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Tits has shown that a finitely generated matrix group either contains a
nonabelian free group or has a solvable subgroup of finite index. We give a
polynomial time algorithm for deciding which of these two conditions holds
for a given finitely generated matrix group over an algebraic number field.
Noting that many computational problems are undecidable for groups with
nonabelian free subgroups, we investigate the complexity of problems relating
to matrix groups with solvable subgroups of finite index. For such a group
G, we are able in polynomial time to compute a homomorphism ¢ such that
¢(G) is a finite matrix group and the kernel of ¢ is solvable. If, in addition,
G has a nilpotent subgroup of finite index, we obtain much stronger results.
For such groups, we show how to effectively compute an encoding of elements
of G such that the encoding length of an element obtained as a product of
length </ over the generators is O(log /) times a polynomial in the input
length. This result is the best possible; it has been shown by Tits and Wolf
that if a finitely generated matrix group does not have a nilpotent subgroup
of finite index, then the number of group elements expressible as words of
length 7 over the generators grows as ¢’ for some constant ¢ > 1 depending
on G. For groups with abelian subgroups of finite index, we obtain a Las
Vegas algorithm for several basic computational tasks, including membership
testing and computing a presentation. This generalizes recent work of Beals
and Babai, who give a Las Vegas algorithm for the case of finite groups, as
well as recent work of Babai, Beals, Cai, Ivanyos, and Luks, who give a
deterministic algorithm for the case of abelian groups.  © 1999 Academic Press
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1. INTRODUCTION

1.1. Groups and Computation

For several decades, computers have been used for group theoretic investigations.
The design and implementation of practical algorithms for group theory is the
domain of computational group theory (cf. [ Atk84]). Such algorithms have been
developed for permutation groups [Sil] (cf. [Bu]), finitely presented groups (cf.
[Si2]), and, more recently, finite matrix groups [ NP, HR, H+96a, H + 96b].
Many of these algorithms have been implemented in popular programming pack-
ages [Can, Sch + ], which are used by hundreds of researchers in group theory,
design theory, coding theory, and other areas. Methods for handling infinite matrix
groups, particularly abelian, nilpotent, and solvable groups, are currently being
developed by Ostheimer [Os].

The study of the asymptotic complexity of group theoretic algorithms is much
newer than computational group theory, with the oldest papers dating back only
15-20 years [LSZ, LZ, Ba79, FHL]. As is the case with computational group
theory, the area of permutation groups is particularly well studied [ Ba9la, KLu,
Lu93]. Polynomial time algorithms for several classes of finite matrix groups have
been obtained in the last few years [ Lu92, BBR, BB]. (Some important complexity
results for these groups were obtained 10 years ago [BSz, Ba85].) For infinite
matrix groups, polynomial time algorithms are known only for the class of abelian
groups [ KLi, Ge93a, Ge93b, CLZ, BBCIL].

This research has benefited theoretical computer science in several ways. One of
the motivations for the invention of interactive proofs was Babai’s investigation of
complexity in finite matrix groups [Ba85]. Much of our understanding of the
complexity of graph isomorphism comes from research in permutation group algo-
rithms [Ba79, FHL, Lu82]. Numerous applications have been found in crypto-
graphy [ BCY, BY, IY, M, MM&9, MMO92].

Asymptotic complexity theory has also benefited computational group theory.
While “polynomial time” and “practical” are two different notions, often the struc-
ture used to design a polynomial time algorithm can be refined to yield a practical
algorithm. For example, Luks’s polynomial time algorithm for computing the
composition factors of a permutation group [ Lu87] introduced the basic approach
used by several improved algorithms [ BLS87, BLS88, BS]. An implementation of
the [ BS] algorithm is included with the group theory package GAP [ Sch + ].

This paper is an initial investigation into algorithms for infinite nonabelian
matrix groups. We give a number of polynomial time algorithms for problems
which were not previously known to be efficiently decidable. These algorithms are
unlikely to be practical in their current form except for small dimensions. However, the
results are new, even for fixed dimension. We hope that the approach introduced here
will serve as a guide for future research, both theoretical and practical, in this area.

1.2. Matrix Groups: Problems and Obstacles

We consider the basic computational problem of testing membership in finitely
generated matrix groups over number fields. Membership testing naturally reduces
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to two problems which are better suited for divide-and-conquer techniques: construc-
tive membership testing, and computing a presentation. Constructive membership
testing for a group G generated by a set S is the task of expressing a given g as a
straight line program over S, or determining that g¢ G. A presentation for a group
is a set of abstract generators and relations which define the group. These two
problems are naturally occurring subproblems for many group computations,
including (nonconstructive) membership testing (see, for example, [ Lu92]).

In recent years, algorithms have been obtained for two important classes of
groups: finite groups and abelian groups. For finite groups, Beals and Babai [ BB]
give Las Vegas algorithms for constructive membership and computing a presentation.
Also, Babai, Beals, and Rockmore [ BBR] have given a deterministic polynomial
time algorithm to test finiteness. For abelian groups, Babai, Beals, Cai, Ivanyos,
and Luks [ BBCIL] give deterministic algorithms for both problems, building on
the work of Cai, Lipton, and Zalcstein [ CLZ ] and Ge [ Ge93a, Ge93b ]. Ostheimer
[ Os] has developed similar methods independently.) We extend both of these lines
of research, giving Las Vegas algorithms for groups with abelian subgroups of finite
index. We obtain weaker results for two larger classes of groups: those with a nil-
potent subgroup of finite index and those with a solvable subgroup of finite index.

We briefly recall the definitions of solvable and nilpotent groups. A group G is
solvable if the derived series G=G°>G'> --. reaches the identity in a finite
number of steps, where G'*! is the subgroup of G generated by all elements of the
form x~'y~!xy with x, ye G’. A group G is nilpolent if the lower central series
G=Gy>= G, > --- reaches the identity in a finite number of steps, where G, , is the
group generated by elements of the form x~'y ~!xy, where xe G and y € G,.

For general matrix groups, the membership problem is undecidable, even for 4 x 4
integer matrix groups [ Mih]. Also, the problem of testing membership in a normal
subgroup given by normal generators is undecidable for 2 x 2 matrix groups. These
undecidability results stem from the presence of nonabelian free subgroups of
GL(n,Z). A group generated by a set S is free if no nonempty reduced word in the
generators and their inverses represents the identity. (A word is reduced if it contains
no substrings of the form gg~! or g7'g.) An important question, then, from the
point of view of decidability, is which matrix groups contain nonabelian free sub-
groups? In a celebrated result, Tits [ Ti] has shown that a finitely generated matrix
group either has a nonabelian free subgroup or a solvable subgroup of finite index
(the two conditions are mutually exclusive). This dichotomy is known as the “Tits
alternative.”

1.3. Main Results

We give an algorithm to decide the Tits alternative. While we solve it in polyno-
mial time, we should point out that even the decidability of this problem is not
immediate and it does not appear to have been known.

Recall that GL(n, F) denotes the group of invertible (n x n) matrices over F, and
< stands for “subgroup.”

THEOREM 1.1. Let F be a symbolically given algebraic number field, and let
G < GL(n, F) be a finitely generated group given by a list of generators. Then it
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is decidable in polynomial time whether or not G has a solvable subgroup of finite
index.

Combining this with the Tits alternative, we have

COROLLARY 1.2. [t is decidable in polynomial time whether or not G < GL(n, F)
has a nonabelian free subgroup.

A group with a solvable subgroup of finite index necessarily has a solvable
normal subgroup of finite index (a subgroup is normal if it occurs as the kernel
ker(¢) of a homomorphism ¢). Such a group is called solvable-by-finite. More
generally, if X and Y are classes of groups, then a group is X-by-Y if it has a normal
subgroup from the class X such that the quotient belongs to Y. In this paper we
shall be especially concerned with the following three classes of groups: solvable-by-
finite, nilpotent-by-finite, and abelian-by-finite.

For solvable-by-finite groups, we obtain the following.

THEOREM 1.3. Let F be a symbolically given algebraic number field, and let
G < GL(n, F) be a finitely generated group given by a list of generators. Then in poly-
nomial time, for some m <n?, we can either compute a homomorphism ¢: G — GL(m, F)
such that ¢(G) finite and ker(¢) is solvable, or determine that G is not solvable-by-finite.

By considering the image of ¢, this reduces the problem of determining whether
or not G is solvable to the finite case. Luks [ Lu92] has given deterministic polyno-
mial time algorithms for a host of problems relating to finite solvable matrix
groups, including solvability testing. Thus, we have

COROLLARY 1.4. Solvability of finitely generated matrix groups over number
fields is decidable in polynomial time.

We also provide, in Section 4, a Monte Carlo solvability test. This algorithm is
fairly simple, but the error analysis is new and depends on the same structure
theory which we develop for Theorems 1.1 and 1.3.

For groups which are nilpotent-by-finite, we obtain stronger results, reducing
most problems to the unipotent case. A matrix is unipotent if its minimal polyno-
mial is a power of (x—1). A matrix group is unipotent if it consists of unipotent
matrices. A unipotent matrix group is necessarily nilpotent.

THEOREM 1.5. Let F be a symbolically given algebraic number field, and let
G<GL(n, F) be a finitely generated group given by a list of generators. We can
decide in polynomial time whether or not G is nilpotent-by-finite, and if so we can
compute a homomorphism ¢ of G with the properties:

1. ker(¢) is unipotent.
2. ¢(G) is abelian-by-finite.

3. Constructive membership testing in ¢(G) can be performed in Las Vegas
polynomial time.

In addition, normal generators for ker(¢) can be computed in Las Vegas polynomial
time.
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For finitely generated abelian unipotent groups, [ BBCIL] shows how to com-
pute an isomorphism to a lattice. This, combined with known polynomial time
algorithms for lattices (cf. [ Schr]), gives

COROLLARY 1.6. Let F be a symbolically given algebraic number field, let G <
GL(n, F) be a finitely generated group given by a list of generators, and let X € GL(n, F)
be a given matrix. We can decide in polynomial time whether or not G is abelian-by-finite,
and if so we can determine whether or not X € G in Las Vegas polynomial time.

In working with matrix groups in characteristic 0, a problem even more basic
than membership testing is that of estimating bit lengths of elements. This is
nontrivial even for finite groups [Ba92, BBR]. In general, it is often desirable to
represent elements of a group using an encoding other than the standard encoding
(in which an element of GL(n, F) is represented as an n x n array of elements of F).
Let size(x) denote the bit length of x. For G < GL(n, F) given by a generating set
S and for technical reasons, we assume that the encoding of S includes a description
of F, so size(S) is the input length.

Let G be a finitely generated group, generated by the finite set S. The growth
function of G with respect to S is the function gg, where gg(m) is the number of
distinct elements of G expressible as words of length m in G. The asymptotic
behavior of gg does not depend on the choice of generating set S. We say that G
has polynomial growth if g (m) = O(m°®) for some constant ¢, and we say that G has
exponential growth if gg(m)=Q(c™) for some constant ¢ > 1. Milnor and Wolf (cf.
[Mil, Wo]) have shown that a solvable-by-finite group G has polynomial growth
if G is nilpotent-by-finite and has exponential growth otherwise. Combined with the
Tits alternative, this shows that a finitely generated matrix group G has polynomial
growth if G is nilpotent-by-finite and has exponential growth otherwise.

Groups with exponential growth seem difficult to handle algorithmically. After
performing ¢ group operations (starting from the generators), it is possible to
obtain a group element which is only expressible as an exponentially long (in ¢)
word in the generators. If the group has exponential growth, then the number of
elements expressible as exponentially long words is doubly exponential in ¢, so a
typical such element requires exponential space just to encode.

We define a slow-growth encoding of a group G to be an encoding { of elements
of G such that for any g, ..., g, € G, size({([']/_, g;)) is at most

O(max {size({(g,))} -log /).

A trivial counting argument shows that a finitely generated group has a slow-growth
encoding only if it has polynomial growth. Conversely, a group G with polynomial
growth has a slow-growth encoding assume that G =< S is totally ordered, where
S is finite, contains 1, and is closed under inverses. Then encode the ith smallest
element of S/\S’/~! by the ordered pair i, j (using any standard encoding for
ordered pairs of natural numbers). Thus, the encoding length is polynomially
related to the logarithm of the word length over S and is therefore slow-growth.
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However, this encoding seems difficult to work with, in practice: how does one
compute i and j?

We say that an encoding { of a group G is an effective slow-growth encoding if
there is a supergroup ¥ of G such that the following conditions all hold:

1. Membership of g in ¥ is decidable in polynomial time.

2. For ge %, we can compute {(g) in polynomial time.

3. Given {(g;) and {(g,), we can compute {(g;g5 ") in polynomial time.
4

{ is a slow-growth encoding. That is, for any g, ..., g, €%,

size <C < ﬁ gi>> < O(max{size({(g;))} -log /).

i=1

Note that the “polynomial” refered to in conditions 1-3, as well as the constant
hiding behind the big-Oh in 4, all depend on the group G. That is, for a fixed G
(and ¢ and {) the complexity of the computational tasks in 1-3 is polynomial in
the input length. We say that a family (G, {,);c; of groups G, with effective slow-
growth encodings (; is uniform if, given G, by a generating set S, complexity of these
tasks is polynomial in size(S) and the input length, and the constant in 4 is O(size(S))
for some constant c.

When computing with an effective slow-growth encoding, if polynomially many
group operations are performed, then the total time for these group operations is
polynomially bounded. So it would be nice if effective slow-growth encodings
existed for all groups with polynomial growth rate. We show that this is the case
for matrix groups over number fields:

THEOREM 1.7. Let F be a symbolically given algebraic number field, and let
G<GL(n, F) be a finitely generated group given by a list S of generators. We can
determine in polynomial time whether the growth rate of G is polynomial or exponen-
tial. If G has polynomial growth, then in polynomial time we can find an effective
slow-growth encoding { of G. These encodings are uniform for the family of nilpotent-
by-finite matrix groups over F.

Previously, it was known how to compute such a { for finite matrix groups
[BBR] and for abelian matrix groups [ BBCIL].

1.4. Methods

A matrix group G < GL(V) is primitive if there is no direct sum decomposition
Vi+ --- + V, of Vsuch that G permutes the V. If such direct sum decompositions
could be found for imprimitive groups, many computational problems would be
reduced to the primitive case. Much is known about the structure of primitive
solvable matrix groups [ Su63, Su76]. However, no general imprimitivity algorithm
is known (although Holt et al. [H+96b] have developed practical methods for
matrix groups over finite fields).



266 ROBERT BEALS

A natural combinatorial approach to matrix group imprimitivity is suggested by
Atkinson’s algorithm for permutation group imprimitivity [ Atk75]. For permuta-
tion groups, a system of imprimitivity can be found by considering the orbits of a
representation of degree n? The analogous approach for matrix groups would
consider the invariant subspaces of a representation of dimension #% but it is not
clear that this works in all cases. Nevertheless, by using a novel application of
finiteness testing [ BBR], we obtain a method which is sufficiently general for our
purposes.

We find enough of the imprimitivity structure to decide the Tits alternative, and
with some further refinements, we obtain our results for nilpotent-by-finite groups
as well. This allows a reduction of the abelian-by-finite case to the abelian and the
finite cases separately, for which algorithms exist (cf. [ BBCIL, Ge93a, Os, BBR, BB]).

2. PRELIMINARIES AND BACKGROUND

2.1. Building Blocks

We give some simple examples of effective slow-growth encodings, as well as
some methods by which such encodings may be combined to create new ones.
Babai, Beals, and Rockmore [ BBR] have shown

THEOREM 2.1. Let G<GL(n, Q) be given by a finite list of generators. Then it is
decidable in deterministic polynomial time whether or not G is finite. If G is finite,
then in polynomial time we can compute a G-invariant n-dimensional lattice L and a
G-invariant positive definite quadratic form B such that the group G of all elements
of GL(n, Q) which fix L and B, together with the standard encoding of rational
matrices, is an effective slow-growth encoding.

The generalization to finite subgroups of GL(n, F) is obtained by considering F
as a vector space over Q.
The standard encoding is also sufficient for additive subgroups of a vector space.

ProprosITION 2.2.  Let F be a symbolically given algebraic number field. Then the
standard encoding of elements of F" is a slow-growth encoding when restricted to any
finitely generated subgroup.

Unipotent groups are yet another example.

LEMMA 2.3. Let A be an n-dimensional algebra with unit element 1 and radical R.
Let @ be the multiplicative group of elements of the form 1 +r with re€ R. Then the
standard encoding of elements of G is slow-growth.

Proof. By Friedl-Ronyai, the radical R is polynomial time computable, so ¥ is
polynomial time recognizable (condition 1). Conditions 2-3 are trivial. It remains
to show that condition 4 holds. Consider a product g=g,g,---g,. Let g,=1+r;
for 1 <i</. Then g can be expressed as a sum of products of the r;. Since any
product of n or more of the r; is zero, we only need to consider products of length
less than n. The number of summands is thus O(¢”), each of which has bit length
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at most O(n° max; size(r;)). Applying Proposition 2.2 gives the desired bound on
the bit length of g. |

We now describe several methods of combining encodings.

ProPOSITION 2.4. Let %, (, and %,, {, be groups with slow-growth encodings. For
(&1, &2) in the direct product % x%,, let {(g,, &) =({1(&1), {2(82)). Then 4 x %, {
is a slow-growth encoding.

Let G and H be groups, with G acting (on the left) on H as automorphisms.
Then the semidirect product Hx G is defined as the set of all ordered pairs
{(h, g) | he H, ge G}, with multiplication defined by

(hy, g)(hy, g2) = (hy -g1(hy), g182).

With this operation, H x G is a group. It is not the case that, given slow-growth
encodings for G and H, we can construct a slow-growth encoding for H x G, since
H x G might have exponential growth. However, we do have

ProrosiTION 2.5. Let %, (, and %, {, be groups with slow-growth encodings.
Suppose that 9, acts on 9, as automorphisms such that the maximum bit length of
(1(g2(g1)) for g5 €% is polynomially bounded by ((g,) and the bit length of the
generating set for 9,. Then the semidirect product 4, x %, with the encoding {(g,, g>)
=(l(g,), {i(gy)) is a slow-growth encoding.

This condition is very restrictive, but we give three important examples.

ExamPLE 1. Suppose that % is a matrix group, and % acts linearly as a finite
group on Env(%;). Then slow-growth encodings for %, and % may be combined to
obtain a slow-growth encoding for G, x G,.

ExAMPLE 2. Suppose that ¥ is a lattice, and %, acts linearly as a finite group
on 4. Then slow-growth encodings for %, and % may be combined to obtain a
slow-growth encoding for G, x G,.

Let S, denote the symmetric group of degree r.

ExamPLE 3. Suppose that % is an iterated direct product ¥’, and %, =S, acts
by permuting the factors in the direct product. Suppose that {; is obtained from a
slow-growth encoding of ¢ by repeated applications of Proposition 2.4. Then slow-
growth encodings for 4 and % may be combined to obtain a slow-growth encoding
for 4, x %,.

In this last example, the group % x %, is also called the wreath product of %
by S,, denoted ¥ S.,.

2.2. Algebra Decomposition

Let F be a field, and let G < GL(n, F). Then we denote by Env(G) the enveloping
algebra of G, i.e., the set of F-linear combinations of elements of G. We denote by
M, (F) the algebra of n x n matrices over F.
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Let .o/ be an algebra over the field F. The radical Rad(.7) is the largest nilpotent
ideal of .«/. The quotient .«//Rad(.«/) is semisimple i.e., its radical is 0. If .« and %
are subalgebras of an algebra, then the centralizer of .o/ in %, denoted C_, (%), is
the set {ae.o/ |Vbe % :ab=ba}. If o/ =% this is the center of </, denoted Z(./).
Centralizers can be found in polynomial time by solving linear equations.

There is a nice correspondence between the structure of Env(G) and the action
of G on F”. If Env(G) is the direct sum of ideals I, and I,, then F” is the direct
sum of G-invariant subspaces I; F” and I,F". In addition, the action of G is
completely reducible (i.e., F" is the direct sum of G-invariant subspaces on which G
acts irreducibly) iff Env(G) is semisimple.

We require the result of Friedl and Ronyai [ FR].

THEOREM 2.16 [Fr]. Let o/ be a subalgebra of M ,(F), given by a list of gener-
ators. Then Rad(.eZ) can be calculated in polynomial time, along with the minimal
ideals of </ /Rad(.<7).

We indicate a way in which the Friedl-Ronyai result can be used as a divide-and-
conquer tool. Once the decomposition of Env(G)/Rad(Env(G)) is known, a basis
can easily be chosen for F” such that the matrices g € G have the form

11(g) * *
0 (g - *
0 0 0 g

where each Env(#x,;(G)) is a simple algebra. Let # denote the representation:

Then the kernel of # is solvable (it consists of unipotent matrices), so G is solvable-
by-finite iff #(G) is solvable-by-finite. We will make use of the homomorphism 7
throughout the paper.

An element e of an algebra is an idempotent if e*=e. The Friedl-Ronyai algo-
rithm actually calculates for each ideal I of .o//Rad(.«/) an idempotent e in the
center of .«//Rad(.<7) such that e is the multiplicative identity of 1. For two distinct
such ideals, I, I,, we have e e, €I, nI,={0}, so e;e,=0.

The classical theorem of Wedderburn shows that .7/Rad(.e7) is the direct sum of
simple algebras. These simple components are precisely the minimal ideals found by
the Friedl-Roényai algorithm. If o7 is the enveloping algebra of a nilpotent group,
then something more can be said. We first quote the following result of Suprunenko
[Su76, p. 223, Theorem 2].

THEOREM 2.7. Let F be an arbitrary field. The irreducible components of a
nilpotent indecomposable subgroup of GL(n, F) are pairwise equivalent.
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COROLLARY 2.8. Let G<GL(n, F) be nilpotent, and let o/ = Env(G). Then there
exist ideals <4, , ..., <. such that <f is the direct sum of the <. and each <f;/Rad(.<Z)
is simple.

We quote two results of [ BBCIL].

LemmA 2.9. Given a matrix a€ M,(F), we can in polynomial time find matrices
aq and a,, in the algebra generated by a, such that a, is diagonalizable, (over an exten-
sion field), a,, is nilpotent, and a =a,;+ a,,.

COROLLARY 2.10. Let of be a commutative algebra over the number field F, such
that K= o/ /Rad(.</) is simple. Then in polynomial time, we can find a subalgebra of
o/ isomorphic to K.

Note that K is an extension field of F. This corollary will allow us to view F” as
a vector space (of smaller dimension) over K.
We quote below some well-known results on group algebras (cf. [ We, Chap. 1]).

THEOREM 2.11. Suppose that HSG<GL(n, F), and G: H is finite. Then if
Env(H) is semisimple, so is Env(G).

TrHeEOREM 2.12 (Clifford). Suppose that G<GL(n, F) with Env(G) semisimple.
Then for any normal subgroup N of G, Env(N) is semisimple.

3. STRUCTURE OF SOLVABLE-BY-FINITE GROUPS

In this section we consider in some detail what it means for a group to have a
solvable subgroup of finite index. The results presented here are nonconstructive,
although algorithmic versions will be presented in later sections.

Suppose that the group G < GL(n, F) has a solvable subgroup H of finite index.
Then the intersection of the conjugates of H is a normal subgroup N of finite index,
so G is solvable-by-finite.

A matrix group is triangularizable if, over some extension field K of F, all
elements of the group may be simultaneously put in upper triangular form. A
theorem of Mal’cev (cf. [ We, Theorem 3.6]) states that a solvable matrix group has
a triangularizable normal subgroup of finite index. Let 7 be a triangularizable
normal subgroup of N of finite index. Then the intersection of the G-conjugates of
T is a triangularizable normal subgroup M of G of finite index in G. Without loss
of generality we suppose that M = N.

Now suppose that Env(G) is semisimple. Then Env(X) is semisimple as well by
Clifford’s theorem (Theorem 2.12). Therefore NV is abelian (it is diagonalizable over
an extension field). We suppose that for any positive integer /, the groups N and
N’={x’|xe N} have the same enveloping algebra (otherwise replace N by N’
this can only happen finitely many times before we arrive at a subgroup with the
desired property).

Let 0: G»> GL(M,(F)) denote the conjugation action of G on M,(F). It clear
that Env(6(N)) is semisimple, so by Theorem 2.11, .o/ = Env(6(G)) is semisimple as
well. Let .o, ..., o/, be the decomposition of ./ into a direct sum of minimal ideals,
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and let W,=./,M,(F) (the W, are subspaces of M,(F), but not necessarily sub-
algebras). Let # be the direct sum of those W, such that the restriction of 6(G) to
W, is finite. Note that 4 is a subalgebra of M ,(F). Let 0, be the conjugation action
of G on %, and note that 0,4(G) is finite.

Lemma 3.1. Let # be as above. Then %= Cy p(Env(N)), and Env(N)=
Car, i\ B).

Proof.  We first show that Cy, r)(Env(N)) < %. Suppose a centralizes Env(N).
We wish to show that a has finitely many G-conjugates. Since N has finite index
in G, this is equivalent to showing that a has finitely many N-conjugates. This is
immediate, since a” = {a}.

Next, we show that # < Cy (r)(N). Suppose that a does not centralize N. We
wish to show that a ¢ %; i.e., a has infinitely many N-conjugates. Suppose to the
contrary that |a”| = m for some finite m. Let / =m!, and note that a centralizes N”’.
Therefore, Env(N) # Env(N?), contradicting our choice of N.

Now we need to show that Cy (r)(#)=Env(N). Let €= Cy (5(%4). Since
Env(N) =4, € < Cy (m(Env(N)) =2. Therefore it suffices to show that Env(N)
=Z(%). Let E,, ..., E, denote the minimal ideals of Env(N). Let V;= E;F". Then
Vi+ ---+V, is a direct sum decomposition of F” into N-invariant subspaces.
These subspaces are #-invariant as well, but even more can be said. Each V; may
be viewed as a vector space over the field E;. For any a € 4, the action of @ on V;

is linear over E;, since a centralizes E,. Conversely, suppose a € M, (F) leaves the V;
invariant and acts as E;-linear transformations on each V;. Then a centralizes N
and so belongs to 4. So Z(#) commutes with all E,-linear transformations on V.

Since the center of a full matrix algebra is the set of scalar matrices, we have Z(%)
=Env(N) as desired. |1

So far we have assumed that Env(G) is semisimple. We now replace that with the
weaker assumption that N is nilpotent. As in the semisimple case, by Theorem 2.7,
the minimals ideals of Env(N)/Rad(Env(N)) yield a direct sum decomposition
Vi+ --- +V, of F” into N-invariant subspaces. The group G permutes the ;. We
consider the case that this action is transitive. Let G,, denote the subgroup
{geG|gV,=V,}. Then G is a subgroup of the wreath product G, S,. We now
consider the r=1 case (i.e., we focus our attention on G,). In this case Env(N)/
Rad(Env(N)) is a field E of finite degree d over F. By [Su76, p. 228, Theorem 37,
there is an embedding of E in M, (F) such that N acts as E-linear transformations
(the embedding of E in M,(F) gives a natural way of interpreting F” as an n/d-
dimensional vector space over E). Indeed, the same reference shows that N acts as
a subgroup of the direct product of the multiplicative group of £ and a unipotent
subgroup of End z(F"). Since N is normal in G, we have that G acts by conjugation
as automorphisms of £ which fix F. The kernel H of this action has index at most
d in G. Note that H acts as E-linear transformations, so we may consider H to be
a subgroup of GL(n/d, E).

We summarize this in our main structure theorem for nilpotent-by-finite groups.

THEOREM 3.2. Suppose G < GL(n, F) is nilpotent-by-finite. Then G has a nomal
subgroup N of finite index such that:
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1. Env(N) is a direct sum of ideals %, ..., B,, such that each %;/Rad(%;) is a
field E,.

2. F" is a direct sum of N-invariant subspaces Vi, .., V, where V,=%,F".
These are permuted by G.

3. E; can be embedded in End (V) such that N acts as E;-linear transforma-
tions on V.

4. For any 1 <i<r, the subgroup G;={geG|gV,=V;} has a subgroup H; of
index dividing the degree of E; over F such that H; acts as E;-linear transformations
on V.

1

The subgroup N is a subgroup of the direct product of a unipotent normal subgroup
U of G and the multiplicative groups of the fields E,.

Later, we will give a polynomial time algorithm to find the V,. This will reduce
many problems for nilpotent-by-finite G to the case r=d=1 (so G=H, and N is
isomorphic to a subgroup of a direct product of F* and a unipotent group).

4. MONTE CARLO SOLVABILITY TESTING

We will see that the results of the previous section, although nonconstructive, are
useful in the analysis of a natural Monte Carlo solvability test. This algorithm was
suggested to the author by E. M. Luks and has not previously been analysed. For
simplicity we consider only the case of rational matrix groups.

4.1. Straight Line Programs over Finitely Generated Groups

Let G be a finitely generated group, generated by the finite set S. A straight line
program, or SLP, of length r over S is a sequence g4, ..., g, such that for all 1 <i<r,
either g; €S or g;=x)’, where /e{—1,1} and x, ye Su{gy, .., g&:_}. We say
that g, is reachable by an SLP of length r over S. Also, if X< {g,, .., g,}, we say
that X is reachable by an SLP of length r over S. Note that if X is reachable by
an SLP of length r; over S, and Y is reachable by an SLP of length r, over XU S,
then Y is reachable by an SLP of length r, +r, over S. Observe that for 1 <i<r,
the element g, is expressible as a word of length at most 2°~! over the elements of
S and their inverses. This will be used to calculate upper bounds on the bit lengths
of elements reached by straight line programs.

LEmMmA 4.1. Let &/ be an algebra of dimension d over a field F, and let S be a
finite subset of o/ * which generates of as an F-algebra. Then there is a straight line
program g, ..., g, of length r=d over S such that {g,, ..., g} is a basis for </ over
F. Such a straight line program can be found in polynomial time.

Proof. Take an arbitrary g, €S. For i>1 suppose that g,, .., g; have been
specified, and let V; denote Span({g,, .., g;}). It suffices to show that if V, # .o/,
then we may choose g, so that V;# V;, . This is clear if V, is a proper subspace
of Span(S), so suppose Span(S) < V,. Then .o/ is the smallest subspace containing
V; and closed under multiplication, so for some x, ye{g,, .. g;}, the element

1
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giv1=Xxy¢V,, as desired. The elements x, y can clearly be selected in polynomial
time. |

LeMMA 4.2. Let G=(S) for some finite set S and let K=< T for some finite set
T < G. Suppose that ¢: K — H is a homomorphism with |H| finite. Then there is a straight
line program g, ..., g, of length r <2 log, |H| such that $(K) =<d({gy, ..., &} N K)).

Proof. For simplicity assume that H=¢(K). Note that G acts as automor-
phisms on H and that H is generated by the G-images of the elements of ¢(7'). Let
A=<L¢(T)) <H, and let t=|T|. Assume without loss of generality that for any
proper subset X of 7, {¢(X)» # A. Then t =|T| <log,|4]|.

We are now ready to specify the straight line program. Let g,, .., g, be the
elements of 7. We proceed by induction. Suppose g, ..., g; have been specified. Let
A;={p({gy, - g} N K)>. We assume by induction that |4,| >27* (the base case
i=r holds since t<log,|A4|). Either A =H and we are done, or 4 is not closed
under the action of G, in which case there is some x€{g, .., g&;} N K and some
ye§ such that ¢(yxy~')¢ 4, We set g, =xy~ ' and g;,,=yg;, 1 =yxy ek
Therefore, |A4;,,|>2 |4;|, and the induction step is complete. Eventually, pre-
images of a generating set for H are reached, using a straight line program of length
<2log, |H| as desired. We note also that the “black-box” normal closure algo-
rithm of Babai, Cooperman Finkelstein, Luks, and Seress [ BCFLS] will produce,
in Monte Carlo polynomial time, a straight-line program of length O(log |H|) with
the desired property. ||

An almost identical proof yields

LemMma 4.3. Let G={S) for some finite set S and let K= T for some finite
set T< G. Suppose that ¢: K — H is a homomorphism with |H| infinite. Then for any
bound b, there is a straight line program g, ..., g, of length r <2log, b such that

4.2. The Algorithm

Let G<GL(n, Q) be given by a finite generating set S. We give a Monte Carlo
polynomial time algorithm to determine whether or not G is solvable. The algo-
rithm makes only one-sided errors; if the algorithm reports that G is not solvable,
then it does so with certainty.

The algorithm is quite simple (see Fig. 1). Choose a random prime number p (not
dividing the denominators of the entries of the elements of S or their inverses) with
bit length b, and look at the homomorphic image K of G obtained by reducing
modulo p. Solvability of K may be tested in deterministic polynomial time by
Luks’s algorithm [ Lu92]. Suppose G is solvable. Then K will be found to be solv-
able, and the algorithm will output “G is (with high probability) solvable.” Suppose
now that G is not solvable. We will show for a suitable polynomially bounded
choice of b that with high probability K will not be solvable. If K is found not to
be solvable, then the algorithm outputs “G is (certainly) not solvable.”
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IsSolvable(G)

G = () < GL(n, Q)
D=1,
for A€ S do

D = D - numerator(det(A));
fori,j € {1.n} do
D = D - denominator(A;;);
od;
od;
p = a random b-bit prime not dividing D;
R={}
for A€ S do
R = RU {A mod p};
od;
if K = (R) < GL(n,p) is solvable then
output “G is probably solvable”;
else
output “G is certainly not solvable”;
fi;
}

FIG. 1. Pseudocode for the Monte Carlo solvability test.

Suppose that G=<.S) is not solvable. We wish to show that the algorithm has
only a very small probability of outputting “solvable.” First we show that the set
of primes p for which this is occurs is finite. A theorem of Zassenhaus [ Za] states
that there exists a number /, depending only on n, such that all solvable matrix
groups in dimension n over any field have derived length at most /. Since G is not
solvable, there is an element ge G“”\1. The group K is solvable only if g is con-
gruent to the identity matrix modulo p, which only happens for a finite set of
primes p.

In order to estimate the error probability, we need to fine-tune this analysis. By
Huppert [ Hu], we may take / = O(log n). The most precise estimate, 7 <5 logg(n —2)
+ O(1), is due to Newman (cf. [ We, Theorem 3. 10]). We will show that there
exists an element g e G'”\1 which is expressible as a straight line program over S
with polynomially bounded length. First, we prove

LemMma 4.4. Let G, H< GL(n, €) with G=<S) and let H=<{T%) for some finite
set T< G. Suppose H is not solvable. Then there exists a subset T' = H expressible
as a straight line program over S U T of length O(n*) such that {T') is not solvable.

Proof. 1t suffices to consider the case that Env(G) is semisimple. We will treat
T’ as a variable that ranges over subsets of H. Initialize 7’ to be 7. Let L denote
the subgroup generated by 7.

Suppose first that Env(L) is not invariant under conjugation by G. By Lemma
4.1, we may add some elements of L to 7" so that 7’ spans Env(L), using a straight
line program of length O(1) per increase in the dimension of Span(7”’). Then there
is an s€ S, reT’, such that r*¢ Env(L). We add ¢ to T’ (it is calculated by a
straight line program of length 2) and repeat the process until we arrive at an L
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such that Env(L) is invariant under conjugation by G. In other words, Env(L) =
Env(H). The total straight line program cost of this is O(n?).

Let 0: GL(n, ) > GL(M,(%)) denote the conjugation action of GL(n, ¥) on
M, (%). By applying the reasoning of the previous paragraph to 0(L), we see that
at a straight line program of cost O(n*), we arrive at an L such that Env(0(L)) =
Env(0(H)).

Now consider the irreducible constituents 64, ..., 8, of O(H). Let d; be the degree
of 0,,s0 Y 0,=n? For each 1 <i<r, we want to have either 0,(L)=0,(H) or 0,(L)
is infinite. Suppose that 0,(H) is finite. Then, by Lemma 4.2 and using Newman’s
bound [ New] of (2d;)! on the order of finite subgroups of GL(d;, Q), a straight line
program of length O(d;log d;) will reach a 7' = H such that 0,(L)=0,;(H). Now
suppose that 6,(H) is infinite. Then, by Lemma 4.3 there is a straight line program
of length O(d;logd;) which reaches a 7' < H such that the resulting L violates
Newman’s bound and is, therefore, infinite. The total cost of performing this step
for all i is O(n?log n).

Now we claim that L is not solvable. Suppose to the contrary that L is solvable.
Since Env(L)=Env(H) is semisimple by Theorem 2.12, L has an abelian normal
subgroup N of finite index. The algebra # = C,, q)(Env(N)) is O(L)-invariant and
therefore, O(H)-invariant (since Env(0(L)) = Env(0(H)). Let 0, denote the con-
jugation action of H on 4. Since 0,4(L) is finite, we have that 0,(H) =0,4(L). By
Lemma 3.1, Env(N) is the full centralizer in M,(Q) of %, so the kernel in H of 0,
is HnEnv(N), which is abelian. However, 04(H)=04(L) is solvable, so H is
solvable, a contradiction. ||

Induction on 7 gives, as an immediate consequence,

LEMMA 4.5. Suppose the finitely generated group G < GL(n, Q) is not solvable.
Then for any positive integer ¢, there is a nonidentity element g of G reachable by
a straight line program of length O(¢/n*) over the generators of G.

THEOREM 4.6. Let G<GL(n, F) be given by a generating set S, where F is a
symbolically given algebraic number field. Then in Monte Carlo polynomial time, it
can be decided whether or not G is solvable.

Proof. By treating F as an algebra over Q, we may restrict our attention to
rational matrix groups. We analyse the algorithm given above. Clearly, if G is
solvable then the algorithm always gives the correct answer, so suppose that G is
not solvable. Let /= O(log n) be an upper bound on the derived lengths of solvable
matrix groups of degree n. By the above lemma, there is a nonidentity element g
of G reachable by a straight line program of length O(¢/n*) over S, from which
it follows that g is expressible as a word of length 29" over the elements of S and
their inverses.

The algorithm will give the correct answer in the case that g is not congruent to
the identity matrix modulo p, so consider the entries of g — /. These are rational
numbers, not all zero, the numerators of which have bit lengths bounded by
20" times a polynomial in the input length. Therefore, we may set b to be
O(/n*log size(S)), and we will achieve that with high probability a randomly selected
b-bit prime p will yield a correct computation.
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We note that the element g and the straight line program reaching it are never
actually calculated. ||

5. ALGORITHM FOR THE TITS ALTERNATIVE

We are now ready to prove Theorems 1.1 and 1.3. By using the Friedl-Ronyai
algorithm [FR1], it suffices to consider the case that Env(G) is semisimple (other-
wise, let # be the homomorphism described after Theorem 2.6, and replace G by
n(G)). In other words, we are trying to determine if a completely reducible group
is abelian-by-finite.

The algorithm that we present here will attempt to find the structure described
in Section 3. If at any point this fails, then we know that the group G is not
solvable-by-finite. We give the pseudocode for this algorithm in Fig. 2.

Let 0: G—> GL(M,(F)) denote the conjugation action of G on M,(F) (we are
viewing M ,(F) as a vector space). We compute .7 = Env(6(G)), and verify that .o/
is semisimple (if not, then G is not solvable-by-finite). If .7 is semisimple, then we
find its minimal ideals .¢4, ..., «Z. Let W,= .o/ M, (F), and let 0, be the conjugation
action of G on W,. Using the finiteness algorithm of Babai, Beals, and Rockmore
[BBR], we determine the set of i such that 8,(G) is a finite group. Let % be the
sum of the W, such that 0,(G) is finite. Note that % is a subalgebra of M, (F) (the

IsSolvableByFinite(G)
G = (S) < GL(n, F);

¢ = DiagonalBlockHomomorphism(G);
G = ((G);
@ = conjugation of G on M, (F);
A = Env(8(G));
if not IsSemisimple(.A) then
output “G is not solvable-by-finite”;

quit;
fi;
Ai, ..., A; = Minimalldeals(A);
B =0;
foric{l,...,s} do
Wi = -AiMn(F);
#; = conjugation of G on Wj;
if IsFinite(6;(G)) then
B=B+W;
fi;
od;
¢ = 2(B);

if C = CM,.(F)(B) then
output “G is solvable-by-finite”;
else
output “G is not solvable-by-finite”;
fi;
}

FIG. 2. Pseudocode for the solvable-by-finite test.
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W, are merely subspaces). By Lemma 3.1, if G is solvable-by-finite then # is the
centralizer in M,(F) of Env(N), for some abelian normal subgroup N of finite index
in G. If this is the case, we verify it as follows.

By solving linear equations, we find the center 4 of %4, and verify that € is the
centralizer in M ,(F) of 4. This is the case if G is solvable-by-finite (cf. Lemma 3.1).
Conversely, suppose that % is the full centralizer in M,(F) of 4. G acts by conjuga-
tion as a finite group on %, s0 G N Cyy, (%) has finite index in G. But Cy; (5( %) =F
is commutative, so G is abelian-by-finite. This completes the proof of Theorem 1.1. ||

To prove Theorem 1.3, we let ¢ be the conjugation action of G on 4. |

6. THE NILPOTENT-BY-FINITE CASE

We now give the proofs of Theorems 1.5 and 1.7. A general divide-and-conquer
strategy of the algorithm is to reduce computational problems to “simpler” groups
using direct products and semidirect products. For example, suppose that a direct
sum F" =V, + V, of G-invariant subspaces is found. Let G, denote the action of G
on V,. Then G is a subgroup of G; x G,, and we may work with the G, separately.
The supergroup ¢ that we define will be the direct product 4 x %,.

We begin by applying the algorithm of the previous Section to 7(G). Let f1, ..., f,
be the central idempotents corresponding to the decomposition of 4. We wish to
“lift” these central idempotents of Env(N)/Rad(Env(N)) to central idempotents of
Env(N). Let G; < G consist of all elements g such that #(g) fixes V;. Schreier gener-
ators (cf. [Sil, FHL]) for G, can be found in polynomial time. Note that # extends
naturally to an algebra homomorphism from Env(G) to Env(5(G)), which we will
also denote 7. To lift f;, find an ¢; € Z(Env(G;)) such that z(e;) = f; (this reduces
to solving a system of linear equations). By Lemma 2.9, we may assume that e; is
diagonalizable. By Corollary 2.8, this will succeed unless the group is not nilpotent-
by-finite.

Assume that G is nilpotent-by-finite and that e, .., e, have been lifted. Let
V,=e,F". The V, are permuted by G, and G is easily represented as a subdirect
product of subgroups of wreath products. Standard techniques [ Sil, FHL], together
with Propositions 2.4 and 2.5, now allow us to reduce our computational problems
to the case r=1.

We assume now that r =1, so € is a field E of degree d over F for some d dividing
n. The action of G on % corresponds to F-automorphisms of € (i.e., automorphisms
which fix F). Therefore the centralizer in G of % has index at most d. Again, techniques
of [ Sil, FHL] allow us to reduce to the case that G acts trivially on .

We now assume that G acts trivially on %, and we wish to embed E=% in the
center of Env(G). Such an embedding exists iff G is nilpotent-by-finite. By Corollary
2.10, we can find such an embedding or show that none exists in polynomial time.

Once the field E has been embedded in the center of Env(G), we may effectively
view G as a subgroup of GL(n/d, E). Thus, we have reduced to the case that E=F.

We are now in the case that G < GL(n, F) has a normal subgroup N of finite
index such that N is a subdirect product of F* and a unipotent group U. By apply-
ing the Friedl-Ronyai algorithm to Env(G), we are able to factor elements of G as
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products of the form g =#(g) u(g), where #(G) acts by conjugation as a finite group
on M,(F) and the group U generated by the #(G)-conjugates of u(G) is unipotent
(this group may be bigger than U). Let 0 denote the conjugation action of 7(G)
on M,(F), and let = denote a homomorphism of #(G) to GL(kn, p) obtained by
converting #(G) to a rational matrix group of degree kn (k is the degree of F) and
reducing the entries modulo p for some odd prime p. By [ New, Theorem 1X.7],
7 will act faithfully on any subgroup H of G such that 5(H) is finite.

We claim that G is isomorphic to the semidirect product (u(G) x 0(G)) x n(G) x
det(G). It is sufficient to show that for geker(n)nker(0)nker(det), n(g)=1. If
0(g) =1, then #(g) is a scalar matrix A/ for some 1€ F. For such a g, if det(g)=1,
then A" =1, so 7 acts faithfully on {g). If, in addition n(g)=1, then n(g)=1 as
desired.

To prove Theorem 1.7, by Proposition 2.5 it suffices to give slow-growth
encodings separately for (supergroups of) u(G), 8(G), n(G), and det(G). For the
first three, the standard encoding suffices (for 6(G) this is Theorem 2.1, for u(G) this
is Lemma 2.3). For det(G) < F*, we use Ge’s multiplicative encoding [ Ge93a]. ||

To prove Theorem 1.5, let ¢(g) =(0(g), n(g), det(g)). The group O(G) is managed
by [ BB], and the group det(G) is handled with [ Ge93a]. The group n(ker(8) N
ker(det)) has order <n, and poses no problem. The [ Ge93a, BB] algorithms give
a polynomial length straight line program to compute normal generators for ker(¢).
By using the slow growth encoding of Theorem 1.7, such a straight line program
can be evaluated in polynomial time. ||
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