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Theorem [Oded Schramm, “How to cage an egg”, 1992]

Let K ⊂ R
3 be a smooth strictly convex compact body

and let P ⊂ R
3 be a convex polyhedron. Then there exists a

combinatorially equivalent polyhedron Q which midscribes K.

Here Q midscribes K if all edges of Q are tangent to K.

Figure 1. A caged sphere.
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First motivation

Steinitz (1928): Inscribed and circumscribed spheres don’t work.

Figure 2. A polyhedron which cannot be inscribed into a sphere.

Igor Rivin resolved this problem using hyperbolic geometry (c. 1990).
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Second motivation

Question: [Fejes Tóth, Besicovitch, Eggleston, etc., c. 1960]

What is the smallest total length of a cage which holds a unit sphere?

Figure 3. Conjectured optimal polyhedron (later proved incorrect).
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Third (main) motivation

Circle packing: cut the miscribed sphere with facet planes.
This gives gives the circle packing on a sphere corresponding to the
graph dual to P .

Alternatively, draw the circles through the tangent points of edges.

Figure 4. Circles in the facet planes.
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Variational principle approach:

There is a problem with extending traditional variational principle
proofs, even when P ⊂ R

3 is simplicial.

F(P ) :=
∑

e∈P

f(e, P )

Figure 5. Variational principle: summation over edges.

Would need to show that F is convex and min can be attained only on
midscribed polyhedra... (no such proof is known)
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Schramm’s configurations (for non-simple polyhedra)

Configuration: {points, planes}.

Midscribed polyhedron: incidence + tangent conditions.

Figure 6. Schramm’s configurations.
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Schramm’s proof

Idea: Prove the rigidity result first; interpret it as non-degeneration
of the Jacobian of the configuration map and use the inverse function
theorem.

Rigidity:

Figure 7. Rigidity of midscribed polyhedra.
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Topological heart of the proof

The mapping lemma [Alexandrov, 1930’s] Let A and B be two
manifolds of the same dimension. Suppose a map ϕ : A → B satisfies
the following conditions:

1) every connected component of B intersects the image ϕ(A),
2) map ϕ is injective, i.e. ϕ(a1) = ϕ(a2) implies that a1 = a2,
3) map ϕ is continuous,
4) map ϕ is proper.

Then ϕ is a homeomorphism; in particular, ϕ is bijective.

Here by a proper map ϕ we mean that for every sequence of points {ai ∈ A} and
images {bi = ϕ(ai)}, if bi → b ∈ B as i → ∞, then there exists a ∈ A, such that
b = ϕ(a) ∈ B, and a is a limit point of {ai ∈ A}.
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An example to play with

Question: Can one describe all possible angle sequences of convex
n-gons with vertices on given rays?

αi

Figure 8. Angles of a polygon with vertices on rays.

Answer: Yes,
∑

i αi = (n − 2)π,
+ some explicit linear inequalities on αi’s.

Key observation: Given angles, there is at most one such polygon
(up to expansion).
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First touch rule:

P P

P ′ Q

Figure 9. Polygons P, P ′ and the maximal expansion Q = cP ′ ⊂ P .
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Alexandrov’s curvature theorem (1943). Suppose R1, . . . , Rn ⊂
R

3 are rays which do not lie in the same half-space, and suppose
ω1, . . . , ωn ∈ R satisfy the following conditions:

1) ωi > 0 for all i ∈ [n],
2) ω1 + . . . + ωn = 4π,
3)

∑
j /∈I ωj > ω(CI) for every I ⊂ [n], where CI = conv{Ri, i ∈ I}.

Then, up to expansion, there exists a unique convex polytope P ⊂ R
3

which lies on rays Ri and has curvatures ωi at vertices vi ∈ Ri, for all
i ∈ [n]. Conversely, all curvatures ωi of such polytopes P must satisfy
conditions 1)– 3).

Here:

ωi = 2π −
∑

F∋vi

α(F ) .
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Infinitesimal rigidity

Dehn’s Rigidity Theorem: Every simplicial convex polytope in R
3

is infinitesimally rigid.

Here: {v1, . . . , vn} – vertices, {a1, . . . ,an} – velocity vectors

An infinitesimal motion:

(∗) (v i − v j,a i − a j) = 0, for every edge (vi, vj).

Infinitesimal rigidity : every infinitesimal motion is a rigid motion.
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Proof [P, 2006] (inspired by Schramm’s combinatorial tools)

Weaken (∗) to allow the following three possibilities:

1. (v i − v j,a i) = (v i − v j,a j) = 0,
2. (v i − v j,a i) < 0 and (v i − v j,a j) < 0,
3. (v i − v j,a i) > 0 and (v i − v j,a j) > 0.

Orient edges (vi, vj) depending on the sign.

Fix face (v1v2v3) to rid of rigid motions.

Idea: prove that every orientation which satisfies 1,2,3 can have only
unoriented edges, so the corresponding infinitesimal motion is zero.
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Schramm’s inversions:

Two edges in the same face meeting at vi have:

◦ one inversion if one of them is oriented into and the other out of vi,
◦ zero inversions if both of them are oriented into vi or out of vi,
◦ a half-inversion if exactly one of the edges is oriented,
◦ one inversion if both of them are unoriented and vi is a live vertex,
◦ zero inversions if both of them are unoriented and vi is a dead vertex.

Vertex is live if adjacent to an oriented edge; dead otherwise.

Lemma 1. Every triangle with at least one live vertex has at least one

inversion.

vi vi vivivj vj vjvj

vr vr vrvr

Figure 10. Different orientations of (vivjvr), where vertex vi is live.
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Bound in the other direction:

Lemma 2. There are at most two inversions around every live vertex.

0 1 2222

Figure 11. The number of inversions around a vertex in different cases.

Proof: Euler’s formula + double counting argument.

In other words, Schramm’s approach can be used to derive Dehn’s rigid-
ity theorem.
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Thank you!


