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Abstract

In the Graph Realization Problem (GRP), one is given a graph G, a
set of non-negative edge-weights, and an integer d. The goal is to find, if
possible, a realization of G in the Euclidian space R%, such that the distance
between any two vertices is the assigned edge weight. The problem has
many applications in mathematics and computer science, but is NP-hard
when the dimension d is fixed. Characterizing tractable instances of GRP
is a classical problem, first studied by Menger in 1931. We construct two
new infinite families of GRP instances which can be solved in polynomial
time. Both constructions are based on the blow-up of fixed small graphs
with large expanders. Our main tool is the Connelly’s condition in Rigidity
Theory, combined with an explicit construction and algebraic calculations
of the rigidity (stress) matriz. As an application of our results, we describe a
general framework to construct uniquely k-colorable graphs. These graphs
have the extra property of being uniquely vector k-colorable. We give a
deterministic explicit construction of such a family using Cayley expander

graphs.
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1 Introduction

The Graph Realization Problem (GRP) is one of the most well studied problems
in distance geometry and has received attention in many disciplines. In that
problem, one is given a graph G = (V, E) on n vertices, a set of non—negative
edge weights {w;; : (4,7) € E'}, and a positive integer d. The goal is to compute
a realization of G in the Euclidean space R%, i.e. a mapping p : V — R? such
that |p(¢) — p(j)|| = wij (||x]| stands for the Euclidian length of the vector x),
or determine if such realization does not exist.

The Graph Realization Problem and its variants arise from applications in
different areas both in mathematics and computer science. In molecular confor-
mation (see, e.g., [9, 26]), solving the GRP in dimension three allows construction
of the 3-dimensional structure of the molecule. In wireless sensor network local-
ization (see, e.g., [6, 16]), where one is interested in inferring the locations of
sensor nodes in a sensor network. And in computer vision, where image recon-
struction is performed from selected pairwise distances of labeled sources [8, 25].

In geometry, the GRP is widely studied in the context of the theory of rigid
structures. One thinks of a graph as having metal bars instead of edges (the
length of each bar is the weight of the edge), and the vertices are points in R
The bars are connected by joints and therefore movement is possible (but the
bars cannot change length). Loosely speaking, a framework is called globally
rigid if there is only one possible realization in R%. A triangle is for example a
rigid framework in R?, while a square is not. Two triangles sharing a common
edge is also not a globally rigid structure in R?, even if they are continuously and
infinitesimally rigid (see [10] and Figure 1). Note also, that some frameworks can
be rigid in R? but not in RY (take e.g. a closed chain of bars of lengths 2, 2, 2, 3
and 3, which is rigid in R but not in R?). For a comprehensive survey on rigidity
theory we refer the reader to [10].

It is often required that the solution to the GRP is unique (that is the case in



the examples we mentioned). This leads us to a related Unique Realization Prob-
lem (URP): given a realization of a graph G in R?, is there another realization
in the same dimension? (We consider realizations equivalent under rotations,

reflections or translations).

Figure 1: Two realizations of the same two triangle framework.

Solving either the GRP or the URP when d > 1 is fixed is NP-hard [36];
of course, in many applications the interesting case is d = 2 or d = 3. On the
positive side, for d = 1,2, one can solve a restricted (generic lengths) version of
the URP in polynomial time [28], while GRP and unrestricted URP may still be
NP-hard in this setting [6, 17]. Unfortunately, The GRP cannot be formulated as
a semidefinite program (SDP), due to the non-convex dimension constraint. If we
disregard the dimension constraint for a moment, then GRP can be formulated
as an SDP, and if a solution exists then an approximate solution can be computed
efficiently in dimension at most n, see [23] (here n is the number of vertices of the
graph), and in some cases dimension o(n) suffices (see [1, 7]). For an in-depth

survey about the SDP approach to the problem we refer the reader to [37].

1.1 Our Contribution

We address the following natural problem. Since the GRP and URP are NP-hard
in general, can we identify large families of instances for which the realization
problem can be efficiently solved? In 1931, Menger [34] resolved the problem
in the special case of the complete graph K, on n vertices (giving a necessary
and sufficient condition for the existence of a solution to the GRP, and showing

that this solution can be computed efficiently). In a different (non-algorithmic)



language, Connelly [12] showed that the family of Cauchy polygons has a unique
realization in R¢ for all d > 2, developing tools which were later used to find
several other ad hoc examples (see [10, 13, 38]). With a notable exception of the
work of So [37] who studied the GRP of graphs based on certain k-trees, there
has been little progress in this direction, either algorithmic or non-algorithmic.
In this paper, we continue this line of research by describing new infinite families
of tractable GRP instances.

Our construction is based on the following idea. Suppose that a realization p
of a graph G is unique not just in R%, but in any dimension up to n. In that case,
the only solution to the SDP of the GRP is the realization p. This fact lends itself
to an efficient approximate solution (up to an arbitrary precision) of the problem.
This sort of uniqueness is captured by the notion of universal rigidity which was
studied extensively in [11, 12, 13]. Our main idea is to construct a blow-up of G
(for a carefully chosen graph G) with a sufficiently good expander, which gives
a large universally rigid framework. We do this explicitly in two special cases:
for G the complete graph on k vertices, and G the Cauchy polygon Cgs (see
below). We use tools developed earlier to give sufficient conditions for the blow-
ups to be universally rigid, which by the above observation become tractable GRP
instances (in approximation). The main tool that we use is Connelly’s sufficient
condition for a realization to be universally rigid. For completeness and reader’s
convenience, we give a concise proof of this result (Theorem 4), following closely

the sketch and ideas in [11, 12].

1.2 Uniquely k-colorable and vector k-colorable graphs

In the k-colorability problem, given a graph G one is asked to compute (if pos-
sible) an assignment of colors to the vertices (using k colors) s.t. two adjacent
vertices receive different colors. The least number k such that G is k-colorable

is called the chromatic number of G and is commonly denoted by x(G). A



vector k-coloring of an n-vertex graph G = (V, E) is an assignment of unit vec-
tors {x1,X2,...,X,} € R" to the vertices of G such that (x;,x;) < —1/(k —1)
for every (v;,vj) € E. The least positive real number k such that G' admits a
vector k-coloring is called the vector chromatic number of G, usually denoted
by x»(G) [30]. It is not hard to see that x,(G) < x(G) (by identifying each
color class with one vertex of a regular (k — 1)-dimensional simplex centered at
the origin), and indeed x,(G) can be much smaller than x(G) [18]. A graph
G is uniquely k-colorable (resp. vector k-colorable) if G admits only one proper
k-coloring, up to color permutations (resp. congruency).

Theorem 3 below gives a recipe how to “cook” uniquely k-colorable graphs.
The resulting graphs have the extra property of being uniquely vector k-colorable
as well. The latter is not obvious at all, as k need not even be an integer. We could
not find any mention in the literature about uniquely vector k-colorable graphs,
nor the relation to unique k-colorability. Hopefully this paper can instigate re-
search in this fascinating unexplored direction. The fact that our graphs have
this extra property is the product of our proof method for unique k-colorability.
The proof uses a reduction from k-colorability to the GRP. Specifically, the graph
is embedded in a (k — 1)-simplex, and unique k-colorability is reduced to rigidity
of the (k — 1)-simplex embedding. Since the inner product of every two simplex
vertices is —1/(k — 1), this gives the result about unique vector k-colorability.
Note that in the definition of vector coloring, the inner product is required to be
at least —1/(k — 1), not necessarily equal. Therefore unique vector k-colorability
reduces to rigidity with cables as well as bars, thus taking full advantage of the
rigidity framework.

At the end of Section 2 we use our recipe to obtain an explicit construction
of a family of uniquely k-colorable expander graphs. Our graphs are also vertex-
transitive, and the construction uses good Cayley expanders (see e.g. [33, 29]).

Finally let us mention that our results about k-colorability are related to the



work of Alon and Kahale on planted k-colorable graphs [3].

1.3 Definitions and Preliminaries

Before we press on with a formal description of our results, we establish a few
key notions and useful facts.

A d-dimensional tensegrity framework p is a configuration of n points in R,
in which every two points are connected using a strut, or a cable, or a bar, or not
connected at all. (A strut is a structural component which resists longitudinal
compression, a cable resists longitudinal extension, and a bar resits both). We
say that a configuration q satisfies the tensegrity constraints of p if for every
strut connecting point u and point v we have ||q(u) —q(v)| > ||p(u) — p(v)||, for
every cable [[q(u) — q(v)[| < [|p(u) — p(v)|| and for every bar [|q(u) — q(v)] =
lp(u) — p(v)||. We say that p is universally rigid if every configuration q (in
any dimension) that satisfies the tensegrity constraints is congruent to p (in
particular, all constraints are satisfied with equality).

The tensor product of a graph G with a graph H is the graph G ® H. Its
vertex set is V(G® H) = V(G) x V(H), and its edge set satisfies ((u, ), (v,y)) €
E(G®H) iff (u,v) € E(G) and (z,y) € E(H). The tensor product is a well known
notion in graph theory, also called the graph weak product, or the Kronecker
product [21]. The adjacency matrix A(G ® H) is easily seen to be the matrix
tensor (or Kronecker) product of the adjacency matrices of G and H. A well
known fact is that if A1, ..., A; are the eigenvalues of A(G) and py, ..., 4y are those
of A(H) (listed according to multiplicity), the eigenvalues of A(G ® H) are A\;u;
fori=1,...8,7=1,...t.

For a graph G, let GT be the graph obtained from G by adding a new vertex

vo and connecting it to all vertices of G.



2 Main results

Our main contribution is a “recipe” how to cook tractable, universally rigid, GRP
instances. Informally, our recipe is to take a small universally rigid framework,
and tensor it with a good expander graph. We demonstrate this construction
using two examples: The k-simplex configuration (Theorem 1) and the Cauchy
polygon on eight vertices (Theorem 2). Finally, we show how to use the k-
simplex result to obtain a construction of uniquely k-cloroable graphs, which are

also uniquely vector k-colorable.

The k-Simplex Configuration. A regular k-simplex is a k-dimensional reg-
ular polytope which is the convex hull of its k£ + 1 vertices. We use K to denote
the complete graph on k vertices x1,...,x,. For an arbitrary graph H, the sim-
plex configuration of the graph product K ® H assigns all vertices of the from
(z;, %) with the i*" vertex of the regular (k — 1)-simplex in R*~1. In other words,
each color class of K} ® H is mapped to another vertex of the (k — 1)-simplex.
In case we have the additional vertex vy (connected to all other vertices), then it

is assigned the barycenter of the simplex.

Theorem 1. Let H be an r-reqular graph on n vertices that satisfies \(H) <
r/(k—1), and let G = Ky ® H. Then the simplex configuration of Gt is univer-
sally rigid. Furthermore, the unique solution to the corresponding GRP problem

can be computed in polynomial time.

Let us emphasize the algorithmic task referred to in Theorem 1. The tenseg-
rity framework of the graph G is indeed constructed as in Theorem 1, but the
algorithm receives only a list of pairwise distances, in an arbitrary order, and
is required to reconstruct the k-simplex configuration out of that. This task in
general is NP-hard.

We remark that in this graph theoretical setting, the mathematical notions

that are used to prove universal rigidity reduce to standard calculations involving



quadratic forms that arise in the context of the Rayleigh quotient definition for
the eigenvalues of a matrix (another example is the Hoffman bound [19] for the
size of independent sets in a graph). Thus in some sense, the language of universal

rigidity can be viewed as a generalization of those ideas in a geometric setting.

The Cauchy polygon configuration. Our second result has a true geometric
flavor. Denote by Cg the Cauchy polygon on eight vertices, x1, ..., zg, which form
a regular 8-gon inscribed into a unit circle (see Figure 2). We refer to [12, 10, 35]
for more about Cauchy polygons and their role in rigidity theory. Note that the
short edges in Cs have length \/m, and long edges have length /2. For a
graph G = Cs ® H, the Cg-configuration of GT assigns all vertices of the form
(z;, %) with the " vertex of the Cauchy Polygon in R?, and vy with the origin

(vp is the additional vertex that is connected to all vertices of the Cy).
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Figure 2: Cauchy polygon Cs.

Theorem 2. Let H be an r-reqular graph on n vertices that satisfies A\(H) <
V2r/3, and also let G = Cs@H. The Cg-configuration of GT is universally rigid.
Furthermore, the solution to the corresponding GRP problem can be computed in

polynomial time.

Let us note a connection between the realizations of G = Cg ® H and certain
3-circular 8-colorings of G (see [39] for definitions). We elaborate more in Section

8.2.



Uniquely k-colorable graphs. The next theorem is a corollary of Theorem
1. It describes a general construction of a family of uniquely k-colorable graphs,

which have the extra property of being uniquely vector k-colorable as well.

Theorem 3. Let H be an r-reqular graph with X < r/(k —1). Then G =
K. ® H is uniquely k-colorable and uniquely vector k-colorable. Furthermore, the

k-colorability problem for G can be solved in polynomial time.

Finally, let us show how to use Theorem 3 to obtain an explicit construction
of such family. Let H be an r-regular Ramanujan expander graphs (such as
described in [33]), satisfying A(H) < 2v/r — 1. If » > 4(k—1)?, then G = K, ® H
is uniquely k-colorable. In particular, when {H),} are the 17-regular Ramanujan
graphs on n = (p? — 1) vertices (p is a prime), as in [33], we can take k = 3 and
set G, = K3 ® Hp,. The graphs {G,} are then 34-regular uniquely 3-colorable
graphs on 3n vertices, and vector chromatic number 3. Furthermore, since the

Ramanujan graph and K}, are both vertex transitive, so is G.

Paper’s organization The remainder of the paper is organized as follows. In
Section 3 we discuss in details Connlley’s universal rigidity result. In Section
4 we discuss the algorithmic perspective of our result. Then in Sections 5, 6
and 7 we prove our main results. Conclusions and open problems are given
in Section 8. For completeness, the proof of Connelly’s sufficient condition for

universal rigidity, Theorem 4, is given in Appendix B.

3 Universal Rigidity

The main tool we use in proving our results is Connelly’s universal rigidity the-
orem. In this section we set the backdrop for the theorem, and give its exact
statement.

For a graph G, let P(G) be the space of all configurations of the graph G, and

let P4(G) be the space of configurations that lie entirely in the R? (or congruent



to a configuration in RY).

An equilibrium stress matriz of a configuration p(G) is a matrix Q indexed

by V x V satisfying:
1. © is a symmetric matrix,
2. If (u,v) ¢ E, and u # v then Q(u,v) = 0.
3. Forevery u €V, > o, Q(u,v) = 0.
4. For every u € V, > 1, Q(u,v)p(v) = 0.

The stress matrix €2 is considered proper if it satisfies €,, > 0 for every
strut {u,v} and €, < 0 if it is a cable.

We say that the edge directions of a configuration p in P%(G) lie on a conic
at infinity if there exists a non-zero symmetric d X d matrix Q such that for all
edges (u,v) of G [p(u) — p(v)]'Q[p(u) — p(v)] = 0. A symmetric matrix Q is
positive semidefinite (or PSD for short) if for every vector x, x!Qx > 0.

The following is a sufficient condition for a configuration to be universally
rigid. It was derived by Connelly in a series of papers, see [11] for example. The

complete proof is given in full details in Appendix B.

Theorem 4. Suppose that G is a graph with d + 2 or more vertices and p is a
configuration in P4 (G). Suppose that there is a proper PSD equilibrium stress
matriz (p, G) whose rank is n —d — 1. Also suppose that the edge directions of

p do not lie on a conic at infinity. Then p is universally rigid.

4 Semidefinite programming and the algorithmic per-

spective

In Theorems 1 and 2 we claim that one can efficiently find the unique solution to

the specific GRP. In this section we elaborate on the algorithmic aspect of this

10



problem. As we mentioned already, the GRP is naturally expressed as a semi-
definite programm. What follows is a self-contained discussion, which appears
in [37] and [22] as well.

Let e; be the i*" standard basis vector of R®. By A > 0 we mean that
A is a symmetric PSD matrix. For two n X n matrices A,B define Ao B =
> i j=1Adj - Bij. Let X = [x1xa| - [x,] be a k x n matrix (x; is the it" column

of X). One can easily verify that
i — x;]1* = (e; — €)' X'X(e; — €;) = (e; — e;)(e; — ;)" o (X'X).

Define the matrix L;; = (e; —e;)(e; — e;)T. Given a graph G = (V, E) and a set
of weights {w;; : (i,7) € E}, the GRP is equivalent to the following feasibility
SDP:

Find Y s.t.
LijoY = wj V(i,7) € E(Q), (4.1)

Y -~ 0.

Let us explain why this formulation is equivalent to the GRP. For a symmetric
matrix Y, Y is PSD iff there exists a matrix B such that Y = B'B (the Cholesky
decomposition). Let Y be a solution to the above SDP, and write Y = XX,
The first constraint ensures that the columns of X, treated as a configuration of
the graph G, satisfy the distance constraints.

Unfortunately, this still does not quite suffice for the algorithmic part of our
result, since the SDP can only be computed up to a finite precision in polynomial
time (the running time is proportional to log 1 /e, where ¢ is the desired precision).
Universal rigidity does not exclude the existence of a configuration q which looks
very different than p (maybe even in a different dimension), and satisfies the

distance constraints up to a tiny error. So q might be an output of the SDP,

11



when the precision is finite. Fortunately, there is a family of SDP solvers called
path-following algorithms, see for example [2], which compute a series of solutions
(Y:,S;), i = 1,2,..., such that lim; . (Y;,S;) = (Y*,S*), where Y*,S* are
optimal solutions to the primal and dual SDP programs. Since in our case, Y*
is the unique solution to the primal SDP, then using a path-following method
guarantees that indeed the output is an approximation of the unique solution.
More about the path-following method in our context is given in Appendix A.
Finally, recall that the solution to the SDP is only an approximation. Con-
sider the concrete example of the k-simplex configuration of a graph G, which we
defined in Section 2. Suppose that we fed the SDP solver with the constraints
implied by G and indeed it came back with the k-simplex configuration, but
now the points are accurate up to some small error. Since the distance between
two points (in the original k-simplex configuration) is much larger than the error
(which can be made arbitrarily small), we can group the vertices of the graph
according to vertices whose assigned vectors are close to each other, say their
inner product is positive (it should be —1/(k — 1) in the exact solution). This

ensures that we indeed reconstruct the k-simplex configuration exactly.

Eigenvector Approach. Let usremark that in the case of Theorem 1, one can
use a different algorithmic approach to efficiently extract the k-simplex configu-
ration. Indeed, the k —1 eigenvectors corresponding to the least eigenvalue —r of
the adjacency matrix A of K ® H, carry information about the k-coloring. For
example, any vector which is constant on every color class, and whose entries sum
to zero is an eigenvector of A belonging to the eigenspace of —r. This argument
is traced for example in [3], [31] or [12]. This might as well be the case for the
Cauchy configuration in Theorem 2, although we haven’t checked the details. A
prominent advantage of this approach is the fact that it is computationally lighter
than solving an SDP. On the other hand, one advantage of the SDP approach is

captured in the following setting. Suppose that on top of the graph K ® H, one

12



adds additional edges that respect the partitioning imposed by Kj. This opera-
tion may jumble the spectrum of the graph, and in general the aforementioned
eigenvector approach to extract the realization using eigenvectors, may not work.
The SDP approach however is resilient to such “noise”. This line of research was

followed in [5] for example, under the title “the semi-random model”.

5 Proof of Theorem 1

Recall that Kj is the complete graph on k vertices x1,...,xr, and H is some
r-regular graph satisfying A < r/(k — 1) (A = max;>2|\;|). Let G = K, ® H,
and the configuration p of G* assigns every vertex of the form (z;,*) with the
ith vertex of the k-simplex (we think of the k-simplex whose vertices lie on the
unit ball in R¥), and vg with the origin. We shall prove the theorem for the case
k = 3, as the general k case is easily deduced in a similar fashion.

If £ = 3, then the 3-simplex is just an equilateral triangle (the dimension
is d = 2). Let Pp, P», P3 be the three vertices of an equilateral triangle whose
center of mass is at the origin O and |OP;| =1 for i = 1,2,3. The configuration
p assigns P; to all vertices of the form (z;,x), and O to the vertex vg. In this
configuration, O‘ﬁl is a unit vector, and ]TP]) is of length /3 for every i # j.

The heart of the proof lies in providing a PSD equilibrium stress matrix whose
nullspace has dimension d+1 which is 3 in our case. Let A be the n xn adjacency

matrix of H, and T' be the adjacency matrix of K3. We let 13, € R3" be the

column all-one vector, Is, is the identity 3n x 3n matrix. Define

Ign—l—%r(@A —3-13,

-3-1%, 9In

The matrix € is an (3n + 1) X (3n + 1) matrix and indeed in G there are

13



3n + 1 vertices. The theorem follows from the following Lemmas 5-7. Before
proceeding with the proof, let us remark how the general-k setting looks like. As
mentioned before, each color class of G is assigned with a different vertex of the
regular (k — 1)-simplex whose barycenter is the origin. The point vy is assigned
the origin. The matrix €2 changes in the natural way: replace 3 by k, and 9 by
k%. The proofs of Lemmas 5-7 are adjusted in the same straightforward way to

accommodate the general k setting.
Lemma 5. The edge directions of p do not lie on a conic in infinity.

Lemma 5 follows immediately by noticing that the stressed directions in p
contain least three distinct directions, and a conic on the projective line has at

most two points.
Lemma 6. Q(G™, p) is an equilibrium stress matriz.

Lemma 7. The dimension of the null space of € is 3, and 2 is PSD.

The proof of Lemma 6 is a straightforward verification procedure and is given

in Section 7. We now give the proof of Lemma 7.

Proof. (Lemma 7) Our first observation is that 13,1 is an eigenvector of € cor-
responding to the eigenvalue 0 (this is true for every equilibrium stress ma-
trix, by the third property in its definition). One can also verify that & =
(1,1,...,1,—3n) € R3*! is an eigenvector of £ corresponding to the eigenvalue
3+ 9n.

Define the subspace W = span{13,4+1,£&}. A symmetric m x m matrix has a
set of m orthogonal eigenvectors. Since dim(W') = 2, one can find the remaining
(3n + 1) — 2 eigenvectors of € in a subspace perpendicular to W. Consider

z = (21,22, ...,Z3n,Yy) s.t. zLW. In particular, z1 13,1, which implies

3n
y=-2
i=1

14



Also z 1 &, which implies
1 3n
V=g, 2
1=

The only way to satisfy both equations is by forcing 2?21 x; = 0, which gives
y = 0. Therefore the vector z = (z1,z2,...,23,,0) = (x,0). Let zLW be an
eigenvector of €2 corresponding to the eigenvalue A. Since the last entry of z is
0,
1
Oz =Xz => <Ign+I‘®A>x:)\x.
r

The eigenvalues of I3, + %I‘ ® A are the eigenvalues of %I‘ ® A when adding 1

to every eigenvalue.

01 1
'=|10 1
110

The eigenvalues of " are easily seen to be 2, —1, —1 (in the general k setting they
are (k — 1) and —1 with multiplicity & — 1). The eigenvalues of A are r with
multiplicity 1 (this is true for every connected r-regular graph, and we know H is
connected, since otherwise its second largest eigenvalue in absolute value would
be r), and all others are < r/2 in absolute value. By the discussion in Section 1.3,
the eigenvalues of I'® A are —r with multiplicity 2, and the smallest eigenvalue is
no smaller than 2-(—r/2) = —r. Multiplying by 1/r, we get —1 with multiplicity
2, and the rest have absolute value < 1. Returning to Is, + %1" ® A, we have 0
with multiplicity 2, and the remaining eigenvalues are positive.

To conclude, 0 is an eigenvalue of © with multiplicity 3 (this gives the required
rank of the null space). The remaining eigenvalues are positive. It is easy to see
that a matrix is PSD iff all its eigenvalues are non-negative. This gives the second

part of the lemma. O

The proof of Theorem 1 now easily follows. Lemmas 5-7, together with

Theorem 4 imply that the simplex configuration for G* is universally rigid. The
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discussion in Section 4 implies the algorithmic part of the theorem.

5.1 Proof of Theorem 3

Fix an integer k > 0, and let H be a r-regular graph satisfying A < r/(k — 1).
We need to prove that G = K ® H is uniquely k-colorable. Assume otherwise.
Then we can construct two non-congruent realizations of G, by mapping color
class i to the " vertex of the k-simplex. This however contradicts the universal
rigidity established in Theorem 1.

For the vector chromatic number part, we need the slightly more general
version of Theorem 4 which appears in Appendix B. In that case, the bars
are replaced with struts (i.e, the edges can now stretch). A configuration p is
universally rigid if every configuration with edge lengths at least the ones in p is
congruent to p. The conditions in Theorem 1 imply also this version of universal
rigidity. Observe that if x;,x; are two unit vectors, then arccos((x;,x;)) is just
the angle between x; and x;, which determines the length of the edge (7,j) € E.
Therefore, using the broader notion of rigidity, if G has two different vector k-
colorings, then the two configurations that assign each color class with a different
vector of the coloring, give two non-congruent realizations of G, contradicting the
universal rigidity.

For the algorithmic part, observe that once we compute the realization of G,
we can group the vertices according to the vectors that the SDP assigned them
(take all vertices whose vectors are at distance, say, at most 0.01, to the same
color class). Another way to obtain the coloring is to compute the eigenvectors
corresponding to the (k — 1) smallest eigenvalues. Those eigenvectors encode the

k-coloring (see [31]).
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6 Proof of Theorem 2

We think of Cg, the Cauchy polygon on eight vertices, bounded in the unit
circle in R?, centered around the origin. Let H be a r-regular graph satisfying
A < V2r/3 (A = max;>2|\i|). Let G = Cs ® H, and the configuration p of G+
assigns every vertex of the form (z;,*) with the ith vertex of Cg, and vg with the
origin.

Again, the heart of the proof lies in providing a PSD equilibrium stress matrix
whose nullspace has dimension d + 1 which is 3 in our case. Let A be the n xn

adjacency matrix of H, and I' be the following weighted adjacency matrix of Cg.

0 -1 05 0 0 0 05 -1
-1 0 -1 05 0 0 O 05
05 -1 0 -1 05 0 0 O

0o 05 -1 0 -1 05 0 O

0 0 05 -1 0 -1 05 O

05 0 0 0 05 -1 0 -1

-1 05 0 O 0 05 -1 O

We let 1g,, € R®" be the column all-one vector, Ig,, is the identity 8n x 8n matrix.

Define

Valg, +IT @ A | (1-v2) - 1s,

(1-v2)-1, | 8a(v2-1)

The matrix € is an (8n + 1) X (8n + 1) matrix and indeed in G there are

8n + 1 vertices. The theorem follows from the following three lemmas:
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Lemma 8. The edge directions of p do not lie on a conic in infinity.
Lemma 9. Q(G™, p) is an equilibrium stress matriz.

Lemma 10. The dimension of the null space of € is 3, and Q2 is PSD.

The proofs of Lemmas 8 and 9 are a straightforward verification procedure

and are given in Section 7. We now give the proof of Lemma 10.

Proof. (Lemma 10) Our first observation is that 1g,+1 is an eigenvector of €2 cor-
responding to the eigenvalue 0 (this is true for every equilibrium stress matrix, by
the third property in its). One can also verify that £ = (1,1,...,1, —8n) € R¥*!
is an eigenvector of £ corresponding to the eigenvalue (v/2 — 1)(8n + 1).

Define the subspace W = span{1s,+1,£}. A symmetric m X m matrix has a
set of m orthogonal eigenvectors. Since dim(W') = 2, one can find the remaining
(8n + 1) — 2 eigenvectors of € in a subspace perpendicular to W. Consider

z = (x1,x2,...,%8p,y) s.t. zLW. In particular, z11g,+1, which implies

8n
Yy=—- E T
=1

Also z 1 &, which implies

The only way to satisfy both equations is by forcing Z?gl x; = 0, which gives
y = 0. Therefore the vector z = (z1,22,...,28,,0) = (x,0). Let zLW be an
eigenvector of €2 corresponding to the eigenvalue A. Since the last entry of z is
0,

Qz = X\z = (\/i'Ign+iF®A>x:Ax.

The eigenvalues of v/2-Ig, + %I‘ ® A are the eigenvalues of %I‘ ® A when adding
V2 to every eigenvalue. The eigenvalues of T' can be computed (using MATLAB

for example), and they are {—v/2, —v/2, -1, -1, —1,/2,v/2,3}. The eigenvalues
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of A are r with multiplicity 1 (this is true for every connected r-regular graph,
and we know H is connected, since otherwise its smallest eigenvalue would be
—d, and we know that it is larger than —+/2r/3), and all others are < v/2r/3 in
absolute value (by the conditions on the theorem). By the discussion in Section
1.3, the eigenvalues of I' ® A are —+/2r with multiplicity 2, and the smallest
eigenvalue is larger than 3 - (—v/2r/3) = —v/2r. Multiplying by 1/r, we get
—+/2 with multiplicity 2, and the rest have absolute value < v/2. Returning to
V2Ig, + %I‘ ® A, we have 0 with multiplicity 2, and the remaining eigenvalues
are positive.

To conclude, 0 is an eigenvalue of 2 with multiplicity 3 (this gives the required
rank of the null space). The remaining eigenvalues are positive. It is easy to see
that a matrix is PSD iff all its eigenvalues are non-negative. This gives the second

part of the lemma. O

The proof of Theorem 2 now easily follows. Lemmas 8-10, together with
Theorem 4 imply that Cauchy-polygon configuration for G is universally rigid.

The discussion in Section 4 implies the algorithmic part of the theorem.

7 Missing proofs from Sections 5 and 6

7.1 Proof of Lemma 6

Let us go over the required properties in the definition of a stress matrix (Sec-
tion 3). Q is a symmetric matrix. There is no limitation on the diagonal entries,
and it has non-zero entries only where there is an edge of G™. The sum of every
row ¢ is indeed 0: For the first 3n rows, a; = 1, and the sum of the remaining
entries is 1/r times the degree of a vertex ¢, which is 2r. This is balanced by the
—3 at the last column. For the last row, the sum is 3n - (=3) + 9n = 0. As for

the last property, for every v € V(G), treating the configuration as vectors,
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300, wp(w) =

weV

s 5 s

Pl+-Y 0 P+-Y 0 P,—3.0=> 0P =0

0 1+r . (v,w)O 2+T > (v,w)OP3 —3- 0 ‘ 1O 0
weVa weVs i=

For the last row, corresponding to v = vg, we have

> Q(vo, w)p(w) =

wevV

3

— — — —

—3n 3 0P =30 Y 0P, =30 Y OP3+9n- 0 = —3n> OB =0.
weVy weVa weVs i=1

7.2 Proof of Lemma 8

The four vertices of the Cauchy polygon are P, = (1,0), Py = %(ﬂ, V2), Py =

(0,1) and P,, = (0,0) (omitting the 0-padding of the points). Let

be a symmetric 2 x 2 matrix. Solving [P; — Py |Q[P; — Py, ]! = 0 for i = 1,3 gives
a = c=0. Solving [P — P,,]Q[P> — P,,]t = 0 gives b= 0.

7.3 Proof of Lemma 9

Let us go over the required properties in the definition of a stress matrix (Sec-
tion 3). The stress matrix € is a symmetric matrix. There is no limitation on
the diagonal entries, and besides it we have non-zero entries only where there
is an edge of GT. The sum of every row i is indeed 0: For the first 8n rows,
a;; = /2, and the sum of the remaining entries is 1/r times the degree times the

weight, which is gives —1. This is balanced by the 1 — /2 at the last column.
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For the last row, the sum is 8n - (1 — \/5) +8n-(vV2—-1)=0.

Let us treat the configuration as vectors. Look at a vertex v = (x1,u), where
x1 corresponds to the point P; = (1,0) (since Cy is symmetric for every vertex,
we can just consider this case). The vertex v has 4d neighbors, d of each form
(z2,%*), (3, %), (z7,%), (rs,*). The vectors corresponding to its neighbors of the
form (z3,%) and (x7,*) are antipodal, and therefore cancel each other (as long
as both are assigned with the same weight, which is 0.5 in our case). The sum

—
of every two vectors of the form (zg, ) and (zs, *) is 2+/2 - OPj. Therefore,

1
Zﬂ(v,w)p(w):—1-7“';\/5-51[_’1>+\[2'5131):6>-

weV

For the last row, corresponding to v = vy, we have

8
S Q(ug, wip(w) = 8n(v2—1)- 0 +(1-v2) Y. Y 0P =T.

weV =1 weH,;
8 Conclusions and open problems

8.1 In this paper we characterized two families of tractable GRP instances,
using a blow-up of the regular k-simplex and the Cauchy polygon with a suitable
r-regular graph. Both the regular k-simplex and the Cauchy polygon Cg are
universally rigid frameworks by themselves. Our results suggests perhaps the
following more general method for generating universally rigid frameworks (and
thus tractable GRP instances): take a universally rigid framework R and an
r-regular graph H. Find a condition on A\(H) (the second largest eigenvalue
in absolute value) so that R ® H is universally rigid. An interesting question
for future research would be to prove that indeed the method works in this full

generality, or come up with a counter example.

8.2 Let us note that every realization of G = Cy ® H into R corresponds to

a 3-circular 8-coloring of G (see [39] for a comprehensive survey). As of yet, we
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could not prove the reverse claim, although we conjecture that it holds, and that
G is a uniquely 3-circular 8-colorable graph. Explicit constructions of c-circular
k-colorable graphs with good expansion is an open question in general (cf. [39]),
and we propose our graphs G = Cg® H as good candidates in the case ¢ = 3 and
k = 8. Finally, let us mention that in this spirit general frameworks are related
to general graph homomorphism problems, where uniquely homomorphic graphs

are of importance again (see [27]).
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A Self-Duality

One of the requirements for the path-following methods to apply is that both the
primal and dual SDP have strictly feasible solutions (by strict we mean positive-
definite). This will not be the case for the SDP we just described since the rank
of Y is the dimension of the configuration p for the GRP. However, Y is positive-
definite iff it has full rank, which in most cases will not be true. To overcome this
problem, we use the self-dual method (see [14, 15]) which embeds both the primal
and dual SDP in a new SDP, which is self-dual, and has strict feasible solutions.
The solutions of the new SDP give the solution to the embedded programs iff
the original primal and dual programs are gap free (that is, they both have the
same maximal/minimal solution value). Let us show that indeed this is the case
for us. Let b be the vector b = (w%) for (i,7) € E. The dual to (4.1) is
r}r{usn bx

Z XijLij +S =0, (Al)
(i,))eE

S>0.

The solution x = 0 and S = 0 is a feasible solution to (A.1) whose value is 0. By
the weak duality theorem, this is the optimal value of the dual SDP (since the
primal has value 0).

We are going to embed both our primal and dual programs in the following

26



self-dual SDP:

min 03
L,‘jY —Tbij —i—@l_)ij =0 (Z,j) eFE,
|E|
- %Ly -2 =0,
=1
blx+60—p=0,
—BtX—IOY—T—V:—B,

Y.Z-0, xeRF gprv>o0.

Where Bij = by; — tr(Lj;). One can verify that this SDP is self dual, and
since setting all parameters to 0 is a feasible solution, by the self-duality we get
that this is indeed the optimal value of the SDP, and § = 0 in the optimum.
Furthermore, [14] shows that 7 > 0 iff the original pair of primal and dual SDP
were gap free. This is indeed the case for us, and we get that 7 > 0 in the optimal
solution. Therefore the optimal solution to the self-dual satisfies

S
Lin = wa = T’IUZ-j.

Therefore, if the original SDP had a unique solution, then the self-dual has a
unique Y that satisfies the first constraint (since if Y is part of a solution to the
self-dual, 77YY is a solution to the primal).

The second requirement for applying a path-following method is that the
matrices L;; be linearly independent. Since there are no parallel edges in G, this

is indeed the case.
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B Proof of Theorem 4

For two configurations p,q we use the notation p =< q to denote the fact that

Ip(u) —p(v)l| = [la(u) —q(v)| for every bar (u,v) € E, [[p(u) —p(v)[| = llq(u) -
q(v)|| for a cable (u,v) € E and ||p(u) — p(v)|| < [[g(u) — q(v)|| for a strut.

Lemma 11. Let Q(p,G) be a proper equilibrium stress matriz for the configu-
ration p(G). Let q be another configuration for G s.t. p < q. If Q is PSD,
Q(q,G) is an equilibrium stress as well. Furthermore, all tensegrity constraints

hold with equality.

Proof. The first three requirements that €2 needs to satisfy as an equilibrium
stress matrix do not depend on p. Therefore, they hold for q as well. It remains

to verify the last property, that is

YueV Z Quuq(w) = 0.
weV
Let us define the matrix ¥(*) to be the n x n matrix with —1 in the (u,v)
and (v,u) entries, 1 in the (u,u) and (v,v) entries, and 0 otherwise. Define

Wuo = —Quw. We claim that

Q= Y w, T
(u,0)EV XV
This is clear for the off-diagonal entries. For the diagonal entries, observe that
since €2 is an equilibrium stress matrix, the sum of every row is 0, therefore the
diagonal entry €2, must equal the negative of the sum of all entries of the u-row.
This is equivalent to having the 1 entry in ¥ () For a vector x = (1,2, ..., Tp)

consider the quadratic form x'Qx. It is easy to see that x'®(“Wx = (z,, — x,)?,
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therefore it follows that

x'Ox =x! Z Wy T | x = Z Wy X W) % —
(u,0)eV XV (u,0)eV XV

Z W (T, — 24)2. (B.1)

(u,0)eV XV

2 variables),

Think of the entries of the points in p as formal variables (that is, n
and let us define the following function E(p) (which is usually called the energy

function in rigidity theory):

E(p)= Y  wwllp)—p@)*
(u0)EV XV
Let py be a configuration such that (pg, G) is an equilibrium stress matrix.
The first observation that we make is that VE(py) = 0. To see this, let Z be the
d x n matrix such that the u* column of Z is py(u). Let x, be the u*" row of Z
(i.e., the j entry in x, is the u!” entry of py(j) for j = 1,...,n). Fix a vertex

u € V and consider the variable 2, — the v entry of x,.

)

0Ty

2 Z wvw(ﬂjuv - xwv)-

wevV

The last two properties of a stress matrix imply that if Q(p,, G) is an equilibrium

stress, then

VueV Z wyw (p(u) — p(w)) = 0.
weV

Combining the last two equations we get that if Q(py, G) is an equilibrium stress
matrix, VE(py) = 0.
The next observation that we make is that E(py) = 0. Define y = tpg, then

E(y) = E(tp,y) = t?E(p,) (the last equality just follows from the quadratic form
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of E). Using the chain rule,

E'(y) = VE(y) -y’ = VE(tpy) - po-

On the other hand

E'(y) = (*E(py))’ = 2tE(py).

Combining the two and setting ¢ = 1 (and recalling that VE(p,) = 0), we get
E(py) = 0.

The last observation that we make is that E(p) > 0 for every configuration
p. By Equation (B.1), E(p) can be reexpressed as follows (x; is the i row of
P):

E(p) = x192x} + x20x5 + -+ - + x,0x",.

Since €2 is PSD, it holds that x;2x} > 0 for every ¢, hence F(p) > 0.

Now we are ready to prove that €(q,G) is an equilibrium stress matrix as
well, if p < q. First observe that for every (u,v) € E, wyy|a(u) — q(v)]| <
wup||P(u) —p(v)||. This is obvious for bars (which hold with equality). For struts,
la(u) — q(v)]| > |lp(u) — p(v)||, and €4, > 0 since Q is a proper stress matrix.
Therefore, wy, < 0, and the inequality holds. The same argument implies the

inequality for cables. This observation, combined with E(q) > 0 gives
0< E(q) < E(p) =0= E(q) =0.

This also means that the struts and cables constraints must hold with equality. If
E(q) =0, then q is a minimum point for £, and therefore VE(q) = 0. However

this implies that

YueV Z wuw(q(u) — q(w)) = 0.
weV
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Or, put differently,

VueV Z wywd(u) = Z Wuwq(w).

weV weV

Combining this observation with the third property of a stress matrix,

Z Q(u, w)q(w) = — Z wuwd(w) = —q(u) Z Wuw = q(u) Z Q(u, w) = 0.

weV weV weV weV

So we conclude that

YueV Z Q(u, w)q(w) = 0.
weV

O]

Before we state the next lemma, we remind the reader that an affine trans-
formation T : R” — R" is a function of the form T(x) = Ax+b, A € M,,x,(R)
and b € R"”; T is linear if b = 0. For a configuration p, T(p) stands for the
ordered set {T(p(u)) :u € V}.

Lemma 12. If Q(p, G) is a PSD equilibrium stress matriz of degree n—d—1, G
has at least d + 2 vertices, and q < p is another configuration, then there exists

an affine transformation T such that T(p) = q.

Proof. The configuration p has dimension d, therefore there exists an isometry
T = Ajx+d; (A; is an orthogonal matrix, therefore T preserves edge lengths)
such that Ty(p) lies in R? (we pad every vector in R? with n — d zeros for
consistency of dimensions). Let p* = Ti(p). Define by = p*(1) and set p’ =
{p*(u)—b; : u € V}. Similarly define ' = {q(u)—bs : u € V'}, where by = q(1).
Clearly if p < q then p’ < q’. Therefore it suffices to prove that there exists a
linear affine transformation T such that T(p’) = . If this is indeed the case,
then q'(u) = Ap/(u) for some matrix A. Recalling that q'(u) = q(u) — ba, and
p'(u) = p*(u)—b1 = A1p(u)+ds —by, we get q(u) —be = A(A1p(u)+d; —by).
This implies q(u) = Cp(u) + ¢ for C = AA; and ¢ = bs + A(d; — by), which
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is just a vector in R”. In other words, g = U(p) for the affine transformation
U(x) = Cx+c. It can be verified rather easily that if Q(p, G) is an equilibrium
stress matrix, so is Q(T(p), G) (for an arbitrary affine transformation T). Hence
from now on we shall consider only the configurations p’ and q'

Recall the definition of the matrix Z from above, the columns of Z are the
vectors {p/(u) : u € V'}. Observe that by our construction of p’, p’(1) = 0 and
let us assume w.l.o.g that the vectors p(2),...,p(d+ 1) are linearly independent.
Since also (1) = 0, every linear transformation satisfies T(p/(1)) = q'(1). We
can certainly define a linear affine transformation T such that T(p’(i)) = q'(¢) for
i=2,...,d+1. If this also holds for i = d+2, ..., n then we are done. If not, then
there is some index ¢ > d+ 1 such that T(p}) # q}. Therefore, T(p'(z)) —q’'(i) is
not the zero vector, so there exists some coordinate ig which is non-zero. Define
the vector e = (eq,e2,...,¢e,) to be: e; is the ig coordinate of T(p’(5)) — d'(4).
Let Z* be the matrix Z in which row d 4 2 is replaced with e. Observe that
the first d + 1 entries in row d + 2 are 0 (just because T(p’(i)) = ¢(7)), and in
the remaining n — d — 1 entries there is at least one non-zero entry. It is not
hard to see that this implies that the rank of Z* is at least d + 1. The fourth
property in the definition of a stress matrix (Section 3) implies that if Q(p’, G)
is an equilibrium stress matrix, then the rows of Z are in the kernel of €. Also if
a linear affine transformation is applied to p’, the rows of the new matrix Z will
be in the kernel (using the linearity of matrix multiplication). Similarly to Z,
we can define the matrix Y whose columns are the vectors in q’. Since 2(q’, G)
is an equilibrium stress (by Lemma 11), the rows of Y are also in the kernel of
Q. These two facts imply that the vector e is going to be in the kernel of € as
well. To conclude, all the rows of Z* belong to the kernel of € and their rank
is at least d + 1. The vector 1,, € R™ always belongs to the kernel of € (third
property of a stress matrix); since the first coordinate of every row in Z* are 0,
1,, does not belong to the span of the rows of Z*. To conclude, the kernel of

Q contains the span of the rows of Z*, which has dimension at least d + 1, and
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the vector 1,. The rank of € is then at most n — (d + 2), which contradicts our
rank assumption. Hence, T(p’(i)) = q(i) for every i, and we have shown that

there is a linear transformation such that T(p’) = q’ as required. O

Lemma 13. Let Q(p, G) be a proper PSD equilibrium stress matriz for the con-
figuration p(G). Let q be another configuration for G s.t. p =< q. If there is an
affine transformation T such that T(p) = q, then either the directions of p lie

on a conic at infinity, or q is congruent to p

Proof. Lemma 11 implies that the tensegrity constraints hold with equality.

Therefore since p < q, we have that for every (u,v) € E(G),

0= Jla(u) - a()|* - [p(w) - p(v)[|* =
= [[(Ap(u) + b) — (Ap(v) + b)|* ~ [|p(v) — p(v)|* =

= [|[Ap(u) — Ap(®)|* — [[p(u) — p(v)||* = [|[A(p(w) — P(v))[* = [p(u) — p(v)|*.

Using the fact that ||Ax||? = (Ax)!Ax = x’ A’ Ax, the latter can be restated as

0= [p(u) - p(v)] A"A [p(u) — p(v)] — [P(u) — P(v)]' L [p(u) — P(v)],

which gives

[p(u) — p(v)]’ (A'A —L,) [p(u) — p(v)] = 0.

Define Q = A'A—1,. If Q # 0, then by the definition in Section 3, the directions
of p indeed lie on a conic at infinity. If Q = 0, this means that A’A =1I,,, or in
other words, A is an orthogonal matrix. Thus T = Ax + b is an isometry, and

therefore p and q are congruent. ]

Theorem 4 now follows easily from these lemmas. Let p be a configuration
in R? for the graph G, satisfying the conditions of Theorem 4. That is, Q(p, G)

is a proper PSD equilibrium stress matrix with rank n — d — 1. Further, we
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assume that the directions of p do not lie on a conic at infinity. Let q be another
configuration that satisfies the tensegrity constraints of G(p). Lemma 12 asserts
that there exists an affine transformation T such that T(p) = q. Lemma 13 then
gives that either the directions of p lie on a conic at infinity or T is a congruence.
But the conditions of the theorem exclude the former, and we are left with p and

q are congruent.
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