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Abstract. We prove that the product replacement graph on generating 3-tuples of
An is connected for n ≤ 11. We employ an efficient heuristic based on [P1] which
works significantly faster than brute force. The heuristic works for any group. Our
tests were confined to An due to the interest in Wiegold’s Conjecture, usually stated

in terms of T -systems (see [P2]).
Our results confirm Wiegold’s Conjecture in some special cases and are related

to the recent conjecture of Diaconis and Graham [DG]. The work was motivated by
the study of the product replacement algorithm (see [CLMNO,P2]).

Introduction

Let G be a finite group, and let Nk(G) be the set of generating k-tuples (g) =
(g1, . . . , gk), where ⟨g1, . . . , gk⟩ = G. Define moves on Nk(G) as follows:

R±
i,j : (g1, . . . , gi, . . . , gk)→ (g1, . . . , gi · g±1

j , . . . , gk)

L±
i,j : (g1, . . . , gi, . . . , gk)→ (g1, . . . , g

±1
j · gi, . . . , gk)

}
where 1 ≤ i ̸= j ≤ k.

Denote by Γk(G) the graph on Nk(G) with (oriented) edges corresponding to the
moves as above. We call Γk(G) the product replacement graph. By d(G) denote the
minimum number of generators of G. Observe that when k > d(G) graph Γk(G)
contains loops. Note also that with each edge (g) → (g′), graph Γk(G) contains
(g′)→ (g). Thus connectivity of Γk(G) implies strong connectivity.
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Graphs Γk(G) naturally arise in a study of the product replacement algorithm
for generating random elements in group G (see below). They are also related
to the study of so called T -systems (see [P2]). In this paper we investigate the
connectivity properties of Γk(G).

Conjecture 1. (Wiegold) Let G be a simple nonabelian group, and k ≥ 3.
Then Γk(G) is connected.

This conjecture, while never published by Wiegold, was attributed to him in
[Ev,Da] (in a slightly different form). It is known to hold in several special cases:
G = PSL(2, p), PSL(2, 2m), Sz(22m−1), wherem ≥ 2 and p is a prime (see [Gi,Ev]).
When k = 3, it was checked in [Da] for G = An, n = 6, 7 (the case n = 5 follows
from PSL(2, 5) ≃ A5). The following is main result of this article.

Theorem 2. The product replacement graph Γ3(An) is connected for 5 ≤ n ≤
11.

We prove the result by a computer assisted computation. The idea is based
on the “large connected component” concept [P1] as well as on heavy use of the
symmetry to prune the search. Let us remark that the ”brute force” technique is
powerless since e.g. for n = 11 we have |N3(A11)| ≈ 8 · 1021, which is too large for
any reasonable computation.

What’s more important than the result, is perhaps the very possibility for check-
ing Conjecture 1 for reasonably large examples. Of course, from the theoretical
point of view our result (if all intermediate computer calculations were printed
out), is nothing but a long proof using “case by case” enumeration of triples of
permutations, not unlike the approach in [Da], which took 7 pages to prove con-
nectivity of A7.

The computation was carried out in GAP 4.1 [Sc]. We found GAP’s native rou-
tine for computing maximal subgroups of the alternating groups to be unacceptably
slow for this case. While the mathematical description of the maximal subgroups
of An is well known, we found it convenient to write our own routine for computing
the groups directly, based on GAP’s library of transitive groups.

Let us conclude the introduction by mentioning a more general conjecture.

Conjecture 3. For any finite group G and k > d(G) the graph Γk(G) is
connected.

Recall that d(G) = 2 for all nonabelian finite simple groups (see [Go]). Thus
Conjecture 3 is a generalization of Conjecture 1. It goes back to B.H. and H. Neu-
mann who studied this problem in the language of T -systems (see [P2]). Let us
mention here a related result of Dunwoody [Du] who showed that Conjecture 3
holds for solvable groups. Finally, Diaconis and Graham recently conjectured [DG]
that Γ(Sn, k) is connected for all n, k ≥ 3. This is another special case of the
conjecture. We refer to a review article [P2] for references and other special cases.

Let us say a few words about the product replacement algorithm, a practical
heuristic introduced in [CLMNO]. Assume we are given a generating k-tuple (g) of
the finite group G, and we would like to generate (nearly) uniform random group
elements of G. The algorithm consists of running a simple random walk on graph
Γk(G) for some large number of steps. The resulting k-tuple is presumed to be “ran-
dom”, and the algorithm outputs a random component. It is easy to see that the
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stationary distribution of the walk is uniform on a connected component of Γk(G)
which contains (g), so graph connectivity is essential to understanding performance
of the algorithm. We refer to [P2] for a thorough review of the algorithm.

To conclude, let us mention that from the practical point of view, simple (and
quasisimple) groups are important test cases, which were used by the authors in
[CLMNO]. Thus any positive indication in favor of Conjecture 1 is of interest.

1. Background

Denote by Λn the graph Γ3(An). Denote the generating triples in Λn by (σ) =
(σ1, σ2, σ3). We say that a generating triple is redundant if either of the pairs
(σ1, σ2), (σ1, σ3) or (σ2, σ3) generates An. The following observation is crucial (see
[Da,Ev,P1,P2]).

Proposition 4. All redundant triples lie in the same connected component
of Λn.

The proof of a slightly weaker statement can be found in [Ev,P1]. A full version
has appeared in [P2].

Let Λ′
n be a connected component in Λn which contains the redundant triples.

The idea of the algorithm is to check that every generating triple (σ) ∈ Λn is con-
nected to a redundant generating triple, i.e. to show that Λ′

n is the only connected
component in Λn. Clearly, it suffices to check only nonredundant generating triples.
Let us calculate the saving this gives.

Denote by φk(G) = P(⟨g1, . . . , gk⟩ = G) the probability that k random elements
generate G. It is a celebrated result of Dixon [Di] that the probability φ2(An)→ 1
as n→∞. Further, it was shown by Babai [Ba] that

φk(An) = 1− 1

nk−1
+O

(
1

n2k−1

)
.

¿From here the total number of generating triples is about (n!/2)3.
The above formula can be obtained as follows. The probability that all k permu-

tations fix a given point i is (1/n)k. There are n possibilities for i. This yields the
1−1/nk−1 in the formula. All other cases when k permutations do not generate An

are shown to have the much smaller probability O
(

1
n2k−1

)
(see [Ba] for a complete

proof).
Now let us compute the probability that three random permutations in An form

a nonredundant generating triple.

Proposition 5. We have

P
(
⟨σ1, σ2⟩, ⟨σ1, σ3⟩, ⟨σ2, σ3⟩ ̸= An, ⟨σ1, σ2, σ3⟩ = An

)
=

1

n3
+O

(
1

n4

)
,

where the probability is over all (σ1, σ2, σ3) ∈ (An)
3.

Sketch of proof. Denote Fix(σ1, σ2, . . . ) the set of points j ∈ {1, . . . , n} fixed
by all σi: σi(j) = j, and let fix(σ1, σ2, . . . ) = |Fix(σ1, σ2, . . . )|. Babai’s approach
[Ba] shows that (up to lower terms) the probability P in Proposition 5 is equal
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to the probability that each of the three pairs permutations has a fixed point, but
there is no common fixed point. Formally,

P =
∑

M12 ̸=M13 ̸=M23

P(σ1, σ2 ∈M12, σ1, σ3 ∈M13, σ2, σ3 ∈M23)− . . . ± . . .

= P
(
fix(σ1, σ2) = fix(σ1, σ3) = fix(σ2, σ3) = 1, fix(σ1, σ2, σ3) = 0

)
+O

(
1

n4

)
where the Mij denote maximal subgroups, and the probability is over all σi ∈ An.
The dotted terms in the first line stand for the inclusion-exclusion terms of lower
order. The second equality follows from Babai’s arguments (see [Ba]). We conclude:

P =
∑

1≤j12 ̸=j13 ̸=j23≤n

P
(
σr(jrs) = jrs, for all r, s = 1 . . . 3, r ̸= s

)
+O

(
1

n4

)

= 6

(
n

3

)
·
(

1

n(n− 1)

)3

+O

(
1

n4

)
=

1

n3
+ O

(
1

n4

)
.

This implies the result. �

2. The heuristics

2.1. Enumerating nonredundant generating sets.
Denote by Λ′

n the connected component of redundant triples in Λn = Γ3(An).
Our heuristic enumerates all nonredundant generating triples and then shows that
each such triple is in Λ′

n.
In implementing this heuristic, note that for a nonredundant generating set,

each pair must be contained in a maximal subgroup. We use this fact to enumerate
a family of generating sets that contains all nonredundant generating sets (and
possibly more). Specifically, we enumerate the family of triples

{(σ1, σ2, σ3): σ1, σ2 ∈M, σ3 ∈ An, M ∈M},

where M is the set of maximal subgroups of An. Of course a triple from this
family need not generate all of An, and a later step in the algorithm rejects such
(σ1, σ2, σ3) that fail to generate all of An.

2.2. Pruning σ1: Reducing search through symmetry.
While the previous saving is important, it is hardly sufficient by itself. The main

saving is obtained by use of symmetry. Consider an action of Sn on N3(An), defined
by conjugation of every component with the same permutation. By On denote the
set of orbits of the action. Note that the property “(σ) ∈ Λ′

n” is invariant under this
action. Therefore to prove connectivity of Λn it suffices to check this for only one
orbit representative. That orbit representative can be chosen as the least element
in the orbit according to some total ordering on generating triples. Ideally, this
would reduce the checking by a factor bounded above by |Sn| = n!. (This is only
an upper bound since an element of Sn will fix some of the generating triples under
the conjugate action.)

Such a reduction requires choosing some total ordering on all nonredundant
generating triples. One would then test a given generating triple to see if it is
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minimal in this ordering among all triples in its orbit. Such a test is likely to be
computationally unacceptable. Hence, we choose a partial ordering based only on
the conjugate action of Sn on the first element, σ1, of the triple (σ). This results
in choosing multiple representatives from each orbit, and so the checking phase
contains a certain amount of redundancy.

Here is how the orbit representatives are chosen. Write (σ) = (σ1, σ2, σ3) as an
array of integers. For every orbit O ∈ On denote by η(O) the lexically first element
in O. Now, the orbits of the action of Sn on σ1 is the conjugacy class containing
σ1. The conjugacy classes in An correspond to partitions λ of n with even (odd)
number of parts (depending on the parity of n). For a partition λ1 ≥ λ2 ≥ . . .
the permutation (2, 3, . . . , λ1, 1, λ1+2, λ1+3, . . . , λ1+λ2, λ1+1, . . . ) can be easily
observed to be lexically first. This gives the first permutation of η(O), encoded by
the even/odd partition of n.

Note: In fact for a general group G, we could choose a minimal element for σ1 from
its orbit under the action of Aut(G). However, in the general case, the computa-
tional cost of computing Aut(G) often makes it preferable to to choose a minimal
element under the conjugate action of G.

2.3. Pruning σ2: Further reduction of search through symmetry.
We have effectively chosen a set of orbit representatives, R = {(σ1, σ2, σ3): σ1 = α1},

for the orbit, O = {(α1, α2, α3)
g: g ∈ Sn}, where α1 is lexically least in {α1}Sn .

Next consider CSn(α1) = {g: g ∈ Sn, α
g = α}, the centralizer of α1 under Sn.

Observe that R is an orbit of O under the subgroup CSn
(α1) ≤ Sn.

It is computationally efficient to compute CSn(α1) for the smaller values of n
under consideration. One could then compute orbit representatives under the con-
jugate action of Sn. We choose as orbit representatives the lexically least element
of each orbit. Furthermore, since it can be computationally expensive to compute
the lexically least element, we satisfy ourselves with a heuristic. In testing if an
element σ2 is lexically least, we examine

√
|Sn| random conjugates1 of σ2 under

Sn. If any conjugate is lexically smaller, we reject σ2 as not being lexically least.
Otherwise, we accept σ2 as lexically least. This results in choosing a superset of
the orbit representatives, which may affect the computational efficiency, but does
not affect the correctness.

2.4 Pruning σ3.
One further observation can be made. Having chosen σ1 and σ2, we can restrict

our choice of σ3. Note that for a fixed triple, (σ1, σ2, σ3), either all elements of the
set {(σ1, σ2, α): α ∈ ⟨σ1, σ2⟩σ3} are in the connected component Λ′ or all elements
are outside. So, for purposes of searching for a counterexample, once σ1 and σ2

are chosen, it suffices to consider σ3 as chosen from a set of coset representatives of
An/⟨σ1, σ2⟩.

2.5 Organizing the Algorithm.
We now adopt the more general view that our algorithm will be stated for a

general permutation group, G, and not just for An. Note that the only portions of
our argument that were specific to An were the calculations of expected efficiency.
Furthermore the only portion of the argument that was specific to permutation

1The number
√

|Sn| =
√
n! of random conjugates was chosen somewhat arbitrarily. A different

function may result in speed up of the algorithm.
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representations was the use of a lexical ordering in choosing orbit representatives.
In this situation, instead of considering the conjugate action of Sn on (σ), we
consider the action of Aut(G) on triples of elements in G.

Since we have introduced a maximal subgroup M ∈M, it is now convenient for
us to imagine the conjugate action of Sn on the set of 4-tuples

{(σ1, σ2, σ3,M): σ1, σ2 ∈M < G, σ3 ∈ G, M maximal in G}.

Since the computation of centralizers is the single most expensive step, we re-
order our computation to reduce the number of invocations of centralizer. We
search through all 4-tuples (σ1, σ2, σ3,M) by looping through components in the
order σ1, M , σ2, σ3, subject to the restrictions:

i) σ1 lexically least in its conjugacy class (or in its orbit under Aut(G));

ii) M such that σ1 ∈M ;

iii) σ2 such that σ2 ∈M and σ2 lexically least in CSn
(σ1) ∩M = CM (σ1); and

iv) σ3 such that σ3 ∈ G and σ3 chosen from a canonical family of coset represen-
tatives of G/⟨σ1, σ2⟩.

The algorithm, so far, can be summarized with the following pseudo-code. The
code was implemented for the alternating group, although the algorithm is valid
for any permutation group, G.

TestConjecture(G)

set maxSubgroups ← MaximalSubgroups(G)

for class in ConjugacyClasses(G) do

set σ1 ← lexically least permutation in class

for M in maxSubgroups do

set cent ← Centralizer(M, σ1) [ CM(σ1) ]

if σ1 in M then

for σ2 in M do

if σ2 is lexically least in the set σcent
2 then

for σ3 in RightTransversal( G / ⟨σ1, σ2⟩ ) do

if GeneratesFullGroup(G, {σ1, σ2, σ3}) then

[ if (σ1, σ2, σ3) /∈ Λ′
n then ]

if not IsInLargeComponent(G,{σ1, σ2, σ3}) then

Print(‘‘COUNTEREXAMPLE!’’)

end

2.6. Testing redundancy of a generating set.
Now that we can efficiently obtain generating triples which require checking, we

need to find a way to check whether a given nonredundant triple (σ) is connected
to a redundant triple. For this, we simply run a product replacement random walk
(simple random walk on Λn) until a redundant triple is hit.

Formally, start at a nonredundant triple. At every step choose at random one
of the 24 moves R±

i,j or L±
i,j , 1 ≤ i ̸= j ≤ 3, and apply it to the current triple.

Of the three subgroups ⟨σk, σl⟩ for 1 ≤ k < l ≤ 3, two will remain the same
after the move, so it suffices to check the third to see if the new triple is still
nonredundant. We repeat this until a redundant triple is obtained. This is carried
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out by the routine IsInLargeComponent(). Then the algorithm moves to the next
nonredundant triple to be checked.

Note that while the our checking algorithm involves randomness, the final re-
sult includes a deterministic guarantee of correctness. Of course, every time the
algorithm is run, it is likely to produce a different proof of Theorem 2.

2.7. Testing that the triple is a generating set.
As noted in section 2.1, the triples of group elements we obtain are not guaran-

teed to generate all of G. Our program was implemented for G = An. Our idea for
testing whether (σ) generates An was to test whether ⟨σ1, σ2, σ3⟩ is 2-transitive.
After that, we then tested explicitly whether we had in fact generated a subgroup
of one of the 2-transitive maximal subgroups of An.

Based on this, the innermost loops of the pseudo-code was modified to the fol-
lowing.

if IsTwoTransitive({σ1, σ2, σ3}) then

[ if (σ1, σ2, σ3) /∈ Λ′
n then ]

if not IsInLargeComponent(G,{σ1, σ2, σ3}) then

if ProbablyGeneratesFullGroup(G, {σ1, σ2, σ3}) then

if GeneratesFullGroup(G, {σ1, σ2, σ3}) then

Print(‘‘COUNTEREXAMPLE!’’)

Although GAP has a routine for testing 2-transitivity, we did not find it suf-
ficiently fast. Hence, we used a representation of An acting on pairs, and tested
whether the largest orbit in this representation was of length n2 − n. This was
equivalent to a test for 2-transitivity. Although this caused us to use a representa-
tion on n2 − n points rather than on n points, there was still a net savings of CPU
time.

As noted, it is also possible for ⟨σ1, σ2, σ3⟩ to be contained in a 2-transitive
maximal subgroup of An. To handle this case, we also find the 2-transitive, maximal
subgroups of An. The 2-transitive subgroups have been classified by Cameron [Ca].
Since our program already generated the maximal subgroups of An, we found it
simpler to test each maximal subgroup directly for 2-transitivity.

Fortunately, except for A6, the prime factors of the order of each maximal sub-
group was always a strict subset of the prime factors of the order of An. (The case
of A6 was small enough, that we were able to invoke GAP’s own routines for find-
ing the the order of ⟨σ1, σ2, σ3⟩, in order to test full generation of An in reasonable
time.) Hence, for each missing prime factor2, p, we also searched for a an element
of ⟨σ1, σ2, σ3⟩ whose order was divisible by p. We tested five pseudo-random el-
ements of ⟨σ1, σ2, σ3⟩, in looking for the prime factors of interest. This was the
substance of ProbablyGeneratesFullGroup(). Finally, we verified generation in
GeneratesFullGroup() before reporting a counterexample.

2.8. Finding maximal subgroups of An.
The maximal subgroups of An are already well-understood in the mathematical

literature. However, GAP does not include a library of the maximal subgroups.
Hence, we decided to calculate the maximal subgroups from first principles.

Although GAP provides a routine, MaximalSubgroup(), the time and space
requirements of this routine were not acceptable for An. Our tests successfully used

2These missing prime factors are given in the appendix.
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GAP’s native routine up to A9. However, the maximal subgroups of A10 required a
machine with 256 Megabytes, and the maximal subgroups of A11 appear to require
a still larger machine and we estimate that if we had successfully computed the
maximal subgroups of A11 with GAP’s native routine, it might have required one
day.

Our heuristic for finding all maximal subgroups was to begin with GAP’s list of
all transitive subgroups of An. This list was pruned to those that were maximal
in An, and all conjugates of maximal subgroups were kept. This was done effi-
ciently by considering the largest transitive groups first, we were able to efficiently
decide if a group was maximal by testing if it was contained in a previous group
that had been found to be maximal. When a subgroup was found to be maximal,
all conjugates were computed and added to the list of maximal subgroups. Fur-
thermore, extensions of the direct products Ai ×Aj for i+ j = n were also tested.
After constructing Ai ×Aj , a permutation was added whose restriction to the first
i points was odd and whose restriction to the next j points was odd. The resulting
group is denoted 1/2[Ai×Aj ]. The extension was tested for maximality by testing
if it was contained in a previous maximal subgroup, If not, it was added to the list.
Our computed list of maximal subgroups was compared against GAP’s own routine
for values of n up to 9 to verify correctness. For reader’s convenience, the results
are summarized in the appendix.

2.9. On complexity of the algorithm.
Let us calculate the saving in our algorithm as compared to brute force approach.
Consider the case n = 11, when the saving is the largest. Based on the formulas

of section 1, the “large connected component” heuristic in section 2.1 reduces the
number of triples to be checked from ≈ 8 · 1021, the total number of generating
triples, to about 6 ·1018, the number of nonredundant generating triples. Note that
although the Proposition 1.5 gives only an asymptotic bound, it gives reasonably
tight estimate in this case.

Now, the use of symmetry in sections 2.2,3 makes further reduction. In the
optimistic scenario, the number of triples to be checked is reduced by a factor of
|S11| = 11! ≈ 4 · 106. Since our saving at this stage is nearly as large, we are left
with only about 2 · 1011 triples to be checked.

Finally, in section 2.4 we obtain an additional saving by checking only those σ3

that lie in different cosets of H = ⟨σ1, σ2⟩. This gives an additional saving which is
somewhat harder to estimate since |H| may vary. Roughly, our saving is a factor
of |H| for every H, and H is more likely to be rather large for most non-generating
pairs (σ1, σ2).

As the table in the next section shows, the total number of triples checked in this
case is about 1010. When compared with to the total of 8 · 1021 generating triples,
one sees a dramatic improvement of our algorithm over the brute force approach.

3. Computational results

The tests were run in GAP 4.1 on a 350Mhz Intel Pentium II with 256MB of
PC100 SDRAM under the Linux operating system.

Group # Cases Checked # Max. Subgroups Runtime(s)
A5 358 21 1
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A6 5,007 52 150
A7 43,130 93 92
A8 533,661 157 1,119
A9 7,896,692 1,615 11,440
A10 87,829,061 3,976 132,156
A11 1,048,826,887 6,063 1,300,279

The number of cases checked refers to the number of triples, (σ1, σ2, σ3), as
determined by the algorithm (given also by the pseudo-code in section 2.5). The
number of maximal subgroups includes all distinct maximal subgroups of An, and
not simply the number of maximal subgroups up to conjugacy or up to isomorphism.
The runtime for A11 corresponds to 15 days. The method was limited only by the
amount of CPU time, while the memory usage was approximately 128 Megabytes.

The case of A6 took longer than A7 because there was a 2-transitive maximal
subgroup of A6 (the representation of A5 on six points). As discussed in section 2.7,
in most cases, we were able to distinguish An from one of its maximal subgroups
because its maximal subgroup were not 2-transitive or the order of its maximal
subgroup did not have all of the prime factors of n. This was not the case for A6,
and so we had to explicitly find the order of each subgroup to determine if it was
all of A6.

4. Concluding Remarks

Let us start by saying that Theorem 2 seems to be the first serious computational
evidence in favor of Wiegold’s conjecture. There is clearly more work yet to be
done in order to check the conjecture for various other series of simple groups. We
challenge the reader to use our approach for small Chevalley groups.

As we remarked earlier, the savings in our approach comes from the existence
of an efficient test (redundancy check) for a large connected component. It is
worth noting that even if the connected component of redundant triples in G is
not “large”, our algorithm will still work in this case. The timing will be worse, of
course. Heuristically, the “smaller” the set for which you can check that it’s in the
same component, the longer the algorithm should take.

In general, the crucial Proposition 4 holds when G has spread 2 (see [P2]).
The group G = Sn is an example. Thus one can use our algorithm with minor
changes to test the Diaconis–Graham conjecture [DG]. Other examples, such as
solvable groups (cf. [PB]), are also of interest. We believe that if Conjecture 3 is
too optimistic, a counterexample will be found in this direction.

The consequences for application of these results to the product replacement
algorithm [CLMNO,P2] are also relevant. By the argument in [P1,P2] existence of
the “large” connected component is enough to satisfy the algorithmic needs. From
the practical point of view, however, Conjecture 3 is of great interest, as the timing
of the algorithm grows with the number of generators k, so one wants to take k as
small as d(G) + 1. We refer to [P2] for a review of various special cases, rigorous
results, applications and speculations.

Few words about the structure of graph Γ3(An). Denote ζ(G, k) the maximal
distance between a generating k-tuple and a redundant generating k-tuple. Clearly,
ζ(G, k) < ∞ if Γk(G) is connected, and k > d(G). Denote by ρ the maximum of
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the number of walk steps before a redundant triple was hit3. Clearly, ρ is an
upper bound on ζ(An, 3). In the course of experiments we observed that ρ is
relatively small, growing slowly with n. Preliminary computations do not reject
the hypothesis that ρ is bounded.

Question 6. Is it true that ζ(An, 3) < C for a universal constant C ? If not,
what is the growth of ζ(An, 3) ?

If the growth of ζ(An, 3) is indeed bounded, this would imply that mixing of the
product replacement random walk starting at nonredundant generating triple is (up
to a universal constant) the same as when starts at a redundant triple. This would
be helpful in analysis of the product replacement algorithm (see [P2], section 3.)
Let us mention here a corollary of [LP]. If it is indeed true that group Aut(Fk) has
property (T ), then Γk(G) are expanders for any fixed k. Therefore

ζ(G, k) ≤ Diam(Γk(G)) = O(log |Γk(G)|) = O(k log |G|),

given that Γk(G) is connected.
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Appendix

This appendix describes the details by which the maximal subgroups were found.
It also shows which maximal subgroups are 2-transitive, therefore requiring the
extra step of checking for the existence of “exceptional primes” not found in the
order of the 2-transitive maximal subgroup.

Group Group Order
Max. Subgroup Mult. Subgroup Order Exc. Primes

A5 60 = 22 3 5
D(5) = 5 : 2 6 10=2 5
A4 5 12 = 223
1/2[S3 × S2] 10 6 = 2 3

A6 720 = 2332 5

L(6) = PSL(2, 5) = A5(6) 6 60 = 223 5 [-]
F36(6) = 1/2[S(3)2]2 10 36 = 2232

S4(6d) = [22]S(3) 15 24 = 233 [-]
A5 6 60 = 223 5
1/2[S4 × S2] 15 24 = 233

A7 5, 040 = 2332 5 7

L(7) = L(3, 2) 30 168 = 233 7 [5]
A6 7 360 = 23325
1/2[S5 × S2] 21 120 = 233 5
1/2[S4 × S3] 35 72 = 2332

A8 40, 320 = 2632 5 7

E(8) : L7 = AL(8) 30 1344 = 263 7 [5]
[1/2.S(4)2]2 35 576 = 2632

A7 8 2520 = 23325 7
1/2[S6 × S2] 28 720 = 24325
1/2[S5 × S3] 56 360 = 23325

A9 181, 440 = 2634 5 7
L(9) : 3 = P |L(2, 8) 240 1512 = 23337 [5]



12 GENE COOPERMAN, IGOR PAK

1/2[S(3)3]S(3) 280 648 = 2334

E(9) : 2A4 840 216 = 2333 [5]
A8 9 20, 160 = 26325 7
1/2[S7 × S2] 36 5040 = 24327
1/2[S6 × S3] 84 2160 = 24335
1/2[S5 × S4] 126 1440 = 25325

A10 1, 814, 400 = 2734527

1/2[S(5)2]2 126 14, 400 = 263252

[24]S(5) 945 1920 = 273 5
M(10) = L(10)′2 2520 720 = 24325 [7]
A9 10 181, 440 = 26345 7
1/2[S8 × S2] 45 40, 320 = 27325 7
1/2[S7 × S3] 120 15, 120 = 24335 7
1/2[S6 × S4] 210 8640 = 26335

A11 19, 958, 400 = 2734527 11

M(11) 5040 7920 = 24325 11 [7]
A10 11 181, 440 = 2732527
1/2[S9 × S2] 55 362, 880 = 27345 7
1/2[S8 × S3] 165 120, 960 = 27335 7
1/2[S7 × S4] 330 60, 480 = 26335 7
1/2[S6 × S5] 462 43, 200 = 263352

As described in section 2.8, the maximal subgroups were computed using our own
routine, rather than GAP’s native maximal subgroup routine. The computation
for A9 requires 249 seconds. The computation for A10 requires 2,162 seconds.

The computation for A11 required 5,580 seconds. The column “Mult” indicates
the number of isomorphic copies of the subgroup in An. The exceptional primes
are the prime factors of the order of An not occurring in the order of the maximal
subgroup. They are indicated if and only if the maximal subgroup is 2-transitive,
since this is the case for which they are required by the algorithm.

As an experiment concerning the scalability of the routine for constructing the
maximal subgroups of An, we also ran it for n = 12. It found all of the maximal
subgroups. In particular, the 37,072 transitive maximal subgroups split into 462
copies of [1/2.S(6)2]2, 5040 copies of M(12), 5775 copies of [1/2.S(4)3]S(3), 10,395
copies of [25]S(6), and 15,400 copies of 1/2[S(3)4]S(4). As is well-known from the
literature, M12 is the only 2-transitive group, and 7 is an exceptional prime (see
[Ca]).

The notation of the transitive groups follows GAP’s notation, as described
in [CHM] (a generalization of the notation of the Atlas of Finite Groups for per-
mutation representation. The intransitive groups are as described in section 2.8.

In conclusion, let us note that versions of the above list has appeared before
in greater generality. In particular, the transitive groups of degree up to 11 were
originally computed by Butler and McKay in [BM]. We found it convenient to redo
the calculation rather than try to obtain the above table from their list.


