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The bunkbed conjecture is false
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We give an explicit counterexample to the bunkbed conjecture introduced by Kasteleyn
in 1985. The counterexample is given by a planar graph on 7,222 vertices and is built
on the recent work of Hollom (2024).
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1. Introduction

The bunkbed conjecture (BBC) is a celebrated open problem in probability introduced by
Kasteleyn in 1985; see Remark 5 in ref. 1. The conjecture is both natural and intuitively
obvious but has defied repeated proof attempts; it is known only in a few special cases.
In this paper, we disprove the conjecture without resorting to computer experiments
(cf., Section 7).

Let G = (V, E) be a connected graph, possibly infinite and with multiple edges.
In Bernoulli bond percolation, each edge is deleted independently at random with
probability 1− P, and otherwise retained with probability P ∈ [0, 1]. Equivalently, this
model gives a random subgraph of G weighted by the number of edges. For P = 1

2 we
obtain a uniform random subgraph of G. See refs. 2 and 3 for standard results and ref. 4
and 5 for recent overview of percolation.

Let ℙP [u↔ v] denote the probability that vertices u, v ∈ V are connected. It is often
of interest to compare these probabilities, as computing them exactly is #P-hard (6). For
example, the classical Harris–Kleitman inequality, a special case of the FKG inequality,
implies that ℙP [u ↔ v] ≤ ℙP [u ↔ v | u ↔ w] for all u, v, w ∈ V ; see, e.g., ref. 7,
Chapter 6. Harris used this to prove that the critical probability Pc(G) := inf {P :
ℙP(G) > 0} satisfies Pc(ℤ2) ≥ 1

2 (8), in the first step toward Kesten’s remarkable exact
value Pc(ℤ2) = 1

2 (9), where ℙP(G) denotes the probability that there exists an infinite
percolation cluster. Considerations of percolation monotonicity on ℤ2 (Section 8.8.4),
led Kasteleyn to the following problem.

Fix a finite connected graph G = (V, E) and a subset T ⊆ V . A bunkbed graph
G = (V , E) is a subgraph of the graph product G × K2 defined as follows. Take two
copies of G, which we denote G and G′ = (V ′, E ′), and add all edges of the form
(w, w′), where w ∈ T and w′ is a corresponding vertex in T ′; we denote this set of edges
by T . The resulting bunkbed graph has V = V ∪ V ′ and E = E ∪ E ′ ∪ T .

In the bunkbed percolation, the usual bond percolation is performed only on edges in
G and G′, while all edges in T are retained (i.e., not deleted). We use ℙbb

P [u ↔ v] to
denote the connecting probability in this case. The vertices in T are called transversal and
the edges in T are called posts, to indicate their special status. See, e.g., refs. 10 and 11,
for these and several other equivalent models of the bunkbed percolation. We refer also
to refs. 12 (section 4.1), 13 (section 5.5), and 14 for recent overviews and connections
to other areas.

Conjecture 1.1. [bunkbed conjecture] Let G = (V, E) be a connected graph, let
T ⊆ V , and let 0 < P < 1. Then, for all u, v ∈ V , we have

ℙbb
P [u↔ v ] ≥ ℙbb

P [u↔ v′ ] .

The BBC is known in a number of special cases, including wheels (15), complete
graphs (16–18), complete bipartite graphs (19), and graphs symmetric, w.r.t., the u↔ v
automorphism (19). It is also known for one (10, Lemma 2.4) and for two transversal
vertices (20, section 6.3), see also ref. 1. Finally, the conjecture was recently proved in
the P ↑ 1 limit (21, 22).

Theorem 1.2. There is a connected planar graph G = (V, E) with |V | = 7,222 vertices
and |E | = 14,442 edges, a subset T ⊂ V with three transversal vertices, and vertices
u, v ∈ V , such that
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ℙbb
1
2

[u↔ v ] < ℙbb
1
2

[u↔ v′ ] .

In particular, the BBC is false.

The result is surprising since analogous inequalities for simple random walks and for the Ising model on bunkbed graphs were
proved by Häggström (23, 24), cf. Section 8.8.5. Recall that three is the smallest number of transversal vertices we can have to disprove
the conjecture. On the other hand, the total number of vertices is unlikely to be optimal, see Remark 4.2 and Section 7.

The proof of the theorem is based on an example of Hollom (25) refuting the 3-uniform hypergraph version of the BBC.
Unfortunately, Hollom’s example alone cannot disprove the conjecture since it is impossible to find a gadget graph simulating a single
3-hyperedge using bond percolation (26, Theorem 1.5).

We give a robust version of Hollom’s construction using the approach in ref. 26 and 27. The proof of Theorem 1.2 occupies most
of the paper. It is self-contained modulo Hollom’s result which is small enough to be checked by hand. In Section 6, we extend the
theorem to the case when the set of transversal vertices is not fixed but chosen uniformly at random from V ; see Theorem 6.1. We
conclude with discussion of our computer experiments in Section 7, and final remarks in Section 8.

2. Notation

In percolation, deleted edges are called closed while retained edges are called open. Note that there are several different models of
percolation and variations on the BBC; see Section 8.8.1.

A hypergraph is a collection of subsets of vertices; to simplify the notation, we use the same letter to denote both. The hypergraph
is called uniform if all hyperedges have the same size. A path in a hypergraph is a sequence (v0 → v1 → . . . → v`) of vertices, such
that vi−1, vi lie in the same hyperedge, for all 1 ≤ i ≤ `. We say that two vertices in a hypergraph are connected if there is a path
between them. For further definitions and results on hypergraphs, see, e.g., ref. 28 (section 1.2).

The notion of hypergraph percolation is a natural extension of graph percolation and goes back to the study of random hypergraphs;
see, e.g., ref. 29. In recent years, the study of hypergraph percolation also emerged in probabilistic and statistical physics literature, see,
e.g., refs. 30 and 31, respectively.

3. Hypergraph Percolation

3.1. Hollom’s Example. Let H be a finite connected hypergraph on the set V of vertices. We use ℙP [u ↔ v ] to denote probability
of connectivity of vertices u, v ∈ V in the hypergraph percolation, where each hyperedge e in H is retained with probability P, or
deleted with probability 1− P.

Let T ⊆ V be the set of transversal vertices. Denote by H be the bunkbed hypergraph with levels H ' H ′, and vertical posts
which are the (usual) edges. Note that H has horizontal hyperedges and vertical posts.

In ref. 25, Hollom considers the following natural hypergraph generalization of the Alternative BBC; see Section 8.8.1. In the
alternative bunkbed hypergraph percolation, each hyperedge e in H is either deleted while the corresponding hyperedge e′ in H ′ is
retained with probability 1

2 , or vice versa: The hyperedge e is retained and e′ is deleted.

Lemma 3.1. [Hollom (25, Claim 5.1)] Let H be the hypergraph with six 3-edges as in the Figure 1, and let T = {u2, u7, u9} be the set
of transversal vertices. In the alternative bunkbed hypergraph percolation, we have

ℙalt[u1 ↔ u′10 ] =
13
64

and ℙalt[u1 ↔ u10 ] =
12
64

.

We give a robust version of Hollom’s construction.

3.2. Robust Hyperedge Lemma. Note that in Hollom’s example, each hyperedge has exactly one transversal vertex. We explore this
structure.

Consider the following WZ hypergraph percolation model introduced by Wierman and Ziff in ref. 30 (see also ref. 26). We define
this model only for the graph H . Let e = (a, b, c) be a hyperedge where a is a transversal vertex. We will fix the order of vertices in
each hyperedge precisely in Eq. 5. In the model, hyperedge e is set to have
◦ probability Pabc to connect all three vertices,
◦ probability Pa|b|c to not connect any of the vertices,
◦ probability Pa|bc to connect two nontransversal vertices, and
◦ probability Pab|c = Pac|b to connect a transversal to a nontransversal vertex,

and these events are independent on all hyperedges.
Finally, we assume that these five probabilities sum up to 1:

Pabc + Pa|b|c + Pa|bc + Pab|c + Pac|b = 1 .

It is easy to see that the hypergraph percolation on H is a partial case of the WZ model, where Pabc = P and Pa|b|c = 1− P.

2 of 11 https://doi.org/10.1073/pnas.2420725122 pnas.org
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Fig. 1. Hollom’s 3-uniform hypergraph H.

Definition 3.2. [Configurations in the WZ model]. A configuration in the WZ model is an assignment of one of the five states
{abc, a|b|c, a|bc, ab|c, ac|b} to each hyperedge in H ∪H ′. Equivalently, we can represent it by a function

 : H ∪H ′→ Υ where Υ = {abc, ab|c, ac|b, a|bc, a|b|c}.

The probability of a configuration  is given by
ℙ( ) =

∏
e∈H∪H ′

P (e),

where P� denotes the probability of the state � ∈ Υ.

We say that vertices u and v are connected (written u↔ v) if they are connected by a path in the bunkbed hypergraph H in a way
that every two vertices on a hyperedge are connected by the rules above. We use ℙwz[ u↔ v ] to denote these connection probabilities,
omitting the superscript if the model is clear from context.

Lemma 3.3. Let H be Hollom’s hypergraph in the Fig. 1, H be the bunkbed hypergraph built on it, and let T = {u2, u7, u9} be the set
of transversal vertices. Consider the WZ hypergraph percolation as described above, where the connection probabilities satisfy

400 Pa|bc ≤ Pabc Pa|b|c − Pab|cPac|b . [1]

Then, we have
ℙwz(u1 ↔ u10) < ℙwz(u1 ↔ u′10) . [2]

It was noted in ref. 27, that the RHS in Eq. 1 is nonnegative if the hyperedge is simulated by a gadget in Bernoulli edge percolation:

Pab|c Pac|b = P2
ab|c ≤ Pabc Pa|b|c . [3]

This follows from the Harris–Kleitman (HK) inequality. In fact, a slightly stronger inequality always holds; see ref. 27 (Corollary 3.6).
Since the LHS in Eq. 1 is nonnegative, one can view this assumption as strengthening the HK inequality in this case (cf. Section 8.8.2).
The hypergraph model also satisfies Eq. 1, because two of the terms vanish.

3.3. Refining the State Space. Let C be the set of configurations  that contain a path u1 ↔ u10, and let C′ be the set of those
containing a path u1 ↔ u′10. The probabilities of sets C and C′ are given by

ℙ(C) :=
∑
 ∈C

ℙ( ) and ℙ(C′) :=
∑
 ∈C′

ℙ( ).
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Our goal is to prove ℙ(C) < ℙ(C′) by constructing a suitable map from C to C′.
Since each hyperedge in H has a symmetric counterpart, one can view a configuration not as a function  : H → Υ, but as a

function from H to Υ2. For each hyperedge e in H , there are 25 possibilities for a pair ( (e), (e′)). To handle certain configurations
more precisely, we refine the pairs (abc, a|b|c) and (a|b|c, abc) by splitting each into two disjoint subevents:

(abc, a|b|c) 7→ (abc, a|b|c)+ ∪ (abc, a|b|c)−, (a|b|c, abc) 7→ (a|b|c, abc)+ ∪ (a|b|c, abc)−.

The probabilities (or weights) of these refined events are given by

ℙ
[
(abc, a|b|c)+

]
= Pab|c · Pac|b , ℙ

[
(abc, a|b|c)−

]
= Pabc · Pa|b|c − Pab|c · Pac|b , [4]

and similarly for (a|b|c, abc)+ and (a|b|c, abc)−. This refinement increases the total number of possible pairs in Υ2 from 25 to 27,
resulting in the extended state space

Υ2
ext := Υ2 r

{
(a|b|c, abc), (abc, a|b|c)

}
∪
{
(abc, a|b|c)+, (abc, a|b|c)−, (abc, a|b|c)+, (abc, a|b|c)−

}
.

In the original model,  (e) and  (e′) were sampled independently from Υ. After the refinement, however, we consider a new
framework where by configuration we mean a function Ψ : H → Υ2

ext. In the new model, the state of a pair (e, e′) is sampled directly
from Υ2

ext independently with probabilities given by equation Eq. 4 for refined pairs and ℙ
[
(�, �)

]
= P�P� for nonrefined pairs.

Then the states  (e) and  (e′) are defined by Ψ(e).
Building on the refinement of Υ2 to Υ2

ext, we now focus on a particularly important subset of states. Specifically, we consider a
smaller set of interest:

Λ := {abc, ab|c, ac|b, a|b|c}.

The Cartesian product Λ2 := Λ × Λ consists of all ordered pairs of states in Λ, giving 4 × 4 = 16 elements. To incorporate the
refined structure introduced earlier, we replace the pairs (abc, a|b|c) and (a|b|c, abc) in Λ2 with their “+” counterparts.

Definition 3.4. [Refined Pair Set Λ2
+]. The refined set of pairs Λ2

+ is defined as

Λ2
+ :=

{
(�, �) ∈ Λ2 : (�, �) /∈ {(abc, a|b|c), (a|b|c, abc)}

}
∪
{
(abc, a|b|c)+, (a|b|c, abc)+

}
⊂ Υ2

ext .

3.4. Involutions on Extended State Spaces. To proceed with the construction of a map from C to C′, we define two weight-preserving
involutions on the extended state space Υ2

ext.

Definition 3.5. [Reflection Involution]. The reflection involution � is defined on the extended state spaceΥ2
ext. For a pairΨ(e) ∈ Υ2

ext,
it swaps the states of e and e′, and is formally given by

�
(
(�, �)

)
:= (�, �).

Additionally, for refined states, the reflection involution � is defined to preserve the sign.

The reflection involution � is weight-preserving because the weight of each configuration is symmetric under the swapping of  (e)
and  (e′). While � works by simply swapping states, making it straightforward to handle symmetry, the half-reflection involution �
requires a more detailed approach. It is constructed to modify vertex connections as described in Proposition 3.7, while preserving
weights.

Partition the set of pairs Λ2
+ = Ω0 ∪Ω1 ∪ Ξ into the following three subsets:

Ω0 :=
{

(abc, ac|b), (ac|b, abc), (a|b|c, ab|c), (ab|c, a|b|c),
(abc, abc), (a|b|c, a|b|c), (ab|c, ab|c), (ac|b, ac|b)

}
,

Ω1 :=
{
(abc, ab|c), (ab|c, abc), (a|b|c, ac|b), (ac|b, a|b|c)

}
, and

Ξ :=
{
(abc, a|b|c)+, (a|b|c, abc)+, (ab|c, ac|b), (ac|b, ab|c)

}
.

Definition 3.6. [Half-Reflection Involution]. The half-reflection involution � is defined on the set Λ2
+ as follows:

◦ On Ω0, the involution � is the identity map.
◦ On Ω1, the half-reflection coincides with the reflection involution � defined earlier.
◦ On Ξ, the half-reflection involution � is given by

�
(
(abc, a|b|c)+

)
:= (ab|c, ac|b) , �

(
(ab|c, ac|b)

)
:= (abc, a|b|c)+ ,

�
(
(a|b|c, abc)+

)
:= (ac|b, ab|c) , �

(
(ac|b, ab|c)

)
:= (a|b|c, abc)+ .

4 of 11 https://doi.org/10.1073/pnas.2420725122 pnas.org
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This involution is weight-preserving because it satisfies the following conditions:

◦ On Ω0, the involution is constant, making it trivially weight-preserving.
◦ On Ω1, the involution coincides with the reflection involution �, which has already been shown to preserve weights.
◦ On Ξ, the involution swaps pairs in such a way that the probabilities remain balanced. Specifically, since

ℙ
(
(abc, a|b|c)+

)
= ℙ

(
(a|b|c, abc)+

)
= Pab|c · Pac|b,

swapping (abc, a|b|c)+ with (ab|c, ac|b), and (a|b|c, abc)+ with (ac|b, ab|c), does not alter the total probability.

After defining the half-reflection involution �, we examine how it modifies connectivity in configurations. The following proposition
describes the effect of � on states in Λ2

+.

Proposition 3.7. Let Ψ be a configuration and e = (a, b, c) ∈ H such that Ψ(e) ∈ Λ2
+. Let Ψ′ be any configuration such that

Ψ′(e) = �(Ψ(e)).

Then, the following properties hold:

1. If b and c are connected in Ψ within e, then b and c′ are connected in Ψ′. Similarly, if b′ and c′ are connected in Ψ within e′, then b′
and c are connected in Ψ′.

2. If a and b are connected in Ψ within e, then they remain connected in Ψ′. Similarly, if a′ and b′ are connected in Ψ within e′, then they
remain connected in Ψ′.

3. If a and c are connected in Ψ within e, then a′ and c′ are connected in Ψ′. Similarly, if a′ and c′ are connected in Ψ within e′, then a
and c are connected in Ψ′.

Proof: We will prove only the first part of each statement. The second part follows directly from the symmetry of �. In particular, the
relation

�
(
�
(
Ψ(e)

))
= �

(
�
(
Ψ(e)

))
guarantees that the roles of e and e′ are interchangeable under �.

For (i), suppose b and c are connected inΨwithin e, which implies (e) = abc. InΨ′, we claim there exists a path b→ a→ a′→ c′.
This holds if:

◦ The first component of �
(
Ψ(e)

)
belongs to {abc, ab|c}, and

◦ The second component of �
(
Ψ(e)

)
belongs to {abc, ac|b},

whenever  (e) = abc. These conditions follow directly from the definition of � and its action on Ω0, Ω1, and Ξ.
For (ii), assume a and b are connected in Ψ within e, which implies  (e) ∈ {ab|c, abc}. In Ψ′, we verify that a and b remain

connected within e. This requires that the first component of �
(
Ψ(e)

)
belongs to {ab|c, abc}, whenever  (e) ∈ {ab|c, abc}. Again, this

follows from the definition of �.
For (iii), suppose a and c are connected in Ψ within e, which implies  (e) ∈ {ac|b, abc}. In Ψ′, we claim a′ and c′ are connected

within e′. This is satisfied if the second component of �
(
Ψ(e)

)
belongs to {ac|b, abc}, whenever  (e) ∈ {ac|b, abc}. The result follows

directly from the definition of �.
�

3.5. Proof of Lemma 3.3. We define the subset of configurations X as

X :=
{
Ψ : Ψ(e) ∈ Λ2

+ for some e ∈ H
}
.

Our goal is to construct a weight-preserving involution � : X → X , which satisfies:

Ψ ∈ C ⇒ �(Ψ) ∈ C′, and Ψ ∈ C′ ⇒ �(Ψ) ∈ C.

To define �, we begin by introducing the red path � from u1 to u10, as shown in Fig. 1. Observe that � traverses every hyperedge
exactly once and avoids transversal vertices. Fix the order on the hyperedges of H according to their appearance along the path �:

(u2, u1, u3), (u9, u3, u6), (u7, u6, u5), (u2, u5, u4), (u7, u4, u8), (u9, u8, u10). [5]

This notation also establishes a fixed ordering for the vertices within each hyperedge. Specifically, if a hyperedge e = (a, b, c)
corresponds to an entry (ui, uj, uk) in the sequence above, then the vertices of e are assigned as a = ui, b = uj, and c = uk, preserving
the order within each tuple. In particular, the first vertex a = ui in each tuple is a transversal vertex.

The map � : X → X is defined as follows. Let e = (a, b, c) be the first hyperedge along � such that Ψ(e) ∈ Λ2
+. The configuration

Ψ′ = �(Ψ) is constructed according to the following rule:

Ψ′(h) =


Ψ(h) if h appears before e along �,
�
(
Ψ(h)

)
if h = e,

�
(
Ψ(h)

)
if h appears after e along �.

Since both � and � are weight-preserving by their respective definitions, � is also a weight-preserving involution.
Next, we establish that � maps configurations in C to configurations in C′, and vice versa.
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Lemma 3.8. Let Ψ ∈ X ∩ C, and let Ψ′ be the configuration obtained by applying the involution � to Ψ. Then, Ψ′ ∈ C′. Conversely, if
Ψ ∈ X ∩ C′, then Ψ′ ∈ C.

Proof: We have V = {u1, . . . , u10} and T = {u2, u7, u9}. Let L ⊆ (V \ T ) ∪ (V ′ \ T ′) denote the set of nontransversal
vertices that lie along the path � between u1 and b, inclusively, along with their counterparts from the other level. Similarly, let
R := (V \T )∪ (V ′ \T ′) \L. For any path 
 in Ψ, we construct a corresponding path 
 ′ in Ψ′ as follows. For all vertices ui ∈ R on 
 ,
replace ui with its counterpart u′i in 
 ′, and vice versa: For all u′i ∈ R on 
 , replace u′i with ui in 
 ′.

To confirm that 
 ′ is a connected path in Ψ′, consider two sequential vertices xk and xk+1 in 
 and their corresponding images yk
and yk+1 in 
 ′. We analyze the connectivity in the following cases:

◦ Transversal edge: If xkxk+1 is a transversal edge in 
 , then it remains unchanged under �. The corresponding edge ykyk+1 in 
 ′ is
also transversal, ensuring connectivity.
◦ Hyperedge before e: If xk and xk+1 are connected in Ψ through a hyperedge h before e in �, then yk = xk, yk+1 = xk+1, and

Ψ′(h) = Ψ(h). The connection is preserved in 
 ′.
◦ Hyperedge after e: If xk and xk+1 are connected in Ψ through a hyperedge h after e in �, then yk = x′k, yk+1 = x′k+1, where the

prime indicates the symmetric component (not necessarily in H ′). Since � applies the reflection involution � to hyperedges after e,
we have Ψ′(h′) = Ψ(h), ensuring that yk and yk+1 remain connected in Ψ′.
◦ Hyperedge e: If xk and xk+1 are connected in Ψ through the hyperedge e, Proposition 3.7 ensures that the connectivity is

appropriately modified in Ψ′.

Thus, for every sequential pair of vertices xk, xk+1 in 
 , their images yk, yk+1 in 
 ′ are connected in Ψ′. Moreover, the mapping
constructed to transform 
 into 
 ′ always maps u1 to itself and u10 to u′10. Consequently, if 
 connects u1 to u10, then 
 ′ connects u1
to u′10, and vice versa. This completes the proof. �

With � established as a weight-preserving involution on X and Lemma 3.8 proving that � maps C ∩ X to C′ ∩ X and vice versa,
it follows that:

ℙ(C ∩ X ) = ℙ(C′ ∩ X ).

This equivalence allows us to focus on the complementary subset of configurations, X c , which consists of all Ψ such that for every
hyperedge e ∈ H , the pair Ψ(e) belongs to Υ2

ext \ Λ2
+. Explicitly, the set Υ2

ext \ Λ2
+ is described by the following pairs:

(abc, a|b|c)−, (a|b|c, abc)− with probability Pabc · Pa|b|c − Pac|b · Pab|c ,
(a|bc, ∗), (∗, a|bc), and (a|bc, a|bc), where ∗ ∈ Λ.

In this setting, the WZ hypergraph percolation model conditioned onX c has the following probabilities for each remaining possible
value of Ψ(e): 

(abc, a|b|c)−, with probability 1
Z
(
PabcPa|b|c − Pab|cPac|b

)
,

(a|b|c, abc)−, with probability 1
Z
(
PabcPa|b|c − Pab|cPac|b

)
,

(a|bc, ∗), with probability 1
Z Pa|bc · P∗, for ∗ ∈ Λ,

(∗, a|bc), with probability 1
Z Pa|bc · P∗, for ∗ ∈ Λ,

(a|bc, a|bc), with probability 1
Z P2

a|bc ,

where the normalizing constant is:
Z := 2 Pabc · Pa|b|c − 2 Pab|c · Pac|b + 2 Pa|bc − P2

a|bc.

We denote the corresponding conditional probabilities by ℙX c . This notation emphasizes the restriction to the subset X c , making
the context of these probabilities explicit.

Denote byA the subset of events that for all e ∈ H , the value of Ψ(e) belongs to {(abc, a|b|c)−, (a|b|c, abc)−}. Using the inequality
(1− x)a

≥ 1− ax and the assumption Eq. 1 from the Lemma, we compute ℙX c (A) as follows:

ℙX c (A) =
(

1 −
2Pa|bc − P2

a|bc

2(Pabc Pa|b|c − Pab|c Pac|b) + 2Pa|bc − P2
a|bc

)6

≥

(
1−

Pa|bc

(Pabc Pa|b|c − Pab|c Pac|b) + Pa|bc

)6

≥ 1−
6Pa|bc

(Pabc Pa|b|c − Pab|c Pac|b) + Pa|bc
>Eq. 1 1−

6Pa|bc

401Pa|bc
>

64
65

.

Conditioning onA effectively transforms the WZ model into the alternative bunkbed hypergraph percolation model. By Hollom’s
result (Lemma 3.1), we have

ℙX c (u1 ↔ u10 | A) − ℙX c (u1 ↔ u′10 | A) = ℙalt(u1 ↔ u10) − ℙalt(u1 ↔ u10) =Lemma 3.1
12
64 −

13
64 = − 1

64 .
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Fig. 2. Graph Gn with n+ 1 vertices.

Now, we combine these results:

ℙX c (u1 ↔ u10) − ℙX c (u1 ↔ u′10) ≤ ℙX c (A) + ℙX c (A)
(
ℙX c (u1 ↔ u10 | A)− ℙX c (u1 ↔ u′10 | A)

)
< 1

65 −
1

64 ·
64
65 = 0.

This completes the proof.

4. Disproof of the BBC

4.1. Hyperedge Simulation. In this section, we construct a graph that simulates a hyperedge in the sense of WZ hypergraph percolation,
adhering to the conditions of the Lemma 3.3. We prove the following technical result for the weighted percolation.

Lemma 4.1. Let n ≥ 3 and 0 < P < 1. Consider a weighted graph Gn on (n + 1) vertices given in Fig. 2. Denote b := v1 and c := vn.
Then Pab|c = Pac|b and

Pabc Pa|b|c − Pab|c Pac|b >
(
n 1−P

1+P − 1
)
Pa|bc , [1]

where
Pabc := ℙP [a↔ b↔ c], Pa|bc := ℙP [a = b↔ c], Pab|c := ℙP [a↔ b = c],

Pac|b := ℙP [a↔ c = b] and Pa|b|c := ℙP [a = b = c = a] .

We prove the lemma in the next section; see Proposition 5.4.

4.2. Proof of Theorem 1.2. In notation of Lemma 3.3, let P = 1
2 and let n := 3 · 401 + 1 = 1,204. The resulting graph Gn is planar,

has 1,205 vertices and 2,407 edges.
Take Hollom’s hypergraph H from Fig. 1 and substitute for each 3-hyperedge with a graph Gn from Lemma 4.1, placing it so a is

a transversal vertex while b = v1 and c = vn are the other two vertices. The resulting graph is still planar, has 10 + 6 · 1,202 = 7,222
vertices and 6 · 2,407 = 14,442 edges.

By Lemma 4.1, the 1
2 -percolation on Gn satisfies conditions of Lemma 3.3. Thus, by Lemma 3.3, we have

ℙ(u1 ↔ u10) < ℙ(u1 ↔ u′10),

as desired. �

Remark 4.2. Due to the multiple conditionings and the gadget structure, the difference of probabilities given by the counterexample
in Theorem 1.2 is less than 10−4,331, out of reach computationally. A computer-assisted computation shows that one can use Gn
with P = 1

2 and n = 14, giving a relatively small graph on 82 vertices. However, even in this case, the difference of the probabilities
in the BBC is on the order 10−47. This and other computations are collected on the author’s website; see Section 8.8.2.

Since Weighted BBC is equivalent to BBC (see Section 8.8.1), one can instead take weighted graph Gn with p = 1
2n and n = 402.

This graph is still too large to analyze experimentally. A computer-assisted computation shows that one can use Gn with P = 0.0349
and n = 5, giving a rather small graph on 28 vertices. However, even in this case, the differences of the probabilities in the Weighted
BBC are on the order 10−78.

5. Proof of Lemma 4.1

We prove the lemma as a consequence of elementary calculations.
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Lemma 5.1. We have

ℙP(a↔ vn) =
1− P2n

1 + P
.

Proof: Let Pn := ℙP(a↔ vn) as in the lemma. We establish a recurrence relation for Pn. There are two cases:
1) The edge (a, vn) is open. This occurs with probability 1− P. In this case, vertices a and vn are directly connected.
2) The edge (a, vn) is closed. This occurs with probability p. In this case, vertex vn can only connect to a through the edge (vn−1, vn),
which is open with probability P. If this edge is closed, vertex vn is isolated from a. If it is open, the probability that a and vn−1 are in
the same connected component is Pn−1 .

Combining these cases, we obtain the following recurrence relation:

Pn = (1− P) + P2 Pn−1 ,

with the initial condition P0 = 0. The result follows by induction. �

Lemma 5.2. We have

ℙP(a↔ v1 ↔ vn) =
1− P2n

(1 + P)2 +
n(1− P)P2n−1

1 + P
.

Proof: Let Pn := ℙP(a ↔ v1 ↔ vn) denote the probability as in the lemma. We calculate this probability by analyzing whether
edges (a, v1) and (a, vn) are open or closed. There are four cases:

1) Both edges (a, v1) and (a, vn) are open, each with probability 1 − P. Then a is directly connected to both v1 and vn. Thus, the
probability is (1− P)2.

2) Edge (a, vn) is closed. If the edge (a, vn) is closed, vertex vn is connected to the rest of the graph through the edge (vn−1, vn),
which is open with probability P. This reduces the problem to Gn−1 . Thus, the probability is P2 Pn−1.

3) The edge (a, v1) is closed. Similarly, if the edge (a, v1) is closed (with probability P). Thus, the probability is P2 Pn−1.
4) Both edges (a, v1) and (a, vn) are closed. If both edges (a, v1) and (a, vn) are closed (each with probability P), v1 must connect

to v2 by the edge (v1, v2), and vn must connect to vn−1 by the edge (vn−1, vn). The problem reduces to finding the probability
that a, û1 = v2, and ûn−2 = vn−1 are in the same connected component in the graph Ĝn−2, the restriction of Gn to the vertices
a, v2, . . . , vn−1. Thus, the corresponding probability is P4 Pn−2.

Using inclusion–exclusion of these four cases, we obtain the following recurrence relation:

Pn = (1− P)2 + 2P2 Pn−1 − P4 Pn−2,

with initial conditions P0 = 0 and P1 = 1− P. The result follows by induction. �

Lemma 5.3. We have
ℙP(a = v1 ↔ vn) = P2n−1.

Proof: If the vertices v1 and vn are in the same connected component that does not contain vertex a, they must be connected by the
path 
 := (v1 → v2 → . . . → vn). The probability that this path is open is Pn−1. In addition, any edge (a, vk) must be closed
for all 1 ≤ k ≤ n, as otherwise vertex a is connected to the path 
 . The probability that all these edges are closed is Pn. Thus, the
probability in the lemma is P2n−1. �

We conclude with the following result which immediately implies Lemma 4.1.

Proposition 5.4. In notation of Lemma 4.1, we have Pa|bc = P2n−1 and

Pabc Pa|b|c − Pac|b Pab|c ≥
(

n 1−P
1+P − 1

)
P2n−1.

Proof: The first part is given by Lemma 5.3. For the second part, using Lemmas 5.1–5.3 and Pabc ≤ 1, we have

Pabc Pa|b|c − Pac|b Pab|c = Pabc − (Pabc + Pab|c)(Pabc + Pac|b) − Pabc Pa|bc

= ℙP(a↔ v1 ↔ vn) − ℙP(a↔ v1) · ℙP(a↔ vn) − Pabc Pa|bc

≥

(
1−P2n

(1+P)2 + n(1−P)P2n−1

1+P

)
−

(
1−P2n

1+P

)2
− P2n−1

≥
P2n(1−P2n)

(1+P)2 + n(1−P)P2n−1

1+P − P2n−1

≥

(
n(1−P)

1+P − 1
)

P2n−1,

as desired. �
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6. Complete BBC

In notation of the BBC 1.1, one can ask if a version of the BBC holds for uniform T ⊆ V . This is equivalent to 1
2 -percolation on

the product graph G × K2 . To distinguish from BBC, we call this Complete BBC; see Section 8.8.1. It turns out that the proof of
Theorem 1.2 extends to the proof of Complete BBC, but a counterexample is a little larger:

Theorem 6.1. There is a connected graph G = (V, E) with |V |, |E | < 106, and vertices u, v ∈ V , such that for the 1
2 -percolation on

G × K2 we have
ℙ 1

2
[u↔ v ] < ℙ 1

2
[u↔ v′ ] .

In particular, the complete BBC is false.

Proof: Recall that Hollom’s Model 4.3 in ref. 25 is the hypergraph version of the Complete BBC. Hollom disproves it in ref. 25
(section 5.1) by showing that his 3-hypergraph in Fig. 1 is minimal in a sense that bunkbed probabilities ℙ[u↔ v ] and ℙ[u↔ v′ ]
are equal for all subsets {u2, u7, u9} ⊂ T ⊆ {u1, . . . , u10}. He then makes k = 102 “clones” of vertices {u2, u7, u9} to make sure at
least one is always in the percolation cluster with high probability.

We notice that our counterexample has a similar minimal structure because of the form of the gadget used in its construction. The
only path � from u1 to u10 avoiding transversal vertices still passes through all nontransversal vertices. From this point on, proceed as
in the proof of Theorem 1.2. In notation of the proof of Lemma 3.3, we have that the only two ways we can have a nonzero probability
gap is if one of the vertices {u2, u7, u9} is not in T or all the vertices along the red path � are not in T .

Now consider the difference of probabilities � := ℙ(u1 ↔ u10) − ℙ(u1 ↔ u′10) for the graph G and T = {u2, u7, u9}. Then for
the graph G, where T is a random subset containing {u2, u7, u9} one has ℙ(u1 ↔ u10) − ℙ(u1 ↔ u′10) = � · 2−|G|+3.

For each of the vertices t ∈ {u2, u7, u9} replace it with the gadget—add k additional vertices wt,i for i ∈ [k] and connect then to t.
This gadget imitates a single vertex t having a probability of being transversal increased from 1

2 to 1− 1
2
( 7

8
)k. LetA be the event that

all imitated vertices are transversal. Then ℙ(A) ≥ 1− 3
2
( 7

8
)k. We have

ℙ 1
2
[u↔ v ] − ℙ 1

2
[u↔ v′ ] ≤ 1− ℙ(A) + ℙ(A) · � · 2−|G|+3

≤
3
2

(
7
8

)k
+

1
2
� · 2−|G|+3.

This is negative if � · 2−|G|+3 < −3
( 7

8
)k. It is obvious such k exists. We use the computer estimate from Remark 4.2 that

� < −10−4,332 to say that this is true for k ≥ 112,182. Therefore, for the graph G′ obtained from G by adding 3k = 336,546
vertices and edges, we have

ℙ 1
2
[u↔ v ] < ℙ 1

2
[u↔ v′ ] ,

as desired. �

7. Experimental Testing

Versions of the BBC were repeatedly tested by various researchers, although failed attempts remain largely unreported, see, e.g., ref.
14 (section 3.1). In this section, we describe our own attempt to refute the conjecture using a large scale computer computation.

7.1. Initial Tests. We started with a series of brute force tests of the Polynomial BBC; see Section 8.8.1. We exhaustively tested all
connected graphs with at most 8 vertices, and connected graph with at most 15 edges from the House of Graphs database; see ref. 32.
In each case, the Polynomial BBC held true. At this point, we chose to develop a more refined approach.

7.2. The Algorithm. Our starting point is the machine learning algorithm by Wagner (33), which we adjusted and modified. Roughly,
the algorithm inputs a neural network used in a randomized graph generating algorithm, various constraints, and a function to
optimize. It outputs new weights for the neural network with the function improved. In his remarkable paper, Wagner describes how
he was able to disprove five open problems in graph theory, so we had high hopes that this approach might help to disprove the BBC.

To give a quick outline of our approach, we consider a graph G = (V, E) on n = |V | vertices, with the set of transversal vertices
T ⊂ V , and fixed u, v /∈ W . Flip a fair coin for each edge e ∈ E . Depending on the outcome, either retain e and delete e′, or vice
versa. Check whether u ↔ v and u ↔ v′. Repeat this N times to estimate the corresponding probabilities P and P′, respectively.
Based on these probabilities, use Wagner’s algorithm to obtain the next iteration. Repeat M times or until a potential counterexample
with P < P′ is found.

7.3. Implementation and Results. We first used Wagner’s original code on a laptop computer, but when that proved too slow we
made major changes. To speed up the performance and tweak the code, we implemented Wagner’s algorithm in Julia.

We then ran the code on a shared UCLA Hoffman2 Cluster, which is a Linux compute cluster consisting of 800+ 64-bit nodes
and over 26,000 cores, with an aggregate of over 174 TB of memory.* Each run of the algorithm required about 2 h. After six runs
with different parameters, the results were too similar to continue.

*The system overview is available here: www.hoffman2.idre.ucla.edu/About/System-overview.html.
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Specifically, we ran the algorithm on graphs with n = 20 and n = 30 vertices, and for 3, 4, and 5 transversal vertices. Although we
started with relatively dense graphs, the algorithm converged to relatively sparse graphs with about 100 edges. We used N = 4,000,
pruning the Monte Carlo sampling when the desired probabilities were far apart.

We used M = 2,000, after which the probabilities p, p′ rapidly converged to 1
2 and became nearly indistinguishable. More precisely,

the probability gap P − P′ became smaller than 0.01 getting close to the Monte Carlo error, i.e. the point when we would need to
increase N to avoid false positives. At all stages, we had P > P′ suggesting validity of the BBC. At the time of the experiments and
prior to this work, we saw no evidence that an experimental approach could ever succeed.

7.4. Analysis. Having formally disproved the BBC, it is clear that our computational approach was misguided. For the uniform weights
we tested, we could never have reached graphs of size anywhere close to that in Theorem 1.2, of course. Even when the number of
vertices is optimized to 82 as suggested in Remark 4.2, the number of edges is still very large while the probability gap in the theorem
is on the order of 10−47, thus undetectable in practice.

In hindsight, to reach a small counterexample we should have used the weighted bunkbed percolation rather than the more efficient
alternative model, with some edges having a very large weight and some very small weight. Of course, by Remark 4.2, the probability
gap in the theorem is still prohibitively small, at least for the graphs we consider.

7.5. Conclusions. It seems, the BBC has some unique features making it very poorly suited for computer testing. In fact, one reason
we stopped our computer experiments is that in our initial rush to testing we failed to contemplate societal implications of working
with even moderately large graphs.

Suppose we did find a potential counterexample graph with only m = 100 edges and the probability gap was large enough to be
statistically detectable. Since analyzing all of 2m

≈ 1030 subgraphs is not feasible, our Monte Carlo simulations could only confirm
the desired inequality with high probability. While this probability could be amplified by repeated testing, one could never formally
disprove the BBC this way, of course.

This raises somewhat uncomfortable questions whether the mathematical community is ready to live with an uncertainty over validity
of formal claims that are only known with high probability. It is also unclear whether in this imaginary world the granting agencies
would be willing to support costly computational projects to further increase such probabilities (cf. refs. 34 and 35). Fortunately, our
failed computational effort avoided this dystopian reality, and we were able to disprove the bunkbed conjecture by a formal argument.

8. Final Remarks

8.1. Variations on the BBC. Although the version of the BBC 1.1 given in ref. 1 is considered the most definitive, over the years several
closely related versions has been studied:

1) Counting BBC, where one compares the number of subgraphs connecting vertices u, v and those that do not. This conjecture is a
restatement of the BBC in the case P = 1

2 .
2) Weighted BBC, where the edge probabilities Pe = Pe′ can depend on e ∈ E . This conjecture is equivalent to the BBC by Rudzinski

and Smyth (11), since edge probabilities can be approximated by series-parallel graphs.
3) Polynomial BBC, where the edge probabilities above are viewed as variables. In this case, the conjecture claims that the difference of

polynomials corresponding to ℙ[u↔ v ] and ℙ[u↔ v′ ] is a polynomial with nonnegative coefficients. This conjecture is stronger
than Weighted BBC as there are polynomials positive on [0, 1] which have negative coefficients such as (x− y)2. Although we did
not find a counterexample on a graph with at most eight vertices, it is likely that there is a sufficiently small counterexample in this
case. Cf. ref. 19, where the difference is a sum of squares.

4) Computational BBC, where one asks whether the counting version of the probability gap is in #P, i.e., has a combinatorial
interpretation, see ref. 13 (Conj. 5.6). Clearly, this conjecture implies BBC. We refer to ref. 36 for a formal treatment of this
problem for general polynomials.

5) Alternative BBC, where fair coin flips determine whether the edge e is deleted and e′ retains or vice versa. This conjecture implies
BBC (10, Prop. 2.6).

6) Complete BBC, where one takes all T = V and performs the weighted percolation on the full G := G × K2 , i.e. on all edges in
G including the posts. The conjecture in this case is weaker than the BBC; see, e.g., ref. 10 (Prop. 2.2).

In all but the last case, the corresponding conjecture is refuted by Theorem 1.2. In Complete BBC, the corresponding conjecture
is refuted by Theorem 6.1 by a more involved counterexample (based on a more involved counterexample by Hollom).

8.2. Robustness Lemma. Lemma 3.3 is a finite problem which can be reformulated as follows. By definition, probabilities on both
sides of Eq. 2 are polynomials in five variables of degree at most 12, with at most 512 nonzero coefficients. The Lemma gives positivity
of the difference of these two polynomials on a region of the unit cube [0, 1]5 cut out by the quadratic inequality Eq. 1.

Since our proof of Lemma 3.3 is somewhat cumbersome and uses a case-by-case analysis, we verified the lemma computationally.
The results and the code are available on GitHub.† Of course, the advantage of our combinatorial proof is that it is elementary and
amenable for generalizations.

†Generating Partitions of Graph Vertices into Connected Components, description and code at https://github.com/Kroneckera/bunkbed-counterexample.
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8.3. Special Cases. Our counterexample makes prior positive results somewhat more valuable. It would be interesting to find other
families of graphs on which the BBC holds. We are especially interested in the corresponding problem for the Polynomial BBC. Note
that we emphasized planarity in Theorem 1.2 since it was speculated in ref. 10 that planarity helps.

8.4. Percolation inℤd . For lattices, the connection probabilities ℙp[u↔ v] between vertices are known as the two-point functions. For
percolation in higher dimensions, these were famously studied by Hara et al. (37), and they are also of interest for other probabilistic
models.

Curiously, it is not known whether connection probabilities are monotone as the distance |u−v| increases. This claim would follow
from the bunkbed conjecture. This suggests that investigating the BBC for grid-like graphs is still of interest even if the conjecture is
false for general planar graphs. Note that the monotonicity is known in the P ↓ 0 limit.

8.5. Random Cluster Model. It was shown in ref. 24 (section 3) that the analogue of the BBC holds for the random cluster model with
parameter q = 2. Our Theorem 1.2 shows that one cannot take q = 1. It would be interesting to find the smallest q > 1 such that
the BBC holds for all finite graphs. We note that monotonicity in q is unclear, so, e.g., it is not known if BBC holds for all q ≥ 2.

Data, Materials, and Software Availability. There are no data underlying this work.
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Nizić-Nikolac, Fedya Petrov, and Alan Sokal for helpful discussions, and Doron Zeilberger for jovial comments. We are grateful to Lisa Snyder (UCLA Advanced Research
Computing) for help with the HOFFMAN2 cluster. I.P. was supported in part by the Institute of Advance Study School of Mathematics; we appreciate its hospitality.
N.G. was partially supported by European Research Council (ERC) Advanced Grant “GeoScape.” Both authors were partially supported by NSF Division of Computing
and Communication Foundations (CCF) Award No. 2302173.

1. J. van den Berg, J. Kahn, A correlation inequality for connection events in percolation. Ann. Probab. 29, 123–126 (2001).
2. B. Bollobás, O. Riordan, Percolation (Cambridge University Press, New York, NY, 2006), p. 323.
3. G. R. Grimmett, Percolation (Springer, Berlin, Germany, ed. 2, 1999), p. 444.
4. H. Duminil-Copin, “Sixty years of percolation” in Proceedings of the ICM (World Scientific, Hackensack, NJ, 2018), vol. IV, pp. 2829–2856.
5. W. Werner, Percolation et Modèle d’Ising (Société Mathématique de France, Paris, France, 2009), p. 161.
6. J. S. Provan, M. O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput. 12, 777–788 (1983).
7. N. Alon, J. H. Spencer, The Probabilistic Method (John Wiley, Hoboken, NJ, ed. 4, 2016), p. 375.
8. T. E. Harris, A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc. 56, 13–20 (1960).
9. H. Kesten, The critical probability of bond percolation on the square lattice equals 1

2 . Commun. Math. Phys. 74, 41–59 (1980).
10. S. Linusson, Erratum to ‘On percolation and the bunkbed conjecture’. Combin. Probab. Comput. 28, 917–918 (2019).
11. J. Rudzinski, C. Smyth, Equivalent formulations of the bunk bed conjecture. N. C. J. Math. Stat. 2, 23–28 (2016).
12. G. R. Grimmett, Selected Problems in Probability Theory in Lecture Notes in Mathematics (Springer, Berlin, Germany, 2023), vol. 2313, pp. 603–614.
13. I. Pak, “What is a combinatorial interpretation?” in Open Problems in Algebraic Combinatorics, C. Berkesch, B. Brubaker, G. Musiker, P. Pylyavskyy, V. Reiner, Eds. (AMS, Providence, RI, 2024), pp. 191–260.
14. J. Rudzinski, “The bunk bed conjecture and the Skolem problem,” PhD thesis, University of North Carolina at Greensboro, Greensboro, NC (2021).
15. M. Leander, On the bunkbed conjecture, 2009. Stockholm University [Preprint] (2009). https://kurser.math.su.se/pluginfile.php/16103/mod_folder/content/0/2009/2009_07_report.pdf (Accessed 9 May 2025).
16. P. de Buyer, A proof of the bunkbed conjecture for the complete graph at p = 1

2 . arXiv [Preprint] (2016). https://arxiv.org/abs/1604.08439 (Accessed 9 May 2025).
17. P. de Buyer, A proof of the bunkbed conjecture for the complete graph at p ≥ 1

2 . arXiv [Preprint] (2018). https://arxiv.org/abs/1802.04694 (Accessed 9 May 2025).
18. P. van Hintum, P. Lammers, The bunkbed conjecture on the complete graph. Eur. J. Comb. 76, 175–177 (2019).
19. T. Richthammer, Bunkbed conjecture for complete bipartite graphs and related classes of graphs. arXiv [Preprint] (2022). https://arxiv.org/abs/2204.12931 (Accessed 9 May 2025).
20. A. Lohr, “Several topics in experimental mathematics,” PhD thesis, Rutgers University, New Brunswick, NJ (2018), https://arxiv.org/abs/1805.00076 (Accessed 9 May 2025).
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