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IS AS HARD AS THE POLYNOMIAL TIME HIERARCHY
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Abstract. We prove that deciding the vanishing of the character of the symmetric group is C=P-
complete. We use this hardness result to prove that the the square of the character is not contained
in #P, unless the polynomial hierarchy collapses to the second level. This rules out the existence
of any (unsigned) combinatorial description for the square of the characters. As a byproduct of
our proof we conclude that deciding positivity of the character is PP-complete under many-one
reductions, and hence PH-hard under Turing-reductions.

1. Introduction

1.1. Motivation. Consider the following two classical identities from the representation theory of
the symmetric group:

(1.1.1) n! =
∑
λ`n

(
χλ(1)

)2
, and

(1.1.2) n! =
∑
π∈Sn

(
χλ(π)

)2
for all λ ` n.

Here χλ is the irreducible character of the symmetric group Sn of the representation indexed by λ,
and χλ(π) ∈ Z is its evaluation. Both identities arise in a similar manner, as squared norms of row
and column vectors in the character table of Sn, see §5.4 for the context and generalizations.

Equalities such as these, are an invitation for combinatorialists to search for natural bijections
between the sets of combinatorial objects counting both sides. In both cases, the LHS is the set Sn

of permutations of n symbols. For (1.1.1), the RHS is the set of pairs of standard Young tableaux
of the same shape with n boxes. The bijection between the set of permutations and the set of pairs
of Young tableaux is the celebrated Robinson–Schensted correspondence, which is fundamental
in Algebraic Combinatorics, see [Sag01, Ch. 3] and [Sta99, §§7.11-14]. This correspondence has
numerous generalizations and is studied widely across many areas of mathematics and applications,
see e.g. [And76, BS17, DNV22, KP21, O’Con03, OW03].

Similarly, for (1.1.2), one would want to give a bijection between Sn and a set of n! many

combinatorial objects that are partitioned naturally into subsets of sizes
(
χλ(π)

)2
. In this paper

we prove that this approach would fail for the fundamental reason that the RHS of (1.1.2) does
not admit such an interpretation. As the following theorem implies, it is unlikely that there exist

“sets of
(
χλ(π)

)2
many combinatorial objects” (see more on this below).

1.1.3. Theorem. Let χ2 : (λ, π) 7→
(
χλ(π)

)2
, where λ ` n and π ∈ Sn. If the function χ2 is

contained in the complexity class #P, then coNP = C=P. Consequently1, if χ2 ∈ #P, then the
polynomial hierarchy collapses to the second level: PH = Σp

2.
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1Indeed, Tarui [Tar91] (see also [Gre93]), proves that PH ⊆ NPC=P. Therefore, if coNP = C=P, then PH ⊆

NPC=P = NPcoNP = Σp
2 . Hence Σp

2 = PH, as claimed in the second part of the theorem.
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The assumption PH 6= Σp
2 in the theorem is a widely believed standard complexity theoretic

assumption, which formally implies P 6= NP. From a combinatorial perspective, Theorem 1.1.3
is much stronger than just saying that the character squares are hard to compute. The theorem
rules out that there exists any positive combinatorial interpretation for the character squares, even
if “positive combinatorial interpretation” is interpreted in the widest possible sense. Large parts
of Enumerative and Algebraic Combinatorics deal with finding explicit (positive) combinatorial
interpretations of quantities, while impossibility results such as Theorem 1.1.3 are extremely rare,
see §1.3.

Note also how close the upper and lower bounds are. Recall that the character square is in
GapP = #P−#P, is always nonnegative, and yet is not in #P by the theorem unless the polynomial
hierarchy collapses. Our proof goes via showing that deciding the vanishing of χλ(π) is C=P-
complete:

1.1.4. Theorem. The language {(λ, π) | χλ(π) = 0} is C=P-complete under many-one reductions.

Theorem 1.1.3 then follows from Theorem 1.1.4 and Proposition 3.1.1. The result in the title is
a direct consequence of the reduction in the proof of Theorem 1.1.4.

1.1.5. Theorem. The language L = {(λ, π) | χλ(π) ≥ 0} is PP-complete under many-one reduc-
tions. Consequently, L is PH-hard under Turing-reductions.

Indeed, since PH ⊆ PPP by [Toda89, Toda91], it immediately follows that L is PH-hard under
Turing reductions:

PH ⊆ PPP
Thm. 1.1.5
⊆ PPL = PL .

This derives the second part of the theorem from the first part. As a side result we prove that
computing the character is strongly GapP-complete, see Theorem 5.3.1.

1.2. #P, GapP and combinatorial interpretations. For a nondeterministic Turing machine
M and a word w ∈ {0, 1}∗ let accM (w) denote the number of accepting computation paths of M
on input w. The complexity class #P is defined as the class of those functions f : {0, 1}∗ → N for
which a nondeterministic Turing machine M exists with ∀w ∈ {0, 1}∗ : f(w) = accM (w).

For example, the famous Littlewood–Richardson rule states that the Littlewood–Richardson (LR)
coefficient cνλ,µ equals the number of LR–tableaux of skew shape ν/λ and content µ, hence the map

(λ, µ, ν) 7→ cνλ,µ is in #P. Here we already see an interesting issue: This argument works if the par-
titions are given as their Young diagrams, i.e., the partitions are given in unary, because otherwise
writing down a single LR-tableau would require exponential space. The LR-coefficient is in #P
for binary inputs, see e.g. [Nar06], which follows from their interpretation as the number of integer
points in a certain polytope, and not the LR-tableaux. From the perspective of combinatorics, a
“combinatorial interpretation” of the Littlewood–Richardson coefficient already follows from the
former result. Theorem 1.1.3 works in unary and hence also in binary.

Let us also remark that #P is the class of positive combinatorial interpretations if “positive
combinatorial interpretation” is used in a very broad and all-encompassing sense. For example, all
polynomial time computable nonnegative functions are in #P, for example the absolute value of
the determinant of a binary matrix. Note that this means that a proof of the non-membership in
#P such as Theorem 1.1.3 is a very strong impossibility result, as it rules out also very complicated
tableau constructions, including, e.g., those in [Bla17, TY08].

The complexity class GapP := #P−#P is defined as the class of differences of two #P functions,
i.e., GapP = {f − g | f, g ∈ #P}. Let GapP≥0 denote the subset of nonnegative functions in GapP.
Many interesting functions in algebraic combinatorics are known to be in GapP≥0, but conjectured
to be in #P. See [IP22, Pak19] for many such functions arising from combinatorial inequalities.
The most famous GapP≥0 functions are the subject of of Stanley’s survey [Sta00] on positivity
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problems in algebraic combinatorics, where he asked for positive combinatorial interpretations of
the plethysm, Kronecker, and Schubert coefficients. All these problems remain unresolved (cf. §5.1).

Closer to the subject of this paper, Stanley considered rows and column sums of the character
table of Sn:

(1.2.1) aλ :=
∑
µ`n

χλ(µ) and bλ :=
∑
µ`n

χµ(λ) ,

respectively, see Problem 12 in [Sta00]. Here χλ(µ) denotes the character value on permutations
of cycle type µ. Viewed as a functions with unary input, it is easy to see that aλ and bλ are in
GapP≥0. Stanley notes that bλ =

∣∣{ω ∈ Sn | ω2 = σ}
∣∣, where σ has cycle type λ, which implies

that bλ is in #P. Stanley asked for a positive combinatorial interpretation of aλ, which remains
an open problem (cf. §5.1). Theorem 1.1.3 could be seen as a critical reminder that there is the
possibility that the desired combinatorial interpretations might not exist (cf. §5.6).

1.3. Related work. The amount of work on characters of the symmetric groups is much too
large to be reviewed here, but let us note that they prominently appear in other fields, see e.g.
[Dia88, Pau95, Ste94], and have remarkable applications, see e.g. [EFP11, MRS08]. On the other
hand, the asymptotic proportion of zeros in the character table remains open, see complementary
discussions of the same data in [Mil19, §1.2] and [PPV16, §8.5].

Hepler [Hep94] proved that the computation of χλ(π) is #P-hard under Turing reductions. He
does not study the vanishing problem of χλ(π). The vanishing of the character χλ(µ) was proved
to be NP-hard in [PP17]. It is noteworthy that the result in [PP17] only holds for the problem
where the input (λ, µ) is encoded in binary, i.e., instead of π the second parameter is just the cycle
type µ in binary. Our results do not have such a restriction.

The relativizing closure properties of #P have been characterized in [HVW95], which can be
generalized to prove non-containment in #P w.r.t. an oracle in several settings, see [IP22].

In the combinatorics literature, the notion of a “positive combinatorial interpretation” is used
informally; these are also called manifestly positive combinatorial formulas, rules, expressions, etc.
This is to emphasize the importance of positivity, as opposed to signed combinatorial formulas,
which typically refers to formulas in (subsets of) GapP. A complexity theoretic approach in this
setting was introduced in [Wilf82] (see also [Pak18]).

For characters χλ(π), the GapP formula is famously given by the Murnaghan–Nakayama rule as
the difference is the number of certain rim hook tableaux, see e.g. [Sag01, §4.10] and [Sta99, §7.17].
In this context, [Sta84, Cor. 7.5] gave a simple sufficient condition for the vanishing χλ(µ) = 0.

For Kronecker coefficients g(λ, µ, ν), the GapP formula is given in in [BI08] (see also [CDW12,
PP17]). For GapP formulas of plethysm and Schubert coefficients, see [FI20] and [PS09, Prop. 17.3],
respectively. In the context of Geometric Complexity Theory (GCT), the importance of being in
#P of plethysm and Kronecker coefficients was discussed in [Mul09]. Kahle and Micha lek [KM18]
prove that plethysm coefficients are not counting integer points in polytopes; this is a restricted
notion compared to #P of interest both in Algebraic Combinatorics and GCT.

Stanton and White [SW85] gave a generalization of the Robinson–Schensted correspondence for
rim hook tableaux. This was used by White in [Whi83, Whi85] to obtain combinatorial proofs of
two character identities: first, of a generalization of (1.1.1) given in (5.4.1), and then of (1.1.2),
but both proofs use an explicit involution to cancel the signs.

Finally, the complexity classes that we study in this paper are all standard and have been studied
in numerous papers. In particular, it is known that C=P = coNQP [FGHP99].

2. Preliminaries

2.1. Notation. Let {0, 1}∗ denote the set of finite length sequences of zeros and ones. A subset
L ⊆ {0, 1}∗ is called a language. We write L := {0, 1}∗ \ L to denote the complement of L. For a
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set S let 2S be its powerset, i.e., the set of all subsets of S. We write
(
S
k

)
for the set of cardinality k

subsets of S.
We use N = {0, 1, 2, . . .} and [n] = {1, . . . , n}. We denote by Zk = {1, . . . , k} the set of integers

modulo k. Let Sn denote the group of permutations of [n].
A weak composition of n is sequence of nonnegative integers whose entries sum up to n, a strong

composition of n is a sequence of positive integers whose entries sum up to n. An integer partition
λ of n, denoted λ ` n, is a sequence of weakly decreasing nonnegative integers (λ1, λ2, . . .) which
sum up to n. We write |λ| =

∑
i λi. We call `(λ) = max{i | λi > 0} the length of λ.

We treat compositions and partitions as vectors with componentwise addition and with the
simultaneous rescaling of all components. We write sort(a) for the tuple that has the same entries
as a, but they are permuted so that they appear in weakly decreasing order. We denote by ab the
sequence (a, a, . . . , a) with a appearing b times. We write a = (a1, . . . , a`) and b = (b1, . . . , b`) for
compositions and |a| = a1 + . . .+ a` for their sum.

2.2. Representation Theory. Let χλ ∈ C[Sn] be the complex irreducible character of Sn corre-
sponding to partition λ ` n, i.e., for π ∈ Sn we have that χλ(π) equals the trace of the representa-
tion matrix corresponding to π in the irreducible Sn-representation (the so-called Specht module) of
type λ. From this definition it immediately follows that χλ(π) = χλ(σ) if π and σ are permutations
that have the same cycle type µ, and we use this fact to define χλ(µ) for a partition µ.

For a composition a of n, consider the Young subgroup Sa := Sa1 × Sa2 × . . . of Sn, where
Sa1 permutes only {1, . . . , a1}, Sa2 permutes only {a1 + 1, . . . , a1 + a2}, etc. The induced trivial

representation indSn
Sa

1 can be defined as the action of Sn on the left cosets of Sn/Sa, see [Sta99,

§7.18]. This is equivalent to the action of Sn on words with a1 many 1s, a2 many 2s etc by permuting
their positions. Denote by φa the character of this representation, then φa(π) = #{u | uπ = u},
the number of words fixed by π. A word u is fixed by π if and only if ui = uj for all i, j in the same
cycle of π. Thus the number of fixed words is equal to the number of ways we can label the cycles
of π with 1, 2, . . ., so that the total number of elements in the cycles labeled by i is equal to ai.

The Frobenius character formula, see e.g. [JK81, Eq. 2.3.8] (equivalent to the Jacobi–Trudi
identity, see e.g. [Sta99, §7.16 and §7.18]), gives

(2.2.1) χλ =
∑

σ∈S`(λ)

sign(σ)φλ+σ−id .

Here id = (1, 2, . . . , `) ∈ S` is the identity permutation, and (λ+ σ − id) denotes the composition
(λ1 + σ1 − 1, λ2 + σ2 − 2, . . . , λ` + σ` − `). Also, in (2.2.1), for a composition a in the summation

we let φa := 0 if ai < 0 for some i, φ(a,0,b) := φ(a,b), and φ(0) := 1.

3. Computational Complexity

3.1. C=P and the Collapse of the Polynomial Hierarchy. We will use well-known complexity
classes with oracle access to a language in the standard way, see e.g. [Pap94]. As it is common,
the oracle language is written in the exponent. For a function f : {0, 1}∗ → Z and an integer
comparison operator ∼ we define the language [f ∼ 0] := {w ∈ {0, 1}∗ | f(w) ∼ 0}.

For a class Z of functions {0, 1}∗ → Z and an integer comparison operator ∼ we define the

decision class [Z ∼ 0] ⊆ 2{0,1}
∗

via: L ∈ [Z ∼ 0] if and only if there exists f ∈ Z with the property
that for all w ∈ {0, 1}∗ we have w ∈ L if and only if f(w) ∼ 0. Using this notation, we recall that
NP = [#P > 0], coNP = [#P = 0], C=P = [GapP = 0], and coC=P = [GapP 6= 0]. In particular,
coNP ⊆ C=P.

Recall that Σp
0 = P, Σp

i+1 = NPΣp
i , and that PH =

⋃
i∈N Σp

i . Moreover, for a class A ⊆ 2{0,1}
∗
,

recall that the complement class coA is defined via L ∈ coA if and only if L ∈ A. For a language L
we write 〈L〉 to be the class of all languages that are many-one reducible to L, for example NP =
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〈3SAT〉, where 3SAT is the language of all satisfiable Boolean formulas in 3CNF. A language
L ⊆ {0, 1}∗ is called C=P-hard under many-one reductions if C=P ⊆ 〈L〉. Our main application is
the case where L = [f = 0], where f is a function in GapP.

3.1.1. Proposition. Given a function f : {0, 1}∗ → Z with the property that [f = 0] is C=P-hard
under many-one reductions. Fix a function q such that q(0) = 0 and q(x) > 0 for all x > 0, for
example q(x) = x2 or q(x) = |x|. If q(f) ∈ #P, then coNP = C=P (and in particular PH = Σp

2).

Proof. Note that coNP ⊆ C=P by definition. For the other direction, observe that

C=P ⊆ 〈[f = 0]〉 = co〈[f 6= 0]〉 = co〈[q(f) 6= 0]〉 = co〈[q(f) > 0]〉
q(f)∈#P

⊆ coNP. �

Since PH ⊆ NPC=P (see ([Tar91], and also [Gre93]), we have that if coNP = C=P, then PH ⊆
NPC=P = NPcoNP = Σp

2 , and hence Σp
2 = PH. As an aside, we remark that if [f = 0] is C=P-hard

under Turing-reductions only, then q(f) ∈ #P also implies PH = Σp
2 via

PH ⊆ NPC=P ⊆ NPP[f=0]

= NP[f=0] = NP[q(f)6=0]
q(f)∈#P

⊆ NPcoNP = Σp
2 .

3.2. 3D- and 4D-matchings. Recall the following standard counting problems, see [GJ79].

Problem #CircuitSAT:
• Input: A Boolean circuit C with n inputs.
• Output: The number of w ∈ {0, 1}n with C(w) = true.

Problem #3DM:
• Input: A subset E ⊆ Z3

k.

• Output: The number of M ∈
(
E
k

)
such that ∀{(x, y, z), (x′, y′, z′)} ∈

(
M
2

)
we have: x 6=

x′, y 6= y′ and z 6= z′.

Problem #4DM:
• Input: A subset E ⊆ Z4

k.

• Output: The number of M ∈
(
E
k

)
such that ∀{(w, x, y, z), (w′, x′, y′, z′)} ∈

(
M
2

)
we have:

w 6= w′, x 6= x′, y 6= y′ and z 6= z′.

We will use a parsimonious polynomial-time reduction R from #CircuitSAT to #3DM,
defined as the composition of three known parsimonious polynomial time reductions. First,
take the classical Tseytin transformation (see e.g. Example 8.3 in [Pap94, page 163]), which
is a parsimonious polynomial time reduction from #CircuitSAT to #3SAT. Next, take
Schaefer’s parsimonious reduction [Sch78] from #3SAT to #1-in-3SAT: replace x ∨ y ∨ z by
one-in-three(¬x, u1, u2) ∧ one-in-three(y, u2, u3) ∧ one-in-three(¬z, u3, u4). Finally, take Young’s
parsimonious reduction from #3DM to #1-in-3SAT, defined via a promise problem called
1+3DM, see [You20].

3.3. Ordered set partitions. Let a = (a1, . . . , am) be a positive integer sequence and b =
(b1, . . . , b`) be a nonnegative integer sequence, both with the same total sum: |a| = |b|. An

ordered set partition with item sizes a and bin sizes b is a tuple
#»

K = (K1, . . . ,K`) of pairwise
disjoint subsets K1, . . . ,K` ⊆ [m], such that

(3.3.1)
⋃̀
i=1

Ki = [m] and
∑
j∈Ki

aj = bi for all 1 ≤ i ≤ `.

We use P(a,b) to denote the set of ordered set partitions with with item sizes a and bin sizes b,
and let P(a,b) =

∣∣P(a,b)
∣∣. Here we will assume that ai > 0 for all i and P (a,b) = 0 if bi < 0 for

some i. All set partitions considered here will be ordered.
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Problem #SetPartition:
• Input: (a,b) ∈ N` × Nm.

• Output: The number of
#»

K that satisfy (3.3.1).

In other words, #SetPartition(a,b) = P(a,b).

4. Main result

In this section we prove Theorem 1.1.4 and Theorem 1.1.5. Combined with Proposition 3.1.1,
Theorem 1.1.4 immediately implies Theorem 1.1.3.

4.1. Characters and set partitions. We start by translating our problem from the language of
characters of Sn into the language of ordered set partitions.

4.1.1. Lemma. The characters of the induced representation φν evaluated at a conjugacy class of
type α are equal to the number of ordered set partitions of α into sets of sizes ν. That is,

φν(α) = P(α, ν).

Proof. As explained in §2.2, the evaluation φν(α) is equal to the number of words u with νi letters i
for i = 1, . . . , `(ν), which are fixed under permuting the positions of their entries by a permutation
π of cycle type α = (α1, . . . , αm). Thus, the positions (elements of π) in the same cycle have the
same letter. Let the cycles of π be c1, . . . , cm of lengths α1, . . . , αm respectively. Let Ki = {j :
u|cj = (i, . . . , i)} be the set of cycles on which u has value i. Then (K1, . . . ,K`(ν)) is an ordered
set partition with item sizes α1, α2, . . . and bin sizes ν1, ν2, . . . Conversely, such a set partition
determines the word u uniquely, and so P(α, ν) = φν(α). �

4.1.2. Proposition. Let λ ` n with `(λ) ≤ `, and let α be a composition of n. Then

χλ(α) =
∑

σ∈S`(λ)

sign(σ) P(α, λ+ σ − id).

Proof. This follows directly from equation (2.2.1) and Lemma 4.1.1. �

4.1.3. Lemma. Let a and b be two positive sequences with equal sums, and let b have ` parts. Let
p = ` + 1, λ = sort(pb) and α = pa + e1 − e2, where ei = (0, . . . , 0, 1, 0, . . .) is the i’th standard
basis vector. Then

(4.1.4) χλ(α) =
∑̀
i=1

P
(
a,b− (a1 + a2)ei

)
−

`−1∑
i=1

P
(
a,b− a1ei − a2ei+1

)
.

Proof. Without loss of generality, assume b1 ≥ b2 ≥ . . . We apply Proposition 4.1.2 with the given
partitions. Consider a set partition of α = (pa1 + 1, pa2 − 1, pa3, . . .) into bins of sizes pbi + σi − i
for i = 1, . . . , `. Since p|αi for i 6= 1, 2, we must have that at most two of the sum sets are not
divisible by p, and so σj ≡ j (mod p) for all but possibly two values of j corresponding to the bins
containing α1 and α2.

We have two possibilities. In the first case, both α1, α2 are in the same set (bin), of size λi+σi−i
for some i. Since α1 + α2 = p(a1 + a2) and αi = pai for all other is, the bin size must be divisible
by p. Thus 0 ≡ λi + σi − i ≡ pbi + σi − i (mod p) for all i and so σ = id. Choosing in which set
the α1 + α2 go gives us the left big summation in (4.1.4).

In the second case, α1, α2 are in two different sets (bins), say t and r, whose sums must then be
≡ 1,−1 (mod p) respectively. Since all other item sizes are divisible by p, we must have λi+σi−i =
pbi + σi − i ≡ 0 (mod p) for i 6= r, t. Thus σi = i for i 6= t, r and we must have σt = r and σr = t.
Then λt + r − t ≡ +1 (mod p) and λr + t− r ≡ −1 (mod p). Since 1 ≤ r, t ≤ p− 1, we must have
r = t + 1, and we arrive in the other big summation, with α1 in set t and α2 in set t + 1. This
completes the proof. �
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4.1.5. Proposition. Let c and d be two sequences of nonnegative integers, such that |c| = |d|+ 6.
Then there are partitions λ and α of size O(`|c|) determined in linear time, such that

χλ(α) = P
(
c,d

)
− P

(
c,d′

)
,

where d := (2, 4, d1, d2, . . .) and d′ := (1, 5, d1, d2, . . .).

Proof. We will use Lemma 4.1.3 with the following construction. Set m := max{c1, . . . , d1, . . .}+ 4.
Let a := (2,m,m − 3, c1, c2, . . .) and b := (m + 4,m + 1, d1, d2, . . .). Now construct λ and α as in
Lemma 4.1.3. Note that bi ≥ a1 + a2 = m+ 2 only for i = 1, and bi+1 ≥ m = a2 only for i = 1, so
the only nonzero terms in equation (4.1.4) are the summands for i = 1.

We thus obtain

χλ(α) = P
(
(m− 3, c1, . . .), (2,m+ 1, d1, . . .)

)
− P

(
(m− 3, c1, . . .), (m+ 2, 1, d1, . . .)

)
.

Since m− 3 > di for all i, the item of size m− 3 can only go into the bins of sizes m+ 1 and m+ 2,
respectively. Therefore, we have:

χλ(α) = P
(
(c1, . . .), (2, 4, d1, . . .)

)
− P

(
(c1, . . .), (5, 1, d1, . . .)

)
,

and the proof is complete. �

4.2. The join of two 3D-matchings. Let Zk := {1, . . . , k} be the set [k] with addition modulo k.
In particular, we have Zk ⊆ Zu as sets for u ≥ k. We write +k or +u depending on whether we use
addition modulo k or u.

Let E ⊆ Z3
k. For u ≥ k define the padding Eu ⊆ Z3

u via Eu := E ∪ {(x, x, x) | x > k}. Clearly
#3DM(E) = #3DM(Eu) for every u ≥ k.

Given two subsets E ⊆ Z3
k and E′ ⊆ Z3

k′ , let u := 1 + max{k, k′}. We define the join(E,E′) :=
(J,H,H ′) to be the following 3-tuple (J,H,H ′):

• J := {(x, x, y, z) | (x, y, z) ∈ Eu} ∪ {(x+u 1, x, y, z) | (x, y, z) ∈ E′u} ⊆ Z4
u,

• H := (u, u, u, u),
• H ′ := (1, u, u, u).

Note that H ∈ J and H ′ ∈ J . Moreover, H and H ′ are the only hyperedges in J that have u as
their last coordinate. This construction is illustrated in Figure 1.

4.2.1. Lemma. Given two subsets E ⊆ Z3
k and E′ ⊆ Z3

k′, let (J,H,H ′) = join(E,E′). Then
#4DM(J \ {H ′}) = #3DM(E) and #4DM(J \ {H}) = #3DM(E′).

Proof. Clearly #4DM(J \ {H ′}) ≥ #3DM(E), because a 3D-matching M ⊆ E can be converted
to a 4D-matching by converting each hyperedge (x, y, z) to (x, x, y, z), and adding the special
hyperedge (u, u, u, u). Analogously one shows #4DM(J \ {H}) ≥ #3DM(E′).

The reverse is also true, which can be seen as follows. If (x, x, y, z) is contained in a 4D-matching
M ⊆ J , then M cannot contain a hyperedge with (first, second) coordinate (x +u 1, x), hence M
contains a hyperedge with (first, second) coordinate (x+u 1, x+u 1). This argument is repeated and
we see that for all w ∈ Zu the hyperedge in M with first coordinate w has second coordinate w. On
the other hand, if (x+u 1, x, y, z) is contained in a 4D-matching M ⊆ J , then M cannot contain a
hyperedge with (first, second) coordinate (x+u 1, x+u 1), hence it contains a hyperedge with (first,
second) coordinate (x+u 2, x+u 1). This argument is repeated and we see that for all w ∈ Zu the
hyperedge in M with first coordinate w +u 1 has second coordinate w. �

4.3. An auxiliary SetPartition instance. We follow the ideas of [GJ79, p. 96] rather closely.
Given two subsets E ⊆ Z3

k and E′ ⊆ Z3
k′ , with E covering Z3

k and E′ covering Z3
k′ , let join(E,E′) =

(J,H,H ′) with J ⊂ Z4
u. Note that J covers Z4

u. We now describe how from (J,H,H ′) one constructs
a SetPartition instance (a,b).
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⇓ ⇓

⇓ ⇓

Figure 1. Two #3DM instances are joined by first padding them and then adding
another dimension to each hyperedge and taking the union of both hypergraphs.
The two special hyperedges H and H ′ are the ones containing the bottom right
vertex. The different shades of gray for the hyperedges are just for illustration.

We start with some notation. For H̃ ∈ Z4
u and (i, j) ∈ Zu × Z4 we write (i, j) ∈ H̃ if and only if

H̃j = i. For each (i, j) ∈ Zu × Z4 let mult(i, j) denote the number of H̃ ∈ J with (i, j) ∈ H̃. Let
r := 16 · (max{4, u} · 5|J |+ 1), where the factor 16 will become clear in §4.4.

We use the notation [a1, a2, a3, . . .] := a1r+a2r
2 +a3r

3 + . . . We say that ai is the i-th coefficient.
Inside this notation we use the shorthand 0j to denote a sequence of j many zeros. We also use
the shorthand ηij to denote the sequence (0j−1, 1, 0i−j) ∈ {0, 1}i. We write a · ηij = (0j−1, a, 0i−j) ∈
{0, a}i. Let β(j) := 3 + 1 = 4 if 1 ≤ j ≤ 3 and β(4) := 3− 3 = 0.

Let there be |J | many bins in this SetPartition instance, and let the bin size be given by
b1 := [1, 1, 1, 1, 1, u, u, u, u, 12], in other words b := (b1, b1, . . . , b1︸ ︷︷ ︸

|J | times

). The items are created as follows.

• For each (i, j) ∈ Zu×Z4 we create an item of size [η4
j , 0, i ·η4

j , 3]. These are called real vertex
items.
• For each (i, j) ∈ Zu×Z4 we create mult(i, j)− 1 many items of size [η4

j , 0, i · η4
j , β(j)]. These

are called dummy vertex items. Here we used that mult(i, j) ≥ 1, which is guaranteed,
because J covers Z4

u.
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• For each hyperedge (w, x, y, z) ∈ J we create an item of size [04, 1, u−w, u−x, u−y, u−z, 0].
These are called hyperedge items.

This defines a vector a of item sizes. The number of items is exactly 5|J |, which can be seen
for example by pairing each hyperedge item with 4 vertex items corresponding to that hyperedge.
Moreover, |a| = |b| = |J | · b1, because the numbers of dummy vertex items for each j ∈ Z4 is equal
to |J | − u, the number of hyperedges which are not part of the matching.

The item to (u, 4) (the vertex in the bottom right in Figure 1) is called the special vertex item.
By construction, it has size [0, 0, 0, 1, 0, 0, 0, u, 0, 3] and is the unique item of this size. The item
to hyperedge H = (u, u, u, u) is called the first special hyperedge item. The item to hyperedge
H ′ = (1, u, u, u) is called the second special hyperedge item. These two items are also the unique
items with their respective sizes.

Note that the value of every coefficient is nonnegative and at most max{4, u}. Let

δ := |J |! ·
∏

(i,j)∈Zu×Z4

(
mult(i, j)− 1

)
!

4.3.1. Lemma. In every
#»

K ∈ P(a,b), the special vertex item is put in a bin with either the first
special hyperedge item or the second special hyperedge item, but not with both at the same time.
Let P(a,b)0 be the subset of those

#»

K for which the special vertex item is put in a bin with the first
special hyperedge item, and let P(a,b)1 = P(a,b) \ P(a,b)0. Then

1
δ ·
∣∣P(a,b)0

∣∣ = #4DM
(
J \ {H ′}

)
and 1

δ ·
∣∣P(a,b)1

∣∣ = #4DM
(
J \ {H}

)
.

Proof. Since r is large and the size of the bins is [1, 1, 1, 1, 1, u, u, u, u, 12], a solution
#»

K to the
instance must place exactly 5 items in every bin: One hyperedge item and four vertex items for
some vertices (i, j) ∈ Zu × Z4, one for each j ∈ Z4. Moreover, since r is large and since the 10th
coefficient of the bin size is 12, in a solution we must have that in each bin the four vertex items
are either all dummy vertex items or all real vertex items (by the construction of β).

Now, since the
(
6th, 7th, 8th, 9th

)
coordinates of a hyperedge item are (u−w, u−x, u−y, u−z),

we conclude that each hyperedge must be placed together with its corresponding vertex items that
constitute the hyperedge (real or dummy vertex items). From a placement

#»

K like this we can create
a solution to #4DM(J) by selecting exactly those hyperedges that are in a bin with real vertex
items.

In fact, there are δ many different placements
#»

K that result in the same 4D-matching: The bins
can be permuted, and for each vertex the dummy vertex items can be permuted. And vice versa:
From a solution to #4DM(J) we create δ many placements

#»

K of items by grouping the selected
hyperedges together with their real vertex items, and grouping the unselected hyperedges together
with their dummy vertex items.

These operations are inverses of each other, which gives a bijection between the set of 4D-
matchings of J and the set of cardinality δ subsets of P(a,b) in which all elements arise from each
other by permuting the bins and the dummy vertices. Now Lemma 4.2.1 implies the result. �

4.4. The Modified SetPartition Instance. We modify the item vector a from the construction
above, to obtain a vector c as follows.

• We add four items of sizes 1,2,4,5.
• We increase the size of the special vertex item by 1. We decrease the size of the first special

hyperedge item by 5. We decrease the size of the second special hyperedge item by 2.

W.l.o.g. let the special vertex item, the first special hyperedge item, and the second special hyper-
edge item be the first three item sizes in a. Then c := (1, 2, 4, 5, a1 +1, a2−5, a3−2, a4, a5, . . .). Let

d := b. We have |c| = |d|+ 6. Let d := (2, 4, d1, d2, . . .) and d
′
:= (1, 5, d1, d2, . . .). Finally, denote

setpartition(J,H,H ′) := (c,d, δ). This completes the construction process we started in §4.3.
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4.4.1. Lemma. 1
δ P(c,d) = #4DM(J \ {H ′}) and 1

δ P(c,d
′
) = #4DM(J \ {H}).

Proof. The restrictions in the proof of Lemma 4.3.1 still directly apply, because we only made
small changes to the item sizes and r is large. The new items and the changed sizes give additional
constraints.

In P(c,d), the bin of size 2 must be filled with the item of size 2, and thus the bin of size 4 must
be filled with the item left of size 4. The special vertex item and the item of size 1 are placed with
the second special hyperedge (because the item of size 2 has already been placed). The item of
size 5 is placed with the first special hyperedge. The remaining placements of items can be done
as in the proof of Lemma 4.3.1.

In P(c,d
′
), the bin of size 1 must be filled with the item of size 1, and the bin of size 5 must

contain a small (≤ 5) odd item, but the only such item left is the item of size 5. The parity now
implies that the special vertex item is placed in a bin with the first special hyperedge item. The
only two remaining small items of sizes 2 and 4 fill up the bins of the special hyperedge items. The
remaining placements of items can be done as in the proof of Lemma 4.3.1. �

4.5. Putting the Pieces Together.

Proof of Theorem 1.1.4 and Theorem 1.1.5. Recall that C=P = [GapP = 0] and PP = [GapP ≥ 0].
We prove both theorems simultaneously, so fix a comparison operator ∼ ∈ {=,≥}.

For every L ∈ C=P there exist F ∈ #P and F ′ ∈ #P with w ∈ L if and only if F (w) ∼
F ′(w). By the Cook–Levin theorem, there exists a polynomial-time algorithm that on input w
outputs a Boolean circuit Cw such that F (w) = #CircuitSAT(Cw). Analogously, there exists
a polynomial-time algorithm that on input w outputs a Boolean circuit C ′w such that F ′(w) =
#CircuitSAT(C ′w).

Let E := R(Cw) and E′ := R(C ′w), where R is defined as in §3.2. Let (J,H,H ′) := join(E,E′).

Let (c,d, δ) := setpartition(J,H,H ′). Let d := (2, 4, d1, d2, . . .). Let d
′

:= (1, 5, d1, d2, . . .). Let λ
and α be from Proposition 4.1.5. We have:

F (w) ∼ F ′(w) ⇐⇒ #CircuitSAT(Cw) ∼ #CircuitSAT(C ′w)

⇐⇒ #3DM(E) ∼ #3DM(E′)
Lem. 4.2.1⇐⇒ #4DM(J \ {H ′}) ∼ #4DM(J \ {H})
Lem. 4.4.1⇐⇒ 1

δ P(c,d) ∼ 1
δ P(c,d

′
)

⇐⇒ P(c,d) ∼ P(c,d
′
)

Pro. 4.1.5⇐⇒ χλ(α) ∼ 0.

This completes the proof of both theorems. �

Proof of Theorem 1.1.3. Combine Theorem 1.1.4 and Proposition 3.1.1. �

5. Final remarks and open problems

5.1. Combinatorial interpretations. Finding positive combinatorial interpretations for the Kro-
necker, plethysm and Schubert coefficients remains a central open problem in Algebraic Combina-
torics. Special cases for the Kronecker coefficients have been studied, e.g., in [BO05, BOR09, Bla17,
IMW17, PP13, RW94], among many others. Combinatorial interpretations for plethysm coefficients
have been even harder to find, see [BBP22, DIP20, FI20] for some special cases.

For the Schubert coefficients, see [Knu16, KZ17, Man01, MPP14] for positive combinatorial
interpretations in several special cases, and [ARY21] for complexity of a related problem. For the
row character sums aλ defined in (1.2.1), Frumkin [Fru86] proved that aλ ≥ 1 for all |λ| > 1.
See also [Sol61] for a generalization to all finite groups. We refer to [KW01] for a combinatorial
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interpretation of an ingredient in the sum in (1.2.1), and to [Sun18, p. 323] for a connection to
plethysm coefficients. For the column character sums bλ, see [Sta99, Exc 7.69] and references
therein.

Finally, let us note that the notion of a “positive combinatorial interpretation” is informal, so the
apparent lack of such should not be viewed as a strong indicator of not being in #P. For example,
it could be that the Kronecker coefficients are in #P, but a technical polynomial time witness is
not accepted as a combinatorial interpretation by the Algebraic Combinatorics community. We
refer to §§4.5-7 in [Pak18] for several examples of this phenomenon in the context of Enumerative
Combinatorics.

5.2. Unary vs binary input. Our results are independent of the input encoding in the following
sense: the description size of (λ, π) and (λ, µ) can differ exponentially if µ is provided as a list of
integers that are encoded in binary. Our results hold in both of these settings. It is noteworthy
that such results do not exist for other quantities of interest, for example the Kostka numbers,
Littlewood–Richardson and Kronecker coefficients, and the Schubert structure constants.

Narayanan [Nar06] proved that computing the Kostka coefficients Kλµ and the LR-coefficients

cλµν are #P-complete when the inputs λ, µ, ν are encoded in binary. It was conjectured in [PP17,

Conj. 8.1] that the LR-coefficients are #P-complete in unary.2

We should note however, that the decision problems [Kλµ = 0] and [cλµν = 0] are in P even when
the input is binary. The first one reduces to checking the linear inequalities whether λ B µ in the
dominance order. By the Knutson–Tao saturation theorem [KT99], the vanishing of LR-coefficients
reduces to checking if the Gelfand–Tsetlin polytope is empty, see [BI13, MNS12, DM06].

The unary hardness of the counting problems would imply that the Schubert coefficients are
also #P-hard to compute. Indeed, the natural encoding for the Schubert coefficients, when the
inputs are permutations, is in unary. On the other hand, the LR-coefficients are special cases of
the Schubert coefficients, but so far #P-completeness is only known when λ, µ, ν are encoded in
binary. Thus, we cannot yet conclude the computational hardness result.3

By contrast, the Kronecker coefficients of the symmetric group g(λ, µ, ν) are #P-hard with input
in unary; this follows form the proof in [IMW17] that vanishing of g(λ, µ, ν) is NP-hard in unary.

5.3. GapP-completeness and parsimonious reductions. To emphasize the difference, con-
sider the following two problems:

Problem ComputeCharUnary:
• Input: An integer n, and partitions λ, µ ` n, as lists of numbers encoded in unary
• Output: χλ(µ)

Problem ComputeCharBinary:
• Input: An integer n, and partitions λ, µ ` n, as lists of numbers encoded in binary
• Output: χλ(µ)

As we mentioned in the introduction, Hepler [Hep94] proved that computing χλ(µ) is #P-hard in
unary, an thus in binary.4 The following result has not been observed before, but follows directly
from Proposition 4.1.2:

5.3.1. Theorem. The problem ComputeCharBinary is GapP-complete under Turing reductions.

We note that we cannot at this point strengthen the result to parsimonious many-one reductions,
because the reduction from matchings to counting ordered set partitions is itself not parsimonious,
having the factor of δ.

2The distinction between unary and binary input was underscored in [GJ78]. Unfortunately, the original naming
of “strong” vs. (the usual) “weak” NP-completeness added to the confusion, and is best to be avoided.

3This argument points out the error in [MQ17, p. 885] which concludes that Schubert coefficients are #P-hard.
4In [PP17], the second and third authors made erroneous claims on this point.
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5.3.2. Conjecture. The problem ComputeCharBinary is GapP-complete under many-one re-
ductions.

We should note though that the reduction from #SetPartition to ComputeCharUnary is
parsimonious from the following:

5.3.3. Proposition. Let a and b be two positive sequences with equal sums, and let b have p − 1
many parts. Let λ = p sort(b) and α = pa. Then

χλ(α) = P(a,b).

The proof follows directly from applying Proposition 4.1.2 and observing that since all sizes α
are divisible by p, we must have p | (λi + σi − i) = (pbi + σi − i) for all bin sizes. Then σi = i, and
the only nonzero term which survives is P(α, λ) = P(a,b).

5.4. Combinatorial identities. The irreducible characters of a finite group G are orthonormal
with respect to the inner product

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g−1),

see e.g. [Ser77, §2.3]. Thus, equation (1.1.2) gives the squared norm of a character χλ.
Equation (1.1.1) for general finite groups is called Burnside’s identity [Bur11, §208] and can be

generalized as follows. For every partition µ = (1m1 . . . `m`) ` n with mi parts of size i, we have:

(5.4.1) 1m1m1! · · · `m``! =
∑
λ`n

(
χλ(µ)

)2
,

see e.g. [Sag01, Thm 1.10.3]. When µ = (1n) we get (1.1.1), but in this case finding a natural
combinatorial partition of the objects from the LHS to sets of sizes given by the character squares
is unlikely for the same reason as for (1.1.2).

It would be interesting to see if (5.4.1) has a combinatorial interpretation for some classes of µ.
For example, when µ = (n), the characters χλ(µ) ∈ {0,±1} and there is an easy combinatorial

interpretation for the character squares
(
χλ(µ)

)2
. More generally, for µ = (kn/k), all rim hook

tableaux in the Murnaghan–Nakayama rule for χλ(µ) have the same sign, see e.g. [JK81, §2.7]
and [SW85], so again character squares have a combinatorial interpretation. These “equal cycles”
characters also appear in the mysterious identities in [KK98, Thm 3.3]. We note that they do not
have a combinatorial proof except for the first identity which coincides with (5.4.1).

5.5. Other values. As discussed e.g. in [PPV16, §8] and [Mil19, Pel20], other values of the char-
acter table are of interest as well, notably the uniqueness and parity of the characters. The corre-
sponding complexity problems

[
χλ(µ) = 1

]
and

[
χλ(µ) = 0 mod 2

]
are also very interesting and

worth studying.

5.6. Implications of our results. Since our main results are written in the language of computa-
tional complexity, let us give a few quick and very informal implications in a purely combinatorial
language.

We study the vanishing and positivity problems for characters of the symmetric group, in our
notation

[
χλ(µ) = 0

]
and

[
χλ(µ) ≥ 0

]
, respectively. In both cases, we determine the exact

complexity classes of each problem. Combined with classical results in the area, we make the
following conclusions:

(1) If
[
χλ(µ) ≥ 0

]
can be decided in polynomial time, then P = NP (Theorem 1.1.5). For example,

the existence of Hamiltonian cycles in graphs can be decided in polynomial time.

(2) If either of
(
χλ(µ)

)2
, or |χλ(µ)|, has a positive combinatorial interpretation, then there is a

polynomial time certificate for nonequality of every two #P functions (Theorem 1.1.3). For example,
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whenever two graphs have a different number of Hamiltonian cycles, this property can be proved
by a certificate which can be verified in polynomial time.5 In particular, by choosing one graph
with a unique Hamiltonian cycle, one should be able to find such certificate that another graph has
either zero or at least two Hamiltonian cycles — while the latter is easy to do by explicitly showing
two Hamiltonian cycles, the former is very unlikely and hard to fathom.

Acknowledgements. We are grateful to Swee Hong Chan, Josh Grochow, Sam Hopkins, Greg
Kuperberg and Alejandro Morales for fruitful discussions. The first author was partially supported
by the DFG grant IK 116/2-1 and the EPSRC grant EP/W014882/1. The second author was
partially supported by the NSF grant CCF-2007891. The third author was partially supported by
the NSF grant CCF-2007652.

References

[ARY21] A. Adve, C. Robichaux and A. Yong, An efficient algorithm for deciding vanishing of Schubert polynomial
coefficients, Adv. Math. 383 (2021), Paper No. 107669, 38 pp.

[And76] G. E. Andrews, The theory of partitions, Addison-Wesley, Reading, MA, 1976, 255 pp.
[BO05] C. M. Ballantine and R. C. Orellana, On the Kronecker product s(n−p,p) ∗ sλ, Electron. J. Combin. 12

(2005), RP 28, 26 pp.
[BBP22] C. Bessenrodt, C. Bowman and R. Paget, The classification of multiplicity-free plethysms of Schur

functions, Trans. AMS 375 (2022), 5151–5194.
[Bla17] J. Blasiak, Kronecker coefficients for one hook shape, Sém. Lothar. Combin 77 (2017), Art. B77c, 40 pp.
[BOR09] E. Briand, R. Orellana and M. Rosas, Reduced Kronecker coefficients and counter-examples to Mulmu-

ley’s strong saturation conjecture SH, Comput. Complexity 18 (2009), 577–600.
[BS17] D. Bump and A. Schilling, Crystal bases, World Sci., Hackensack, NJ, 2017, 279 pp.
[Bur11] W. Burnside, Theory of groups of finite order (Second ed.), Cambridge Univ. Press, Cambride, UK,

1911, 512 pp.
[BI08] P. Bürgisser and C. Ikenmeyer, The complexity of computing Kronecker coefficients, in Proc. 20th

FPSAC (2008), DMTCS, Nancy, 2008, 357–368.
[BI13] P. Bürgisser and C. Ikenmeyer, Deciding positivity of Littlewood–Richardson coefficients, SIAM J. Dis-

crete Math. 27 (2013), 1639–1681.
[CDW12] M. Christandl, B. Doran and M. Walter, Computing multiplicities of Lie group riepresentations, in Proc.

53rd FOCS (2012), IEEE, 639–648.
[DNV22] D. Dauvergne, M. Nica and B. Virág, RSK in last passage percolation: a unified approach, Probab. Surv.

19 (2022), 65–112.
[DM06] J. A. De Loera and T. B. McAllister, On the computation of Clebsch–Gordan coefficients and the dilation

effect, Experimental Math. 15 (2006), 7–19.
[Dia88] P. Diaconis, Group representations in probability and statistics, IMS, Hayward, CA, 1988, 198 pp.
[DIP20] J. Dörfler, C. Ikenmeyer and G. Panova, On geometric complexity theory: multiplicity obstructions are

stronger than occurrence obstructions, SIAM J. Appl. Algebra Geom. 4 (2020), 354–376.
[EFP11] D. Ellis, E. Friedgut and H. Pilpel, Intersecting families of permutations, J. AMS 24 (2011), 649–682.
[FGHP99] S. Fenner, F. Green, S. Homer and R. Pruim, Determining acceptance possibility for a quantum com-

putation is hard for the polynomial hierarchy, R. Soc. Lond. Proc. Ser. A, Math. Phys. Eng. Sci. 455
(1999), no. 1991, 3953–3966.

[FI20] N. Fischer and C. Ikenmeyer, The computational complexity of plethysm coefficients, Comput. Com-
plexity 29 (2020), no. 2, Paper 8, 43 pp.

[Fru86] A. Frumkin, Theorem about the conjugacy representation of Sn, Israel J. Math. 55 (1986), 121–128.
[GJ78] M. R. Garey and D. S. Johnson, “Strong” NP-completeness results: motivation, examples, and implica-

tions, J. Assoc. Comput. Mach. 25 (1978), 499–508.
[GJ79] M. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness,

Freeman, San Francisco, CA, 1979.
[Gre93] F. Green, On the power of deterministic reductions to C=P, Math. Systems Theory 26 (1993), 215–233.

5Here the prover has every time in the world to construct the certificate, i.e. by examining and listing all possible
subgraphs, but the verifier is constrained and cannot possible analyze this exponentially long list in polynomial time.



14 CHRISTIAN IKENMEYER, IGOR PAK, AND GRETA PANOVA

[Hep94] C. T. Hepler, On the complexity of computing characters of finite groups, thesis, University of Calgary,
1994, 117 pp.; available at https://dspace.ucalgary.ca/handle/1880/45530

[HVW95] U. Hertrampf, H. Vollmer and K. Wagner, On the power of number-theoretic operations with respect to
counting, in Proc. 10th CCC (1995), 299–314.

[IMW17] C. Ikenmeyer, K. D. Mulmuley and M. Walter, On vanishing of Kronecker coefficients, Comput. Com-
plexity 26 (2017), 949–992.

[IP22] C. Ikenmeyer and I. Pak, What is in #P and what is not?, preprint (2022), 82 pp.; arXiv:2204.13149;
extended abstract to appear in Proc. 63rd FOCS (2022).

[JK81] G. James and A. Kerber, The representation theory of the symmetric group, Addison-Wesley, Reading,
MA, 1981, 510 pp.

[KM18] T. Kahle and M. Micha lek, Obstructions to combinatorial formulas for plethysm, Electron. J. Combin. 25
(2018), no. 1, Paper 1.41, 9 pp.

[KP21] D. Kim and P. Pylyavskyy, Robinson–Schensted correspondence for unit interval orders, Selecta Math. 27
(2021), no. 5, Paper No. 97, 66 pp.

[KK98] A. Klyachko and E. Kurtaran, Some identities and asymptotics for characters of the symmetric group,
J. Algebra 206 (1998), 413–437.

[Knu16] A. Knutson, Schubert calculus and puzzles, in Adv. Stud. Pure Math. 71, Math. Soc. Japan, Tokyo,
2016, 185–209.

[KT99] A. Knutson and T. Tao, The honeycomb model of GLn(C) tensor products I: Proof of the saturation
conjecture, J. AMS 12 (1999), 1055–1090.

[KZ17] A. Knutson and P. Zinn-Justin, Schubert puzzles and integrability I: invariant trilinear forms, preprint
(2017), 51 pp.; arXiv:1706.10019.
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