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Theorem [Oded Schramm, “How to cage an egg”, 1992]

Let K C R3 be a smooth strictly convex compact body
and let P C R3 be a convex polyhedron. Then there exists a
combinatorially equivalent polyhedron () which midscribes K.

Here () midscribes K if all edges of () are tangent to K.
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FIGURE 1. A caged sphere.



First motivation

Steinitz (1928): Inscribed and circumscribed spheres don’t work.
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FIGURE 2. A polyhedron which cannot be inscribed into a sphere.

[gor Rivin resolved this problem using hyperbolic geometry (c. 1990).



Second motivation
Question: [Fejes T6th, Besicovitch, Eggleston, etc., c. 1960]

What is the smallest total length of a cage which holds a unit sphere?

FIGURE 3. Conjectured optimal polyhedron (later proved incorrect).



Third (main) motivation

Circle packing: cut the miscribed sphere with facet planes.
This gives gives the circle packing on a sphere corresponding to the
graph dual to P.

Alternatively, draw the circles through the tangent points of edges.

F1GURE 4. Circles in the facet planes.
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Variational principle approach:

There is a problem with extending traditional variational principle
proofs, even when P C R? is simplicial.

F(P) =Y fle,P)
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FIGURE 5. Variational principle: summation over edges.

Would need to show that F is convex and min can be attained only on
midscribed polyhedra... (no such proof is known)



Schramm’s configurations (for non-simple polyhedra)

Configuration: {points, planes}.
Midscribed polyhedron: incidence + tangent conditions.

FIGURE 6. Schramm’s configurations.
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Schramm’s proof

Idea: Prove the rigidity result first; interpret it as non-degeneration
of the Jacobian of the configuration map and use the inverse function
theorem.

Rigidity:

F1cURE 7. Rigidity of midscribed polyhedra.



Topological heart of the proof

The mapping lemma [Alexandrov, 1930’s] Let .4 and B be two
manifolds of the same dimension. Suppose a map ¢ : A — B satisfies
the following conditions:

1) every connected component of B intersects the image ¢(.A),
2) map ¢ is injective, i.e. p(a;) = ¢(az) implies that a; = as,
3) map ¢ is continuous,

4) map ¢ is proper.
Then ¢ is a homeomorphism; in particular, ¢ is bijective.

Here by a proper map ¢ we mean that for every sequence of points {a; € A} and
images {b; = p(a;)}, if b — b € B as i — oo, then there exists a € A, such that
b= ¢(a) € B, and a is a limit point of {a; € A}.
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An example to play with

Question: Can one describe all possible angle sequences of convex
n-gons with vertices on given rays?

FiGURE 8. Angles of a polygon with vertices on rays.

Answer: Yes, > .a; = (n—2)m,
+ some explicit linear inequalities on «;’s.

Key observation: Given angles, there is at most one such polygon
(up to expansion).



First touch rule:

FI1GURE 9. Polygons P, P’ and the maximal expansion ) = c¢P’ C P.
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Alexandrov’s curvature theorem (1943). Suppose Ry,..., R, C
R3 are rays which do not lie in the same half-space, and suppose
wi, ...,w, € R satisfy the following conditions:

1) w; >0 for all i € [n],

2) wi+ ...+ w, =4m,

3) 2_jerwi > w(Cr) for every I C [n], where Cr = conv{R;,i € I}.
Then, up to expansion, there exists a unique convex polytope P C R?
which lies on rays R; and has curvatures w; at vertices v; € R;, for all

i € [n]. Conversely, all curvatures w; of such polytopes P must satisfy
conditions 1)—3).

Here:

wi = 21 — Zoz(F).

F>v;
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Infinitesimal rigidity

Dehn’s Rigidity Theorem: Fuvery simplicial convez polytope in R3
is infinitesimally rigid.

Here: {uvy,...,v,} — vertices, {aq,...,a,} — velocity vectors
An infinitesimal motion:

(%) (vi —vj,a; —a;) =0, forevery edge (v;,v;).

Infinitesimal rigidity: every infinitesimal motion is a rigid motion.
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Proof [P, 2006] (inspired by Schramm’s combinatorial tools)

Weaken (x) to allow the following three possibilities:
1. (’UZ'—’UJ',CLZ') = (’UZ'— 'vj,a,j) :O,
2. (vi—’vj,ai) < 0 and (fvi—vj,aj) < 0,
3. (v;—v,,a;) >0 and (v, —vj,a;) > 0.

Orient edges (v;,v;) depending on the sign.
Fix face (v1vyv3) to rid of rigid motions.

Idea: prove that every orientation which satisfies 1,2,3 can have only
unoriented edges, so the corresponding infinitesimal motion is zero.



15

Schramm’s inversions:

Two edges in the same face meeting at v; have:

o one inversion if one of them is oriented into and the other out of v;,
zero inversions if both of them are oriented into v; or out of v;,

a half-inversion if exactly one of the edges is oriented,

one nversion if both of them are unoriented and v; is a live vertex,
zero 1nwversions if both of them are unoriented and v; is a dead vertex.

Vertex is [we if adjacent to an oriented edge; dead otherwise.

Lemma 1. Fuvery triangle with at least one live vertex has at least one
IMUErsion.

o
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F1GURE 10. Different orientations of (v;vjv,), where vertex v; is live.
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Bound in the other direction:

Lemma 2. There are at most two inversions around every live vertex.

FIGURE 11. The number of inversions around a vertex in different cases.

Proof: Euler’s formula + double counting argument.

In other words, Schramm’s approach can be used to derive Dehn’s rigid-
ity theorem.



Thank you!
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