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What is Enumerative Combinatorics?

Selected combinatorial sequences (from 0OEIS):

A000001: 1,1,1,2,1,2,1,5,2,2, 1,5 1,2, 1, 14, ... < finite groups
A000040: 2,3, 5,7, 11,13, 17, 19, 23, 29, 31, 37, 41, ... < primes
A000041: 1,1, 2, 3,5, 7,11, 15, 22, 30, 42, 56, 77, 101, ... < p(n)
A000045: 1,1, 2,3, 5,8, 13, 21, 34, 55, 89, 144, 232, ... + Fib(n)
A000085: 1, 1,2, 4, 10, 26, 76, 232, 764, 2620, 9496, ... <« involutions in S,
A000108: 1,2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ... <+ Cat(n)

A000088: 1,1, 4, 38, 728, 26704, 1866256, 251548592, ... <— connected
labeled graphs

Main question: Is there a formula?



What i1s a formula?

(A) The most satisfactory form of f(n) is a completely ex-
plicit closed formula involving only well-known functions, and
free from summation symbols. Only in rare cases will such a for-
mula exist. As formulas for f(n) become more complicated, our
willingness to accept them as “determinations” of f(n) decreases.

Richard Stanley, Enumerative Combinatorics, (1986)

(B) Formula = Algorithm working in time Poly(n).

Herb Wilf, What is an answer? (1982)

(C) Asymptotic formula
(A) = (B), (C) ?7



Asymptotic formulas:

1
Fib(n) ~ — ¢", where ¢ = (1+ \/5)/2 [de Moivre, c. 1705]
V5
n

Cat(n) ~ W [Euler + Stirling, 1751]
pn ~ nlogn [Hadamard, Vallée-Poussin, 1896]

1 /o2
#{integer partitions ofn} ~ eV 2n/3 [Hardy, Ramanujan, 1918|

4\/§ n
1 n/2

#{involutions in S,,} ~ Jaeli (g) eV’ [Chowla, 1950]
#{groups of order < n} ~ p v (logz n)? [Pyber, 1993]

#{graphs on n vertices} ~ 2(3) [ random graph is connected w.h.p.|



Fibonacci numbers:

F(n) = number of 0-1 sequences of length n — 1 with no (11).
F(3)=3, {00,01,10}. F(4)=5, {000,001,010,100,101}.

(1)  Fn+1) = Fn) + Fn-1)

o -3 ("))

1=0

® P = (0" + -1ep)

Observe: “Closed formula” (3) is not useful for the exact com-
putation, but (1) is the best.

Moral: What'’s the best “closed formula” is complicated!



Derangement numbers:

D(n) = number of o € S, s.t. o(i) #i forall 1 <i<n
D) =1, {21}. D(2)=2, {231, 312}. D(3) =9, D(4) = 44, ...

Observation: Formula (1) is neither combinatorial nor useful
for the exact computation. Summation formula (2) explains (¢),
but the recursive formula (3) is most useful for computation.



Ménage numbers:

M (n) = number of ways to seat n couples at a dining table so that
men and women alternate and spouses do not seat together.

M(2)=0. M(3) =12, e.g. [2a3blc]| if couples are 1a, 2b, 3c

Formulas: M(n) = 2nla(n), where a(n)~ n!/e’

W at) = S0 (o -

k=0

(2) a(n) = nA,_1 + 24, 9 — (n—4)A,_3 — A4

Here (2) by Lucas (1891) and (1) by Touchard (1934).

Of course, (2) is better even if (1) is more explicit!



Generating Functions

Let {a,} be a combinatorial sequence. Define

Alt) =) ant”

n

Question: Does A(t) have a closed formula?

1) Let a, = F(n). Then:

1
AN = T
2) a, = Cat(n) = #1(2;:) Then:
At) = 1 —+/1—4t




More examples

3) a,= number of involutions o € S, i.e. o’ =1.

Ap = Ap—1+ (n - 1)an—2

ay, 9
}: Ann _ 4822
n!

n

4) p(n)= number of integer partitions of n, e.g. p(4) =5
4=4+1=24+2=2+1+1=1+1+1+1

- 1
zn:p(n)t” = g T




Classes of combinatorial sequences

(1) rational if gf. A(t)= P(t)/Q(t), P,Q € Zlt]
Equivalent: cya, +cia,—1+ ...+ cra,—; = 0 for some ¢; € Z.

Examples: 2", Fibonacci numbers, Lah numbers, etc.

(2) algebraic if gf. cg A"+t A"+ ...+ =0, ¢(t) € Z[t]

Examples: Catalan numbers, Motzkin numbers, etc.

(3) Binomaal sums. For a;, B+ Z¢ — 7 linear functions:
B Z (a1 v, n)) (ar(v,n))
61 v n) 67‘</Uvn)

Examples: derangement numbers, ménage numbers, etc.



P-recursive sequences

(4) D-finite gf. coA+ct A+ ...+ AW =0, ¢(t) € Z[t]

Equivalent: ro(n)a, +ri(n)a,—1+...+r(n)a,—, ri(n) € Zn]

Sequences {a,} are called polynomzally (P-) recursive.
Observation: P-recursive sequences are computable in poly time.

Examples: n!, Fibonacci numbers, Catalan numbers, number
of involutions, ménage numbers, etc.

Theorem: (1), (2), (3) C (4)

Non-examples: primes, number of partitions, number of con-
nected graphs



Asymptotics of P-recursive sequences

Claim (Birkhoff, etc.| Let {a,} be P=recursive. Then:
a, ~ C(n!)*\" e@m'/™) n“(logn)’

where Q(z) is a polynomial of deg < m, A€ Q, a,5 € Q, 3,m € N

Theorem |many people]

If {a,} be P-recursive, a,, € N and a,, < C". Then:
a, ~ CA'n%(logn)”

where A € Q, a € Q, B € N.

Note: this includes all of (3).



Algebraic Differential Equations

(5) ADE gf Q(t, A A, ..., A%)) =0 Q<cZt xg,x1,...,24
Observation: ADE sequences are computable in poly time.

Example: a, = #{0(1) < o(2) >0c(3) < ... € S,}. Eg. a3=2,
{132,231}. These are called alternating permutations. Then the
e.g.f.

2A = A* + 1, A(t) = tan(t) + sec(t)

Note: Jacobi proved in 1848 that the Dirichlet theta function
O(t) = Z " satisfies an explicit form ADE.

Curiously, for )" " this is open, but conjectured false.



Permutation classes

Permutation o € S,, contains w € S if M, is a submatrix of M,.

Otherwise, o avoids w. Such w are called patterns.

For example, (5674123) contains (321) but avoids (4321).

For a set of patterns F C Sy, denote C,(F) the set of o € S,
avoiding each w € F. Let C,(F) = |C(F)|.



Notable examples:

(1) C,(123) = C,,(213) = Cat(n) [MacMahon, 1915] and [Knuth, 1973].
(2) C,(123,132,213) = Fib(n + 1) [Simion, Schmidt, 1985]

(3) C,(2413,3142) =Schroder(n) |Shapiro, Stephens, 1991|

(4) C,(1234) = C,(2143) is P=recursive |Gessel, 1990]

(5) C,(1342) is algebraic [Bona, 1997]

(6) C,(3412,4231) is algebraic [Bousquet-Mélou, Butler, 2007]
counts the number of smooth Schubert varieties X,, o € .5,,,

by [Lakshmibai, Sandhya, 1990].



Main result

Noonan—Zeilberger Conjecture:
For every F C S, the sequence {C,,(F)} is P-recursive.
(Equivalently, the g.f. for {C,(F)} is D-finite).

Theorem 1. |Garrabrant, P., 2015+]

NZ Conjecture is false. To be precise, there is a set F C Sy,
| F| < 31000, s.t. {C,,(F)} is not P-recursive.



A bit of history

e First stated as an open problem by Gessel (1990)

e Upgraded to a conjecture and extended to count copies

contained of each pattern, by Noonan and Zeilberger (1996)
e Atkinson reduced the extended version to the original (1999)

e In 2005, Zeilberger changes his mind, conjectures that
{C,,(1324)} is not P-recursive [this is still open]

e In 2014, Zeilberger changes his mind half-way back, writes:

“if I had to bet on it now I would give only a 50% chance”.



As bad as it gets!

Main Lemma [here X is LARGE, to be clarified below]

Let £ : N — N be a function in X. Then there exist k,a,b € N
and sets of patterns F, F' C S}, s.t.

E(n) = Counap(F) — Conap(F') mod 2 for all n.

Note: Here mod 2 can me changed to any mod p but cannot be completely
removed. For example, C,,(F) = 0 implies C,,1(F) = 0, which does not hold
for functions ¢ € X.

Theorem 2. |Garrabrant, P., 2015+]
The problem whether C,,(F) — C,(F') = 0 mod 2 for all n > 1,

is undecidable.



Not convinced yet?

Corollary 1. For all k large enough, there exists 7, F' C S} such
that the smallest n for which C),(F) # C,,(F') mod 2 satisfies

Corollary 2. There exist two finite sets of patterns F and F’,

such that the problem of whether C,(F) = C,(F’) mod 2
for all n € N, is independent of ZFC.



Computational Complexity Classes

&P = parity version of the class of counting problem #P
e.g. @Hamiltonian cycles in G € @GP

P # ®P is similar to P = NP
In fact, P = ®P implies PH = NP = BPP [by Toda’s theorem]

EXP = exponential time
PEXP = exponential time version of &P

e.g. @Hamiltonian 3-connected graphs on n vertices € GEXP

EXP # @EXP is similar to P # &P

believed to be correct for more technical CC reasons,



Complexity Implications

Theorem 3. [Garrabrant, P.; 2015+]
If EXP # ®EXP, then there exists a finite set of patterns F,
such that the sequence {C,(F)} cannot be computed in time

polynomial in n.

Remark 1: All sequences with D-finite g.f. can be computed in
time polynomial in n.

Remark 2: This also answers to Wilf’s question (1982):

Can one describe a reasonable and natural family of combinatorial
enumeration problems for which there is provably no polynomial-
in-n time formula or algorithm to compute f(n)?



Two-stack Automata

In the Main Lemma, X = {{1}, where {p(n) = number of

balanced paths of some two-stack automaton I'.

Here £(1) = £(2)

Note: Two-stack automata are as powerful as Turing machines.



How not to be P-recursive

Lemma 1. Let {a,} be a P-recursive sequence, and let &@ =
(o, ,...) € {0,1}*°) a; = a; mod 2. Then there is a finite
binary word w € {0, 1}* which is NOT a subword of @.

Lemma 2. There is a two-stack automaton I' s.t. the number of
balanced paths &p(n) is given by the sequence

0, 1, 0,0, 0,1, 1,0, 1,1, 0,0,0, 0,0,1, 0,1,0, ...

Now Lemma 1, Lemma 2 and Main Lemma imply Theorem 1.



Main Lemma: outline

(0) Allow general partial patterns (rectangular 0-1 matrices

with no two 1’s in the same row or column).

(1) Fix a sufficiently large “alphabet” of “incomparable” matrices
Specifically, we take all simple 10-permutations which contain (5674123).
Arbitrarily name them P, Q,B,B',E,T1,...,T,, Z1, ..., Zpy.

(2) Thinking of T}’s as vertices of I and Z; as variables z,, y,,
select block matrices F to simulate I'. Let ' = FU{B, B'}.

(3) Define involution W on C,(F) \ C,(F') by B <+ B’. Check
that fixed points of W are in bijection with balanced paths in I'.



Sample of forbidden matrices in F :
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Notes on the proof

(i) We use exactly 6854 partial patterns.

(ii) Automaton I' in Lemma 2 uses 31 vertices, which is why
the alphabet has size 10 x 10 only.

(iii) The largest matrix in F has 8 x 8 blocks,

which is why Theorem 1 has permutations in Sgg.

(iv) Proof of Lemma 1 has 2 paragraphs, but it took over a year

of hard work to state. Natural extensions remain open.

Conjecture 0. [Garrabrant, P.| Let @ be as in Lemma 1.
Then @ has O(n) subwords of length n.



The non-ADE extension

Theorem 1'. |Garrabrant, P., in preparation]

There is a set F C Sy, s.t. the g.f. for {C,(F)} is not ADE.

Lemma 1’. Let {a,} be an integer sequence, and let {n;} be the
sequences of indices with odd a,,. Suppose

1) for all b,c € N, there exists k such that ny =b mod 2°,
2) ng/np1 — 0as k — o0o.
Then the g.f. for {a,} is not ADE.

Corollary. Let {a,} be an integer sequence, s.t. a, is odd if only
if n = k! + k, for some k. Then the g.f. for {a,} is not ADE.

Note: cf. EC2, Exc. 6.63c.



First prequel: Wang tilings

Long and classical story going back to 1960s (Wang, Berger, Robin-
son, etc.) Key result: tileability of the plane with fixed set of Wang
tiles is undecidable. Delicate part: ensuring that the “seed tile”
must be present in a tiling. This is what we do by introducing F.



Second prequel: Kontsevich’s problem

Let G be a group and Z|G] denote its group ring. Fix u € Z|G].
Let a,, = [1]u", where [g]u denote the value of u on g € G.

In 2014, Maxim Kontsevich asked whether {a,} is always
P-recursive when G C GL(k, Z).

Theorem 4. [Garrabrant, P.; 2015+]
There exists an element u € Z[SL(4,7Z)], such that the sequence

{[1]u"} is not P-recursive.

Note: Proof uses the same Lemma 1(!)

When G = ZF or G = F}, the sequence {a,} is known to be
P-recursive for all u € Z[G] (Haiman, 1993).



Open problems:

Conjecture 1. The Wilf-equivalence problem of whether
Cu(F1) = Cp(F) for all n € N is undecidable.

Conjecture 2. For forbidden sets with a single permutation
| F| = |F'| = 1, the Wilf-equivalence problem is decidable.

Conjecture 3. Sequence {C,(1324)} is not P-recursive.

Conjecture 4. There exists a finite set of patterns F, s.t.
computing {C,(F)} is #EXP-complete, and
computing {C,(F) mod 2} is GEXP-complete.



Grand Finale:

A story how Doron Zeilberger lost faith and then lost $100.



Thank you!




