analytically without much difficulty, using identities like (3); in fact,
there are at least four different proofs of (4) and (35).

It would be satisfying to have a direct proof of (4). By this I
mean, that although we can prove (in four ways) that the partitions
of 51 -+ 4 can be divided into five equally numerous subclasses, it
is unsatisfactory to receive from the proofs no concrete idea of how
the division is to be made.  We require a proof which will not appeal
to generating functions, but will demonstrate by cross-examination
of the partitions themselves the existence of five exclusive, exhaus-
tive and equally numerous subclasses.  In what follows I shall not
give such a proof, but I shall take the first step towards it, as will
appear.

The result of subtracting the number of parts in a partition from
the largest part we call the “rank™ of the partition. It is easy to
gep that the ks of partitions of # will take the values

n—I, H—3, " e 2, 1,0, —I, —2,..., §—8%, 3—8, I—N,
and no others. The number of partitions of # with rank m we
denote by Nim, n). The number of partitions of # whose ran
congruent to m modulo ¢ we denote by N{m, g, #). Thus

(7) Nim, g, n) = M N{m + #q, n).

Some Guesses in the Theory of Partitions
By F. J. Dyson

ProFessor Litriewoon, when he makes use of an algebraic

identity, always saves himself the trouble of proving it; he maintains

that an identity, if true, can be verified in a few lines by anybody

obtuse enough to feel the need of verification. My object in the

following pages is to confute this assertion.

In order to save space, I must refer my readers to the first three
pages of chapter XIX of Hardy and Wright's Imiroduction to fhe
Theory of Numbers for a detailed account of the idea of a partition,
and for a description of the way in which the properties of partitions
| are represented in the form of algebraic identities. T will always

refer to this chapter by the symbol (A). The plan of my argument
is as follows, After a few preliminaries 1 state certain properties of
partitions which I am unable to prove: these guesses are then
transformed into algebraic identities which are also unproved,
| although there is conclusive numerical evidence in their support;
| finally, T indulge in some even vaguer guesses concerning the
existence of identities which I am not only unable to prove but also
unable to state, I think this should be enough to disillusion anyone

o

| who takes Professor Littlewood's innocent view of the difficulties Fm— @
| of algebra. Needless to say, 1 strongly recommend my readers to The conjecture which T am making is
| supply the missing ?.__.Smm: or, Mdc: wﬁﬁ,ﬂ the missing identities. (8) N(o, 5, 5n+4) = N(1, 5, 50 -+ 4) = N(z, 5, 51 + 4)

N(3. 5. 5% + 4) = N{4, 5, 50 + 4);

or, in words, the partitions of 5n + 4 divided into five equally
ne i to the five possible values of the least
positive residue of their ranks modulo 5. In the same way we have

(9) N{o,7,7n +45) =N{1, 7,71 4 5) = ...=N(6, 7, 7 + 5).
The truth of (4) and (5) would follow at once, if (8) and {(g) could be
proved. But the corresponding conjecture with modulus 11 is
definitely false.

::..:. mz. i the theory of partitions a “principle of conjugacy,”
explained in (A), p. 272. This principle includes a duality relation
between the number of parts and the largest part in a partition, and
thus partitions of rank s are in a relation of duality with partitions
of rank —m. It can thus easily be proved that
(10) 'Nim, n) = N(— m, n),

(1) Nim, g, n) = Nig — m, g, n).

Hence (8) reduces to only two independent identities, and (g) to

The total number of partitions of an integer # into a sum of
positive integral parts is denoted by p{n}. The “generating function®’
of $(x) is the infinite series

I (1) P N Plm)xm,

which is a function of the variable x regular in | x| < 1. The form
of P is given by two identities of Euler
(2) Prl=(1—2)(1 —2%1 — 21 — %% ...

Rl.
(3 Pl= M._” r)ux PEH) — 1 — x
- OO

which are proved in (A).

There are three beautiful arithmetical properties of #{u), which
were discovered, and later proved, by Ramanujan, namely -

(4) P52 + 4) = 0 (mod 5),

(5) 272 +5) = o (mod 7), three,
S h s oDt a:mdﬁr_:a:.uw.. this reduction of our capital is more than offset by
er 3

They appear as theorems 359-361 in (A), and can be proved considerations. In fact, (8) and (g) are only the leading and

1o




most interesting members in a whole series of similar identities, as
listed below:—

(xrz) N(x, 5,58 4 1) = N{z, 5, 5% + 1),
{13} Nfo, 5, 58 + 2) = N(z, 5, 50 + 2),

(8) Nlo, 5,57 +4) = N(1, 5, 5n + 4) = N(2, 5, 5% + 4),

(14) Nz, 7, 7n) = N(3. 7. 1),
(15) Ni1,7, 90 + 1) = Niz, 7. 78 4 1) = N(3, 7, 7"
(16) Nfo, 7 7n 4+ 2) = N(3 7 7n + 2),
{17) Nlo, 7, 7n-+-3)=N(z. 7, yu+3), N(1, 7. 7n+3)=N(3, 7, 72 £+ 3),
(18) Nlo,7, 78 +4) =N(1, 7, 7% + 4) = N(3, 7. 7% + 4,

{9) Nfo,7,712+5)=N(1,7,7n+5)=N(2,7,7m+5)=N(3,7,78+5),
(1g) N{o,7,78--6)+N(1,7, 7046} =N(2, 7, 7u--6) +N(3, 7, 78 +0),

+ 1),

Of these relations, only (8) and (g} give any arithmetical properties

e rest of the series is interesting only because it may
: light on (8) and (9} ; as yet, however, I have been unable
behind the apparently haphazard distribution of

of pin).

throw s
to find any pla
these identitic

* & & &

I now proceed to put the equations into algebraic form by me
of generating functions. The algebraic form is useful for nume
computations, and also seems to offer the best prospect of arriv g
at proofs [ shall omit the caleulations, but on the basis of formulag

o
d in (A) the generating function Gim) = N

o0

to be fi (w2, m)x™

takes the form .
(20) Gim)=P J«. 1) — 1 (plrdr—1
_N—

where I? is given by (1). This form is valid when m = 0 and, witly
LA eS0Ty .:.::.;._ when s < 0 .,__ S0} but when m T it is 1::___,.-.
to use the relation

__,.mH_v A..__:_._._.___ = A_._.. - #t),

deducible from (10). (20} and (21) can thus be combined in the
formula

&
(22) Gim) = _,NH I)f =1 (i
r 1

wes of m.  The series on the right of (22) is simple i
: theta-functions” by Proless

____._..,.,..1—

Lt

._".w._..s | o | :

valid for all vs
form, and is of the type called
mw:__...,_u.m. if that “_; any consolation.

Tl

iting function of Nim, g, n) i

Fene

o o
(z3) Gim, q) = N Nim, g, #)x" N Gime - sq),

Iz

by (7). Wesuppose that ¢ is a positive integer, and that o << m < g
Then we substitute from (22) into (23), and the summation with
t to s can be performed in finite terms, giving the final result

resp

(z4) Gim, q) .cNH 1)
r 1

The coefficients P' have been tabulated as far as ¥ and the
coefficients in the series on the right of (24) are all very small:
{24) therefore affords much the quickest way of calculat g the
values of Nim, ¢, #) numerically. The equations (1z) — (1g) can
be expressed in analytical form by means of (24); as an exa _._U_._ we
take the equation N{1, 7, #) N(3, 7. #), which leads to the follow-
ing statement,

_H..“.mu__ In ke .___r_.:n..x..z.__.__.q.._..

£

- :__?L a }
(1 o
the cos , XTHL xS sanish {denlically.
W & " -

It intercsting for sew
evidence some deta
two differences

a=N(o, 35, #) — Ni2,5,#), 5= N1, 5, n) — Nz, 5,1)
for values of # up to 50,

| reasons to examine the numeric
First comes a table of the values of the

3 |
w 1 b | n a b " oa b | =n a I _ i e !

|

|
1 I [} - ('] 1 | ] [§] (¥ (4] _
3 5 ] r
un_ _ 4] _ v i o H 1 3 [+ Lo o
4] 1z i 1 13 o o 0 15 1 1
_'_.hu h. 5 0 1 4 | 0 o .:... [ I |
2 2 o | ] 1 23 I 0 o 14 I 2
- nv I 0 2 o [} e ds I ] 0 1] 0 ]
.+._ .. [+ _ 3z o ] 33 I €0 o _ .w._ I 2
.”u_ 2 o 37 [+ I _ e 2 [¢] o 4 1 2
__: 3 o 42 2 | 43 I = o O 2 3
3 o 7 : ] 3 ] o | ] .,.
What ar i
i arkable about this table, apart from the columns of

ZET05, is the :_r_u..:.:._,_. of behaviour of

e i and b within cach arith-
C progression of common difference eLls ;

1 nd als > 288

Thex i : i 5 ilso the sn Iness

IT the partitions of 48 were distributed “at random"

#H_-_”_._"__“.HF“ :...,_“,_._.....___J_r_u. .,m_.u::_._ expect .z:_:i.:._:u_ that t . numbers of
to 250, L.____... ._.H.:._ ol : es would differ by anything from oo
H.c__:,:_.ux i L the values of ::.; b, namely —z and o

e cxplanation. It seems certain that there remain to b

A___..whcf.r.

red alternative f : for the renerati Hons
which orms for the generating functions of @

? iy _“m__..__
will make it intuitive when t]

coefficients vanish, when
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they are positive, when negative, and why in general they arc so conclusion that there must be some analogue module 11 to the

small. And exactly the same remarks apply to the coelficients relations (20).
relating to the modulus 7. I hold in fact:
In the case of modulus 7, we obtain from equations (12)—(1g) That there exists an arithmetical coefficient similar to, but more
some striking congruence properties of plun).  We write recondite than, the rank of a partition; I shall eall this hypothetical
¢ = N{o, 7, %) — N(3, 7, n), & = N(1, 7, 0} N(3, 7, 1), coefficient the ™ L_:_..” : of the partition, and d note by M(m, g, n)
e = Niz, 7, n) — N(3, 7, n). the number of partitions of »# whose erank is eongruent to
. i, - 0 s
Then, by (11), p(n) = ¢ + 2d + 2¢ (mod 7). moduld “.H_. _—
5 " at M{m, g, n) =1 m, g, 1)
Now using (12)—{19), we find et M, g " g8
when » = 1, p(n) == ¢ (mod 7}, that ;
lj when n = 2, p(n) 2d + ze (mod 7), M(o, 11, 118 + 0) = M(I1, 1T, 1In 4 6) M(z, 11, 130 + 6)
26) when # = 3, p(n) = 3¢ (mod ), M(3, 11, 118 4 6) = M{4, 11, 118 + 6);
A_,i._...: # = 4, pln) = — 5¢ {mod 7). N . that numerous other relations exist ang s to (12)—(1g), and
Below is a table of the actual least positive residucs of pin) in partic
{mod 7) for various values of #. M(z, 11, 118 -}1) = M(z, 11, T12--1) = M(3, 11, 110
Mi4, 11, 1180 4 1);
n " _ a1 H wn__ 3 30 F.__ that M{m, 11, #) has a generating function not completely
.._q ; e = ] different i form from (24);
" 2 ) 16 ...u.. 30 w_w I_ ..y .__M that the valoes of the differences such as M{o, 11, .c”_.. .“_.___“....T I, )
ipr 2 2 o 2 4 = g are always extremely small compared with f{n).
- 3 0 24 3t 3% 45 59 6D Whether these guesses are warranted by the evidence, I leave to
ipr 3 a o 3 3 3 3 3 the reader to decide. Whate the final verdict of posterity may
..._._ 0 3 % ” [T be, _ believe the “crank” is unique among arithmetical functions in
: - = 4 5 P o 5 5 having been named before it was discovered.  May it be preserved
from ti

ignominious fate of the planct Yulean!

It will be seen that these
is sufficiently explained by the congruence relations (20) together
with the fact that the values of ¢, & and ¢ are initially very small.

For comparison 1 append a similar table of the i
ious values of ». By A. C. 1

L Ll “*

Short Vision

residues of f{n) (mod 11} for vi LCOKER
only way which leads to
n 1 12 23 45 ‘ m“ T;_u __xw S hollow spheres
Ipr 1 o 1 ' ' 2 Reflecting back
" 2 13 24 35 46 57 68 go rol In heavy imitation
Ipr 2 2 2 o 2 2 : 2 And blurred degeneration
: e R e s A senseless image of our world of thought.
tr | 3 3 0 3 i 0 3 3 3 o . z : . . .
pr | I Man thinks he is the thought which gives him life!
[ :
" " 6 37 48 50 7o i 103 He binds a sheaf and claims it as himself!
7 5 O T -y -y &
I 5 5 o 5 "] 5 5 :.H 15 a ring through which pass swinging ropes
" 5 27 49 (i) 71 Rz 03 104 Which merely move a little as he shps.
____._... 7 o (4] i 7 o 7 o e
I'he Ropes arc Thought
= e TP wcisalyr the , character as tH The Space is Time
[he regularity of this table is of precisely the same character as Could ;
regularity of the previous one. One is thus led irresistibly to th -ould he but sce, then he might climb.
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