved coun-

terexample (based on a more involved counterexample by Hollom).

4.8.2 Robustness lemma

Lemma 4.3.3 is a finite problem which can be reformulated as follows. By definition, prob-

abilities on both sides of (4.2) are polynomials in 5 variables of degree at most 12, with

at most 512 nonzero coefficients. The lemma gives positivity of the difference of these two
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polynomials on a region of the unit cube [0, 1]5 cut out by the quadratic inequality (4.1).

Since our proof of Lemma 4.3.3 is somewhat cumbersome and uses a case-by-case analysis,

we verified the lemma computationally. The results and the code are available on GitHub.3

Of course, the advantage of our combinatorial proof is that it is elementary and amenable

for generalizations.

4.8.3 Special cases

Our counterexample makes prior positive results somewhat more valuable. It would be

interesting to find other families of graphs on which the Bunkbed Conjecture holds. We are

especially interested in the corresponding problem for the Polynomial BBC. Note that we

emphasized planarity in Theorem 2 since it was speculated in [Lin11] that planarity helps.

4.8.4 Percolation in Zd

For lattices, the connection probabilities Pp[u↔ v] between vertices are known as the two-

point functions. For percolation in higher dimensions, these were famously studied by Hara,

van der Hofstad and Slade [HHS03], and they are also of interest for other probabilistic

models.

Curiously, it is not known whether connection probabilities are monotone as the distance

|u− v| increases. This claim would follow from the bunkbed conjecture. This suggests that

investigating the BBC for grid-like graphs is still of interest even if the conjecture is false for

general planar graphs. Note that the monotonicity is known in the p ↓ 0 limit.

4.8.5 Random cluster model

It was shown in [Häg03, §3] that the analogue of the BBC holds for the random cluster

model with parameter q = 2. Our Theorem 2 shows that one cannot take q = 1. It would

3Generating Partitions of Graph Vertices into Connected Components, description and code at
GitHub.com/Kroneckera/bunkbed-counterexample
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be interesting to find the smallest q > 1 such that the BBC holds for all finite graphs. We

note that monotonicity in q is unclear, so e.g. it is not known if BBC holds for all q ≥ 2.4

4.9 Appendix: Bunkbed conjecture for two transversal vertices

In [BK01], the main result, proved by Ahlswede–Daykin (AD) inequality [AD78], is the

following inequality:

Theorem 4.9.1. For vertices a, b, c, d in G and an edge percolation on it, one has

P(abc|d)P(a|d) ≥ P(ab|d)P(ac|d). (4.7)

The authors mention that their original motivation for the inequality (4.7) was the

bunkbed conjecture. Indeed, they proved, for the bunkbed graph Ḡ with two transversal

vertices x and y, the following inequality:

Pbb[u↔ v | x ̸↔ y] ≥ Pbb[u↔ v′ | x ̸↔ y],

where Pbb is understood in the sense of Chapter 4. One can see that this inequality closely

resembles the bunkbed conjecture. However, as we will demonstrate, it is their subsequent

result, Theorem 4.9.2 from [BHK06], that directly leads to the bunkbed conjecture for two

transversal vertices.

Theorem 4.9.2 ([BHK06, eq. (2)]). For vertices a, b, c, d in G and an edge percolation on

it, one has

P(ab|cd)P(a|d) ≤ P(ab|d)P(a|cd).

Theorem 4.9.3. For the bunkbed graph Ḡ with transversal vertices u and v, based on graph

G, we have:

Pbb[u↔ v] ≥ Pbb[u↔ v′].
4Alan Sokal suggested to us that BBC should hold for integer q ≥ 2 and fail for noninteger q > 2

(personal communication, October 2, 2024).
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Proof. Consider the graph G′, which is graph G with vertices x and y contracted into a single

vertex denoted by [xy]. The probabilities of vertices being connected in G′ are closely related

to the probabilities in Ḡ and G. We denote probabilities of connectedness in Ḡ by Pbb, and

in G or G′ by P, with the relevant graph implied by whether the vertex [xy] appears in the

argument.

In particular, we have:

Pbb[u↔ v] = P(uv|[xy]) + P(uv[xy])− (P(ux|vy) + P(uy|vx))P(x|y),

since for u and v to be connected, they must be connected in the lower component with

vertices x and y contracted, excluding cases where u and v are connected to different vertices

among x and y, and the upper component does not assist in connecting x = x′ and y = y′.

Similarly, for the connection between u and v′, we have:

Pbb[u↔ v′] = P(u[xy])P(v[xy])−P(ux|y)P(vy|x)−P(uy|x)P(vx|y),

because for u and v′ to be connected, they must be linked to x or y, and we subtract the

cases where u and v′ are connected to different vertices among x and y.

By subtracting P(uv|[xy]) from Pbb[u↔ v] and noting that

P(uv[xy]) ≥ P(u[xy])P(v[xy])

due to the Harris–Kleitman inequality for G′, we are left with:

(
P(ux|vy) + P(uy|vx)

)
P(x|y) ≤ P(ux|y)P(vy|x) + P(uy|x)P(vx|y),

which corresponds to the sum of two inequalities from Theorem 4.9.2.
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CHAPTER 5

On Harris–Kleitman type inequalities

5.1 Introduction

This chapter presents a generalization of the Harris–Kleitman inequality and previous work

by the authors [Gla24, Corollary 3.6]. Our main contributions are:

• A new inequality for functions on the hypercube that generalizes the Harris–Kleitman

inequality

• A framework for testing measure implementability using convex optimization

• New applications to Bernoulli percolation, including inequalities for connectivity events

We work in the setting of the hypercube Hn = 2[n] with a product measure µ. For

x, y ∈ Hn we say that x ⪯ y if x is coordinatewise less or equal to y. A subset of Hn is called

closed upwards if with each x it contains all y such that x ⪯ y. In particular, the indicator

function of each closed upward subset is nondecreasing.

Our work extends the classical techniques for studying inequalities concerning the sizes of

closed upward subsets. In our setting, sizes of sets can be replaced by the measures relative

to some product measure µ on Hn. By the classical techniques (see a footnote in [K22] and

its explanation in [Gla24, Proposition 3.1]), one can go one step further and think about

these inequalities as relative to any probability measure µ satisfying the FKG condition

µ(x)µ(y) ≥ µ(x ∪ y)µ(x ∩ y).
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The chapter is organized as follows. Section 5.2 presents our main theoretical results,

including the generalization of the Harris–Kleitman inequality. Section 5.3 applies these

results to Bernoulli percolation, deriving new inequalities for connectivity events. Section

5.4 introduces a computational framework for testing measure implementability using convex

optimization. Finally, we discuss open problems and future directions in Section 5.5.

5.2 Main results

Our main result generalizes the Harris–Kleitman inequality by considering a broader class

of functions on the hypercube. The key insight is that we can replace the requirement

of nondecreasing functions with a more general condition on the function’s behavior with

respect to the partial order.

Theorem 5.2.1. Let µ be a probability product measure on 2[n]. Let g(x, y) be a function

on 2[n] × 2[n] such that for any x ⪯ y, z ⪯ t one has

g(x, z) + g(y, t) ≤ g(x, t) + g(y, z). (5.1)

Then

Eµ×µg(x, y) ≥ Eµg(x, x). (5.2)

Proof. Proof proceeds by the induction on n. For n = 0, equation (5.2) turns into equality.

Consider the last coordinate and let µ′ be the projection of µ onto the rest of the coordinates.

It will also be a product measure. Moreover, the projection of µ to the last coordinate will

assign probability p to 0 and 1− p to 1. Let x′ and y′ be generated independently according

to µ′ and x−, x+, y− and y+ be defined as x and y supplied with the last coordinate equal

to 0 and 1 respectively. From the induction hypothesis, we know that Eµ′×µ′g(x−, y−) ≥
Eµ′×µ′g(x−, x−) and Eµ′×µ′g(x+, y+) ≥ Eµ′×µ′g(x+, x+). Combining this with the condition
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(5.1) applied to x−, x+, y− and y+ we get

Eµ×µg(x, y)

= Eµ′×µ′
(
p2g(x−, y−) + p(1− p)g(x−, y+) + p(1− p)g(x+, y−) + (1− p)2g(x+, y+)

)
= p(1− p)E

(
g(x−, y+) + g(x+, y−)− g(x−, y−)− g(x+, y+)

)
+ pEµ′×µ′g(x−, y−) + (1− p)Eµ′×µ′g(x+, y+)

≥ 0 + pEµ′g(x−, x−) + (1− p)Eµ′g(x+, y+)

= Eµg(x, x).

This theorem has several important consequences. First, it generalizes the original Harris-

Kleitman theorem, as we show in the following corollary. Second, it provides a framework

for studying more general inequalities on the hypercube, as we will see in the subsequent

sections.

Corollary 5.2.2. Let f1 and f2 be nondecreasing functions on Hn, then f1 and f2 correlate

nonnegatively with respect to µ.

Proof. Consider g(x, y) = f1(x)f2(y). Then for x ⪯ y, z ⪯ t one has

g(x, z) + g(y, t)− g(x, t)− g(y, z) = f1(x)f2(z) + f1(y)f2(t)− f1(x)f2(t)− f1(y)f2(z)

= (f1(y)− f1(x))(f2(t)− f2(z)) ≥ 0.

So, the condition of Theorem 5.2.1 holds and the conclusion is

Eµ×µf1(x)f2(y) ≤ Eµf1(x)Eµf2(x),

which shows that f1 and f2 have nonnegative correlation with respect to µ.

We notice that it is convenient to consider g to be constant on subsets of Hn. This

motivates the following partial case of Theorem 5.2.1.
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Theorem 5.2.3. Let P be a poset of size m and Hn be split into subsets Sp indexed by p ∈ P
such that if x ∈ Sa and y ∈ Sb are such that x ⪯ y, then a ≤P b. Let A be an m×m matrix

satisfying the condition

Aa,c + Ab,d ≤ Aa,d + Ab,c, (5.3)

whenever a <P b and c <P d. Then for any probability product measure µ we have∑
a,b∈P

Aa,bµ(Sa)µ(Sb) ≥
∑
a∈P

Aa,aµ(Sa) (5.4)

Proof. We use Theorem 5.2.1 for the function g that is constant within the subsets Sp. For

x ∈ Sa and y ∈ Sb we put g(x, y) = Aa,b It is easy to check that condition (5.3) implies (5.1)

for g and so ∑
a,b∈P

Aa,bµ(Sa)µ(Sb) = Eµ×µg(x, y) ≥ Eµg(x, x) =
∑
a∈P

Aa,aµ(Sa).

An example poset to keep in mind here is the poset M3 that is the poset of the smallest

nondistributive lattice:

a

b1 b2 b3

c

Figure 5.1: Poset M3

This poset was used in [Gla24]. It corresponds to a partition lattice of a set {1, 2, 3}. So

for bond percolation one can think of inequalities on sizes of Sp as inequalities on Boolean

combinations of the events “vertex i is connected to vertex j” (see Theorem 5.3.2).

Definition 5.2.4. We say that for the given poset P the vector of probabilities {mp}p∈P is

realizable if there exists Hn that can be split into subsets Sp indexed by p ∈ P such that if
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x ∈ Sa and y ∈ Sb are such that x ⪯ y, then a ≤P b and there is a product measure µ on

Hn such that µ(Sp) = mp.

So Theorem 5.2.3 can be seen as the set of restrictions on realizable vectors of probabilities

for a given poset.

Example 5.2.5. For a diamond poset (see Figure 5.2), the vector of probabilities

{ma,mb1 ,mb2 ,mc}

is realizable if and only if mamc ≥ mb1mb2 .

a

b1 b2

c

Figure 5.2: Poset M2

Proof. Indeed, if the vector is realizable, then we apply Theorem 5.2.3 with

A =

a b c d

a 0 0 0 1

b 0 0 −1 0

c 0 −1 0 0

d 1 0 0 0

,

which gives the needed inequality. Conversely, if mamc ≥ mb1mb2 , denote by p the excess of

mc over its minimal attainable value: p = mc − mb1
mb2

ma
and 1− p =

(ma+mb1
)(ma+mb2

)

ma
.

Then consider the following product measure on {0, 1}3: the first coordinate is 0 with

probability 1 − p =
(ma+mb1

)(ma+mb2
)

ma
and 1 with probability p, the second coordinate is 0
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ABC

ABC ABC

ABC

ABC

ABC ABC

ABC

Figure 5.3: Cube poset

with probability ma

ma+mb1
and 1 with probability

mb1

ma+mb1
and the third coordinate is 0 with

probability ma

ma+mb2
and 1 with probability

mb2

ma+mb2
. Then consider the sets

Sa = {(0, 0, 0)};

Sb1 = {(0, 1, 0)};

Sb2 = {(0, 0, 1)};

Sc = {(0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

One can see that the probabilities of these sets are equal to the corresponding mp.

For general posets, it is unclear what are the conditions on the vector {mp} to be re-

alizable. One can merge some of the nodes of P to form a diamond poset and apply the

Harris-Kleitman inequality to the merged parts. This operation gives restrictions which are

a partial case of the restrictions given by Theorem 5.2.3.

In 2001, Richards [R04] stated a third-degree inequality for a cube poset Pcube (Fig-

ure 5.3). The proof was later found to contain significant problems.

Conjecture 5.2.6. For any realizable vector {mp} corresponding to the poset Pcube, define
mA,mB and mC as the sum of elements where the corresponding letter doesn’t have an
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overline and mAB,mAC and mBC as the sum of vectors where both letters don’t have an

overline. Then

2mABC +mAmBmC ≥ mAmBC +mBmAC +mCmAB.

Sahi and Lieb were able to prove partial cases of this conjecture [S08, LS22].

Definition 5.2.7. We say that for the given poset P the vector of probabilities {m−
p }p∈P

can be glued with the vector {m+
p }p∈P if there exists some n, a probability product measure

µ on Hn and two subdivisions of Hn into parts S−
p and S+

p such that

• S−
a is contained in

⋃
b<Pa

S+
b ;

• µ(S−
p ) = m−

p ;

• µ(S+
p ) = m+

p .

Theorem 5.2.8. If Let A be an m×m matrix satisfying the condition

Aa,c + Ab,d ≤ Aa,d + Ab,c, (5.5)

whenever a <P b and c <P d. Suppose in addition that whenever a ≤P b, Aa,b ≥ 0. Then for

any poset P and any vectors {m−
p }p∈P and {m+

p }p∈P that can be glued together, one has∑
a,b∈P

Aa,bm
−
am

+
b ≥ 0

5.3 Applications to Bernoulli percolation

The Harris–Kleitman inequality was originally developed to study Bernoulli bond percola-

tion, where it was used to show that the critical probability pc for the square lattice is at

least 1
2
. Our new inequalities provide a powerful tool for studying more complex connectivity

events in percolation models.

We first introduce some notation and basic concepts. Consider a Bernoulli bond perco-

lation P on a finite graph G = (V,E) where each edge e ∈ E has a probability pe of being
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open. Let Eo be the resulting random set of open edges. We call the connected components

of Go = (V,Eo) clusters.

The key insight is that connectivity events in percolation can be naturally represented

as elements of a poset, where the partial order is given by containment of connected compo-

nents. This allows us to apply our general results to derive new inequalities for percolation

probabilities.

Definition 5.3.1. Consider a Bernoulli bond percolation on a finite graph G = (V,E)

where each edge e ∈ E has a probability we of being open. Let Eo be the random set

of open edges. We call the connected components of Go = (V,Eo) clusters. We denote

by “v11v12 . . . v1i1|v21 . . . v2i2| . . . |vn1 . . . vnin” the event that the vertices v11, . . . , v1i1 ∈ V

belong to the same cluster, vertices v21, . . . , v2i2 belong to the same cluster, . . . , vertices

vn1, . . . , vnin belong to the same cluster, and, moreover, these clusters are all different.

By P(v11v12 . . . v1i1|v21 . . . v2i2| . . . |vn1 . . . vnin) we denote the probability of this event in the

underlying bond percolation. In particular, P(abc) denotes the probability that vertices

a, b, c ∈ V lie in the same cluster, and P(a|b|c) is the probability that a, b and c belong to 3

different clusters.

The following theorem was proven in [Gla24] (see also an alternative proof in [GZ24]).

We put the proof in the context of our results.

Theorem 5.3.2. Let G = (V,E) be a finite graph and a, b, c are vertices in V . Let P be

taken over Bernoulli percolation on G. Then

P(abc)P(a|b|c) ≥ P(ab|c)P(ac|b) + P(ab|c)P(a|bc) + P(ac|b)P(a|bc).

Proof. Since events ab, ac and bc are all increasing and if two of them happen, the third is

forced, the events abc, ab|c, ac|b, a|bc and a|b|c form the poset on Figure 5.4.

Consider the following matrix A labeled by the elements of the poset
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abc

ab|c ac|b a|bc

a|b|c

Figure 5.4: Partition lattice of {a, b, c}

A =

abc ab|c ac|b a|bc a|b|c
abc 0 0 0 0 1

ab|c 0 0 −1 −1 0

ac|b 0 −1 0 −1 0

a|bc 0 −1 −1 0 0

a|b|c 1 0 0 0 0

(5.6)

It is easy to check the condition (5.3) for A, so by Theorem 5.2.3 we get

2
(
P(abc)P(a|b|c)−P(ab|c)P(ac|b)−P(ab|c)P(a|bc)−P(ac|b)P(a|bc)

)
≥ 0.

We can consider the larger partition lattices. The partition lattice on 4 element set

{a, b, c, d} is shown on Figure 5.5.

Our method allows one to find new inequalities for the probabilities of the connectivity

events.

Theorem 5.3.3. Let G = (V,E) be a finite graph and a, b, c, d are vertices in V . Let P be

taken over Bernoulli percolation on G. Then

P(ab ∩ cd)−P(ab)P(cd) ≥ P(ab ∪ cd)(P(ac|bd) + P(ad|bc)) + P(ac|bd)P(ad|bc). (5.7)
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Figure 5.5: Partition lattice of {a, b, c, d}

Proof. Consider the following matrix A:

It acts as a certificate for Theorem 5.2.3 to show the inequality (5.7)

The work [BHK06] studies correlations for different connectivity events in the percola-

tion measure µ conditioned on the event a|b. It shows that any two events with positive

dependence on the component of a correlate nonnegatively and all such events correlate

nonpositively with the events with positive dependence on the component of b.

In the heart of the proof [Hol24b] there is a sequence of product measures on hypercubes

of increasing dimension that approximate the Bernoulli percolation conditioned on a|b. Ad-

ditionally, it shows that the events positively dependent on the component of a are closed

upwards in these hypercubes while events positively dependent on the component of b are

closed downwards. In particular, if we only care about 4 vertices, it shows that the events

in Figure 5.6 give rise to a realizable vector.

Papers [BHK06, BK01] found the inequalities that follow from this poset by applying

the Harris-Kleitman inequality to the pair of the increasing events ac and ad and the pair of
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a|bcd

a|bc|d

ad|bc

a|bd|c

a|b|c|d ∪ a|b|cd

ad|b|c

ac|bd

ac|b|d

acd|b

Figure 5.6: Poset of events conditioned on a|b

increasing events ac and b|d. However, there are more restrictions on the probability vectors

realizable by the poset. In particular, one can notice a hidden M3 in this poset.

Corollary 5.3.4. Let G = (V,E) be a finite graph and a, b, c, d are vertices in V . Let P be

taken over Bernoulli percolation on G. Then

(P(acd|b) + P(ad|b|c) + P(ac|b|d))(P(a|bc|d) + P(a|bd|c) + P(a|bcd))

≥ P(ad|bc)P(ac|bd) + (P(ad|bc) + P(ac|bd))(P(a|b|c|d) + P(a|b|cd)). (5.8)

Proof. Consider the following A:
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A =

a|bcd a|bc|d ad|bc a|bd|c a|b|c|d ∪ a|b|cd ad|b|c ac|bd ac|b|d acd|b

a|bcd 0 0 0 0 0 1 0 1 1

a|bc|d 0 0 0 0 0 1 0 1 1

ad|bc 0 0 0 0 −1 0 −1 0 0

a|bd|c 0 0 0 0 0 1 0 1 1

a|b|c|d ∪ a|b|cd 0 0 −1 0 0 0 −1 0 0

ad|b|c 1 1 0 1 0 0 0 0 0

ac|bd 0 0 −1 0 −1 0 0 0 0

ac|b|d 1 1 0 1 0 0 0 0 0

acd|b 1 1 0 1 0 0 0 0 0

One can see that it satisfies the condition (5.3). Indeed, it just comes from the matrix

(5.6) for the poset M3 one gets by merging together 3 top vertices of the poset as well as 3

bottom vertices. Writing the corresponding conclusion of Theorem 5.2.3 and multiplying it

by P(a|b)2 to get rid of conditional probabilities we get the needed (5.8).

The paper [BHK06] also defines a way to use two sets of vertices S, T instead of two

vertices a, b. If we apply their method to S = {a, b, c} and T = {d}, we will get the poset

M3 on Figure 5.7.

abc|d

ab|c|d ac|b|d a|bc|d

a|b|c|d

Figure 5.7: Poset of events conditioned on a|d ∩ b|d ∩ c|d
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Writing the inequality corresponding to matrix (5.6) and multiplying it by P(a|d∩ b|d∩
c|d)2 we get the following inequality.

Corollary 5.3.5. Let G = (V,E) be a finite graph and a, b, c, d are vertices in V . Let P be

taken over Bernoulli percolation on G. Then

P(abc|d)P(a|b|c|d) ≥ P(ab|c|d)P(ac|b|d) + P(ab|c|d)P(a|bc|d) + P(ac|b|d)P(a|bc|d).

5.4 Testing measure implementability

For a poset P consider a matrix FP defined by the following rules

Definition 5.4.1. We say that a covers b (written as a ⋖ b) if a <P b and there are no

elements between a and b.

Assume poset P has m elements and p pairs of elements (a, b) in a covering relation. Then

FP is an m × p matrix where each row corresponds to an element of P and each column

corresponds to a cover a⋖ b and

Fe,ab =


−1, if e = a,

1, if e = b,

0 otherwise.

Theorem 5.4.2. If vector x = {mp}p∈P is realizable, then there exists a nonnegative and

nonnegatively determined p× p matrix M such that

FMF T = diag(x)− xxT . (5.9)

Proof. Assume x is realizable by a product measure µ on a hypercube Hn. For n = 0 one

can take M = 0 and the statement would be true. For n ≥ 1 we use induction. Split the

cube into the upper and lower halves. Let p be the probability of the upper half and µ′ be

the probability measure on Hn−1 obtained as the projection of µ to n− 1 first coordinates.
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Then µ′ coincides with µ conditioned on the upper or lower part of Hn. Let M+ and M−

be the matrices and x+ and x− be the vectors corresponding to µ+ and µ−.

To use the fact that the upper and lower parts can be glued together, consider the

subdivisions S− and S+ indexed by elements of P . Let y be the vector indexed by the pairs

a ⋖ b from poset, such that yab = µ′({S−
a ∩ S+

b }). By definition of F , x+ − x− = Fy. Note

that all entries of y are nonnegative.

Now

diag(x)− xxt

= pdiag(x+) + (1− p)diag(x−) + p2x+x+T + p(1− p)(x+x−T + x−x+T ) + (1− p)2x−x−T

= p(FM+F T ) + (1− p)(FM−F T )− p(1− p)(x+ − x−)(x+ − x−)T

= F (pM+ + (1− p)M− + yyT )F T ,

and it is easy to see that M = pM+ + (1− p)M− + yyT is nonnegatively determined and has

nonnegative entries.

Testing if a particular vector x for a particular poset P satisfies condition (5.9) for

some matrix M is a convex optimization problem – the restrictions of M being nonnegative

and nonnegatively determinate are convex, so instead of checking all inequalities coming

from various matrices A satisfying condition (5.3), one can run one instance of a convex

optimization program.

Computationally, it is much more efficient. Even for a relatively small poset P4 from Fig-

ure 5.5, possible matrices A form a 100-dimensional cone with more than 10 000 generators.

So having a simple test helps.

Moreover, this test is as strong as checking all the generators. Let ⟨A,B⟩ = Tr(ATB) be

the Frobenius product of two matrices – the component-wise inner product of two matrices

as though they are vectors. Then (5.3) is equivalent to

⟨A,FeieTj F T ⟩ ≥ 0 (5.10)
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for all 0 ≤ i, j ≤ p and (5.4) is equivalent to

⟨A, diag(x)− xxt⟩ (5.11)

for x = {mp}p∈P .

Proposition 5.4.3. If a vector x satisfies condition (5.9) for some nonnegative matrix M ,

then for every matrix A satisfying (5.10), it satisfies (5.11) as well.

Proof. Note that any nonnegative matrix M is a sum of terms of the form mijeie
T
j . Then

⟨A, diag(x)− xxT ⟩ = ⟨A,FMF T ⟩

= ⟨A,F
(∑

mijeie
T
j

)
F T ⟩ =

∑
mij⟨A,FeieTj F T ⟩ ≥ 0

This shows that the realizability test of Theorem 5.4.2 is stronger than this of Theo-

rem 5.2.3 since it also adds the restriction that M is nonnegative definite.

Definition 5.4.4. We say one vector {m+
p }p∈P dominates another vector {m+

p }p∈P

5.5 Final remarks

We believe the following conjecture:

Conjecture 5.5.1. If for some poset P for the neighborhood of vector x there exists matrix

M satisfying (5.9), then x is realizable.

This conjecture contradicts Sahi’s conjecture as well as the following conjecture by Jeff

Kahn:

Conjecture 5.5.2 (Jeff Kahn). Let {Ai} be the closed upwards events on Hn with product

measure µ such that µ(Ai) < ε. Denote by A the set of points belonging to exactly one of Ai.

Then µ(A) < f(ε) for some f such that limε→0 f(ε) = 1
e
.
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CHAPTER 6

The defect of the FKG inequality is not in #P

In [IP22], the following theorem is proved (see definitions in the original paper):

Theorem 6.0.1 (Proposition 2.5.1 in [IP22]). Let

S :=

(α0, α1, β0, β1, γ0, γ1, δ0, δ1, h1, h2, h3, h4) ∈ N12

∣∣∣∣∣∣
α0β0 + h1 = γ0δ0, α0β1 + h2 = γ0δ1,

α1β0 + h3 = γ1δ0, α1β1 + h4 = γ1δ1


and let

φ := (γ0 + γ1)(δ0 + δ1)− (α0 + α1)(β0 + β1).

Then, under the Univariate Binomial Basis Conjecture (see [IP22, 4.4.2]), we have

φ(#{P⃗ ∈ S}) ̸∈ #P.

This theorem shows that, under some computer science assumptions, there is no combi-

natorial way to prove the Ahlswede–Daykin (AD) inequality [AD78], since it doesn’t preserve

the complexity class #P.

It turns out, one can prove that the weaker Fortuin–Kasteleyn–Ginibre (FKG) inequal-

ity [FKG71] also doesn’t preserve #P. In fact, it doesn’t preserve #P even in case when the

lattice is {0, 1}3. Here is the usual formulation of the inequality:

Theorem 6.0.2 (FKG inequality). Let L be a finite lattice with operations ∧ and ∨. Let

f, g : L→ R be increasing functions. Moreover, let µ : L→ R be a probability measure on L

such that

µ(x ∧ y)µ(x ∨ y) ≤ µ(x)µ(y) for all x, y ∈ L. (⋄)
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Then

E[f(X)g(Y )] ≥ E[f(X)]E[g(Y )].

Before proving the result, we need to define the set S analogously to Theorem 6.0.1.

Definition 6.0.3. Let I = {000, 001, 010, 011, 100, 101, 110, 111} be the set of indices for

the hypercube. The set S will include all vectors (fα, gα, µα) for each α ∈ I. Moreover, we

will require that:

• fα, gα are increasing functions,

• µα satisfies the diamond condition (⋄).

To encode the first condition in the set S, we will use the following functions f ′
β, g

′
β

indexed by E(H3) – the edges of H3, so each β = (α1, α2), α1 ⩾ α2:

f ′
β = fα1 − fα2 , (6.1)

g′β = gα1 − gα2 . (6.2)

To encode the second condition in the set S, we will use the following measure µ′
γ indexed

by D(H3) – the set of valid diamonds in H3, so each

γ = (α1, α2, α3, α4), such that α1 ∧ α2 = α3, α1 ∨ α2 = α4.

We define

µ′
γ = µα1µα2 − µα3µα4 . (6.3)

Finally, set S to be the set of all natural values of

• fα, gα and µα for α ∈ I;

• f ′
β and g′β for β ∈ E(H3);

• µ′
γ for γ ∈ D(H3),
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satisfying the conditions (6.1), (6.2) and (6.3). Naturally, we have S ⊆ N3×8+2×12+64, since

I has 8 elements, E(H3) has 12 edges, and D(H3) has 64 diamonds.

Theorem 6.0.4. Let I and S be defined as in Definition 6.0.3. Let

φ :=
∑
α∈I

(fαgαµα)
∑
α∈I

µα −
∑
α∈I

(fαµα)
∑
α∈I

(gαµα).

Then, under the Univariate Binomial Basis Conjecture (see [IP22, 4.4.2]), we have

φ(#{P⃗ ∈ S}) ̸∈ #P.

Proof. The main ingredients of our proof will be the measure µ and the functions f , g

depicted in Figures 6.1, 6.2 and 6.3.

a

b c b

b c b

a

Figure 6.1: µ

0

1 0 0

1 1 0

1

Figure 6.2: f

0

0 0 1

0 1 1

1

Figure 6.3: g

Let us treat a, b, c as polynomials in x. To satisfy the diamond conditions (⋄) in a

#P way, they should satisfy the inequalities b2 ≤# ac, bc ≤# ab, b2 ≤# a2 and c2 ≤# a2,

where P (x) ≤# Q(x) means that in the decomposition of Q − P in the binomial basis all

coefficients are nonnegative (see [IP22, Theorem 4.3.2]). For these polynomials, the FKG

inequality shows that 4b2 ≤ (a + c)4. However, we will see that 4b2 ≤# (a + c)4 does not

necessarily hold.
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Indeed, consider a = 30 + 91x + 200
(
x
2

)
, b = 110x and c = 100x. Then the conditions

turn into

0 ≤# 60000

(
x

3

)
+ 34000

(
x

2

)
,

0 ≤# 66000

(
x

3

)
+ 42020

(
x

2

)
+ 2310x,

0 ≤# 240000×
(
x

4

)
+ 58200× 6×

(
x

3

)
+ 58581× 2×

(
x

2

)
+ 1641x+ 900,

0 ≤# 240000×
(
x

4

)
+ 58200× 6×

(
x

3

)
+ 60681× 2×

(
x

2

)
+ 3741x+ 900,

and the conclusion turns into

0 ≤ 240000×
(
x

4

)
+ 78200× 6×

(
x

3

)
+ 90481× 2×

(
x

2

)
− 459x+ 900,

which has a negative term in x, so 4b2 ≤# (a+ c)4 does not hold.
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