Caged eggs and the rigidity of convex polyhedra

Igor Pak, UCLA

Oded Schramm Memorial Conference Microsoft Research, August 30, 2009

Theorem [Oded Schramm, "How to cage an egg", 1992]

Let $K \subset \mathbb{R}^3$ be a smooth strictly convex compact body and let $P \subset \mathbb{R}^3$ be a convex polyhedron. Then there exists a combinatorially equivalent polyhedron Q which midscribes K.

Here Q midscribes K if all edges of Q are tangent to K.

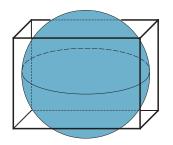


FIGURE 1. A caged sphere.

First motivation

Steinitz (1928): Inscribed and circumscribed spheres don't work.

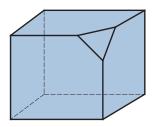


FIGURE 2. A polyhedron which cannot be inscribed into a sphere.

Igor Rivin resolved this problem using hyperbolic geometry (c. 1990).

Second motivation

4

Question: [Fejes Tóth, Besicovitch, Eggleston, etc., c. 1960]

What is the smallest total length of a cage which holds a unit sphere?

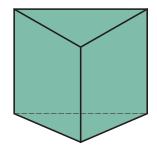


FIGURE 3. Conjectured optimal polyhedron (later proved incorrect).

Third (main) motivation

Circle packing: cut the miscribed sphere with facet planes. This gives gives the circle packing on a sphere corresponding to the graph dual to P.

Alternatively, draw the circles through the tangent points of edges.

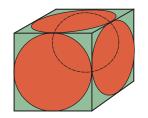


FIGURE 4. Circles in the facet planes.

Variational principle approach:

There is a problem with extending traditional variational principle proofs, even when $P \subset \mathbb{R}^3$ is *simplicial*.

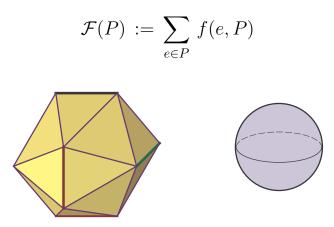


FIGURE 5. Variational principle: summation over edges.

Would need to show that \mathcal{F} is convex and min can be attained only on midscribed polyhedra... (no such proof is known)

6

Schramm's configurations (for non-simple polyhedra)

Configuration: {points, planes}. **Midscribed polyhedron:** incidence + tangent conditions.

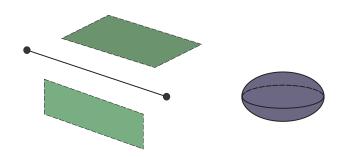


FIGURE 6. Schramm's configurations.

Schramm's proof

Idea: Prove the rigidity result first; interpret it as non-degeneration of the Jacobian of the configuration map and use the inverse function theorem.

Rigidity:

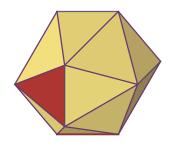


FIGURE 7. Rigidity of midscribed polyhedra.

Topological heart of the proof

The mapping lemma [Alexandrov, 1930's] Let \mathcal{A} and \mathcal{B} be two manifolds of the same dimension. Suppose a map $\varphi : \mathcal{A} \to \mathcal{B}$ satisfies the following conditions:

- 1) every connected component of \mathcal{B} intersects the image $\varphi(\mathcal{A})$,
- 2) map φ is injective, i.e. $\varphi(a_1) = \varphi(a_2)$ implies that $a_1 = a_2$,
- 3) map φ is continuous,
- 4) map φ is proper.

Then φ is a homeomorphism; in particular, φ is bijective.

Here by a proper map φ we mean that for every sequence of points $\{a_i \in \mathcal{A}\}$ and images $\{b_i = \varphi(a_i)\}$, if $b_i \to b \in \mathcal{B}$ as $i \to \infty$, then there exists $a \in \mathcal{A}$, such that $b = \varphi(a) \in \mathcal{B}$, and a is a limit point of $\{a_i \in \mathcal{A}\}$.

An example to play with

Question: Can one describe all possible angle sequences of convex n-gons with vertices on given rays?

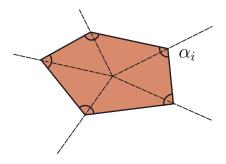


FIGURE 8. Angles of a polygon with vertices on rays.

Answer: Yes, $\sum_{i} \alpha_i = (n-2)\pi$, + some explicit linear inequalities on α_i 's.

Key observation: Given angles, there is at most one such polygon (up to expansion).

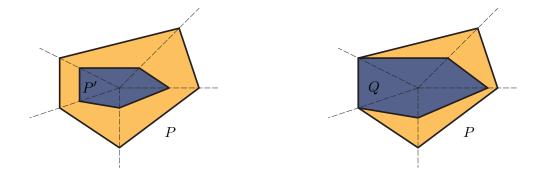


FIGURE 9. Polygons P, P' and the maximal expansion $Q = cP' \subset P$.

Alexandrov's curvature theorem (1943). Suppose $R_1, \ldots, R_n \subset \mathbb{R}^3$ are rays which do not lie in the same half-space, and suppose $\omega_1, \ldots, \omega_n \in \mathbb{R}$ satisfy the following conditions:

1)
$$\omega_i > 0$$
 for all $i \in [n]$,

2) $\omega_1 + \ldots + \omega_n = 4\pi$,

3)
$$\sum_{j \notin I} \omega_j > \omega(C_I)$$
 for every $I \subset [n]$, where $C_I = \operatorname{conv}\{R_i, i \in I\}$.

Then, up to expansion, there exists a unique convex polytope $P \subset \mathbb{R}^3$ which lies on rays R_i and has curvatures ω_i at vertices $v_i \in R_i$, for all $i \in [n]$. Conversely, all curvatures ω_i of such polytopes P must satisfy conditions 1)-3).

Here:

$$\omega_i = 2\pi - \sum_{F \ni v_i} \alpha(F).$$

Infinitesimal rigidity

Dehn's Rigidity Theorem: Every simplicial convex polytope in \mathbb{R}^3 is infinitesimally rigid.

Here: $\{v_1, \ldots, v_n\}$ - vertices, $\{a_1, \ldots, a_n\}$ - velocity vectors An *infinitesimal motion*:

(*)
$$(\boldsymbol{v}_i - \boldsymbol{v}_j, \boldsymbol{a}_i - \boldsymbol{a}_j) = 0$$
, for every edge (v_i, v_j) .

Infinitesimal rigidity: every infinitesimal motion is a rigid motion.

Proof [P, 2006] (inspired by Schramm's combinatorial tools)

Weaken (*) to allow the following three possibilities:

- 1. $(v_i v_j, a_i) = (v_i v_j, a_j) = 0,$
- 2. $(v_i v_j, a_i) < 0$ and $(v_i v_j, a_j) < 0$, 3. $(v_i v_j, a_i) > 0$ and $(v_i v_j, a_j) > 0$.

Orient edges (v_i, v_j) depending on the sign.

Fix face $(v_1v_2v_3)$ to rid of rigid motions.

Idea: prove that every orientation which satisfies 1,2,3 can have only unoriented edges, so the corresponding infinitesimal motion is zero.

Schramm's inversions:

Two edges in the same face meeting at v_i have:

- \circ one inversion if one of them is oriented into and the other out of v_i ,
- \circ zero inversions if both of them are oriented into v_i or out of v_i ,
- \circ a *half-inversion* if exactly one of the edges is oriented,
- \circ one inversion if both of them are unoriented and v_i is a live vertex,
- \circ zero inversions if both of them are unoriented and v_i is a dead vertex.

Vertex is *live* if adjacent to an oriented edge; *dead* otherwise.

Lemma 1. Every triangle with at least one live vertex has at least one inversion.

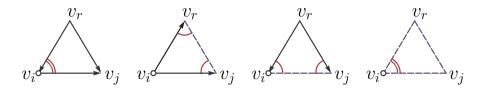


FIGURE 10. Different orientations of $(v_i v_j v_r)$, where vertex v_i is live.

Bound in the other direction:

Lemma 2. There are at most two inversions around every live vertex.

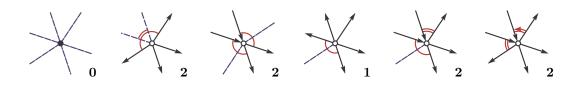


FIGURE 11. The number of inversions around a vertex in different cases.

Proof: Euler's formula + double counting argument.

In other words, Schramm's approach can be used to derive Dehn's rigidity theorem.

Thank you!

