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The Problem:

A simplex ∆ ⊂ Rd is acute if all its dihedral angles are < π/2.

An acute triangulation is a finite subdivision into acute simplices.

1. For a convex polytope P ⊂ Rd, find an acute triangulation.

2. Find an acute partition of Rd.

Figure 1. An acute triangulation and an acute dissection of a square.
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Why acute triangulations?

• Classical geometric problem.

• Finite element method.

• Large recreational literature.
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Acute triangulations in the plane

Theorem [BZ] Every polygon in the plane has an acute triangulation.

B Proposed by Martin Garner (Scientific American, 1960)

B Resolved independently by Burago–Zalgaller (1960)

Existence only, no bounds follows from the proof.

B Easy to do in practice (Delaunay triangulations).

B Beginning 1980’s heavily studied in the DCG community

Optimal result: Bern–Mitchell–Ruppert (1995) + Maehara (2002)
give a linear size acute triangulation of a polygon
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Dimensionality curse

Philosophy: the higher the dimension, the harder it is to make
acute triangulations (both theoretically and practically).

d = 2 – relatively easy

d = 3 – possible sometimes; perhaps, always

d = 4 – impossible sometimes; perhaps, very rarely

d ≥ 5 – always impossible

Main Corollary. The d-dimensional cube has an acute triangulation
if and only if d ≤ 3.

Observation: Faces of an acute d-simplex are also acute simplices. Thus, acute
triangulation of a d-cube contains acute triangulations of all n-cubes, for n < d.
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d = 3 case: the beginning of a beautiful friendship

♥ Eppstein–Sullivan–Üngör (2004) construct a periodic acute partition

of R3 (the proof is based on Sommerville’s space–filling tetrahedra).

♥ VanderZee–Hirani–Zharnitsky–Guoy, Kopczyński–P.–Przytycki (2009) :

¦ acute triangulation of a cube (VHZG: 1370, KPP: 2715 tetrahedra)

¦ acute triangulation of all Platonic solids (KPP)

¦ VHZG proof uses advanced simulation (mesh-improving technique)

¦ KPP proof uses the 600–cell (regular polytope in R4)

Conjecture: Every convex polytope in R3 has an acute triangulation.

The 600-cell:

Figure 2. Graph drawn in the perspective projection of the 600-cell.



7

d ≥ 5 case: completely impossible

Theorem∗ A point in R5 cannot be surrounded with acute simplices.

Proof steps:

1) A triangulation of a d-manifold M is rich if every codim2 face
is surrounded with at least 5 simplices.

2) Use the generalized Dehn–Sommerville equations to show that
for every rich 4-manifold M , we have:

# of points inM ≤ χ(M).

3) For d = 5, take simplices containing a given point.
They form a rich triangulation of a 4-sphere, a contradiction.

4) The d = 5 case implies all d > 5 (Kř́ıžek).

∗ Kř́ıžek (2006) gave an erroneous proof of the theorem.

Kalai (1990) proved a strongly related theorem.
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D–S equations for simplicial manifolds:

Theorem [Klee (1964), Macdonald (1971)]

Let M be a compact m–dimensional triangulated manifold

with boundary. For k = 0, . . . , m, we have:

fk(M)− fk(∂M) =
m∑

i=k

(−1)i+m

(
i + 1

k + 1

)
fi(M).
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d = 4 case: the tipping point

1) The 4-cube does not have an acute triangulation. (KPP)

2) There is no periodic acute partition of R4. (KPP)

Main Theorem [KPP] There is no partition of R4 into

simplices with all dihedral angles < π − ε, for every ε > 0.

Conjecture∗ : Space R4 has an acute partition.

∗ Brandts–Korotov–Kř́ıžek–Šolc (2009) make the opposite conjecture.
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Proofs of two basic d = 4 results.

2) Acute triangulation of a 4–cube can be repeatedly reflected to make
a periodic acute partition of the whole space R4.

1) A periodic acute partition of R4 gives a rich triangulation of a
4–torus, a contradiction.

Note: Although the regular cross-polytope tiles R4 periodically, this does not ex-

tend to its triangulations, and the above argument fails. Still, we conjecture that the

regular cross-polytope does not have acute triangulations.
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Proof of the main theorem:

(i) Check that if all dihedral angles are < π − ε, then the ratio of the
edge lengths in every tetrahedron is bounded.

(ii) Use generalized D–S equations for simplicial (homology) manifolds
to derive the 4-parabolicity of graphs of rich such partitions of R4.
(via quasi-conformal mappings, after Bonk–Kleiner, 2002).

(iii) Get a contradiction with the Benjamini–Curien (2009) isoperi-
metric inequality (an extension of the Benjamini–Schramm inequality which they

used to establish impossibility of certain kissing sphere configurations in higher di-

mensions).
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Thank you!
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Finite element applications:

Input: triangulated surface S ⊂ R3.

Goal: find a good∗ triangulation of the interior of S.

∗ good means all tetrahedra are as close to regular as possible.


