Combinatorial Inequalities

Igor Pak, UCLA

Colloquium, Yale University (May 5, 2021)

Maximal dimension of S_n representations

Accordingly, we set up and carried out the calculation of the complete character tables of the symmetric groups of degree n = 15 and 16 using the Los Alamos Electronic Computer (MANIAC).

MANIAC

From Wikipedia, the free encyclopedia

(Mathematical Analyzer Numerical Integrator and Automatic Computer Model I)

MANIAC weighed about 1,000 pounds

Paul Stein and Nick Metropolis

⁹ The following question is of some practical interest: given n, for what partition (λ) does (9) take its largest value, and how does this value vary with n? The authors have been unable to find any discussion of this problem in the literature.

Maximal dimension of S_n representations

Burnside formula: $\sum (f^{\lambda})^2 = n!$ **Corollary:** $\lambda \vdash n$ $\log D_n = \frac{1}{2} n \log n - \frac{1}{2} n - O(\sqrt{n})$ $D_n \leq \sqrt{n!}, \quad D_n \geq \sqrt{n!/p(n)},$ where $p(n) = e^{O(\sqrt{n})}$ is the number of partitions. *Vershik–Kerov–Pass Conjecture:* $\log D_n = \frac{1}{2} n \log n - \frac{1}{2} n - c\sqrt{n} + o(\sqrt{n})$

Partition $\lambda \vdash n$ with maximal dimension

Highest degree of an irreducible representation of symmetric group S_n of degree n. A003040 1, 1, 2, 3, 6, 16, 35, 90, 216, 768, 2310, 7700, 21450, 69498, 292864, 1153152, 4873050, 16336320, 64664600, 249420600, 1118939184, 5462865408, 28542158568, 117487079424, 547591590000,

p(81) = 18,004,327

Partition $\lambda \vdash n$ with maximal dimension

${f Littlewood-Richardson\ coefficients} \ coefficients \ c_{\mu, u}^{\lambda}$

structure constants in the ring of characters of $\operatorname{GL}_N(\mathbb{C})$

$$s_{\mu} \cdot s_{\nu} = \sum_{\lambda \vdash n} c_{\mu,\nu}^{\lambda} s_{\lambda} \quad \underline{\qquad} |\lambda| = |\mu| + |\nu| = n \underline{\qquad}$$

Schur functions

Maximal Littlewood–Richardson coefficients **Theorem** (Stanley, 2016) $\max_{0 \le k \le n} \max_{\lambda \vdash n} \max_{\mu \vdash k} \max_{\nu \vdash n-k} c_{\mu,\nu}^{\lambda} = 2^{n/2 - O(\sqrt{n})}$ $\sum_{n\geq 0} \sum_{\lambda,\mu,\nu\vdash n} \left(c_{\mu,\nu}^{\lambda} \right)^2 q^{|\mu|} t^{|\nu|} = \prod_{i=1}^{n} \frac{1}{1-q^i-t^i}$ Harris-Willenbring identity (2014) $n \ge 0 \ \lambda, \mu, \nu \vdash n$ $\mathbf{C}(n,k) := \max_{\lambda \vdash n} \max_{\mu \vdash k} \max_{\nu \vdash n-k} c_{\mu,\nu}^{\lambda}$ $\sum_{\lambda \vdash n} \sum_{\mu \vdash k, \nu \vdash n-k} \left(c_{\mu,\nu}^{\lambda} \right)^2 \ge \binom{n}{k}$ **Theorem** (P.–Panova–Yeliussizov, 2019) $\forall k$ $\sqrt{\binom{n}{k}} e^{O(\sqrt{n})} \leq \mathbf{C}(n,k) \leq \sqrt{\binom{n}{k}}$ $\sum_{\lambda=1}^{n} \left(c_{\mu,\nu}^{\lambda} \right)^2 \leq \binom{n}{k}$ $\forall \mu \vdash k, \nu \vdash n-k$ $\lambda \vdash n$

$Maximal\ Littlewood-Richardson\ coefficients$

Question: What are the shapes which achieve the max?

 Answer:
 VKLS shapes!

 Formally, $\forall \mu, \nu$ VKLS shape $\exists \lambda$

 LSVK shape ...
 [PPY, 2019]

Note: Major difference between *max-dim* and *max-LR* problems

 $max-dim \iff VKLS shape$

max-LR \implies VKLS shapes for $\lambda, \mu, \nu \longrightarrow \notin (??)$

Kronecker coefficients

structure constants in the ring of characters of S_n

$$\lambda, \mu, \nu \vdash n _ \quad \chi^{\mu} \cdot \chi^{\mu} = \sum_{\lambda \vdash n} g(\lambda, \mu, \nu) \chi^{\lambda}$$

 $g(\lambda,\mu,\nu) = \frac{1}{n!} \sum_{\sigma \in S_n} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{\nu}(\sigma) \implies g(\lambda,\mu,\nu) = g(\lambda,\nu,\mu) = g(\mu,\lambda,\nu) = \dots$

Open Problem (Murnaghan, 1938)**Conjecture:**Give a combinatorial interpretation for $g(\lambda, \mu, \nu)$. $g(\lambda, \mu, \nu) \notin \#\mathsf{P}$

Note: This is known in a few (very) special cases

$$\begin{array}{l} \textbf{Maximal Kronecker coefficient} \\ \textbf{Theorem (Stanley, 2016)} \\ \underset{\lambda \vdash n \ \mu \vdash n \ \nu \vdash n}{\max} g(\lambda, \mu, \nu) = \sqrt{n!} e^{-O(\sqrt{n})} \\ \textbf{Proposition} \quad g(\lambda, \mu, \nu) \leq \min\{f^{\lambda}, f^{\mu}, f^{\nu}\} \qquad \Longrightarrow \qquad K_n \leq D_n \\ \textbf{Proof} \quad g(\lambda, \mu, \nu) \leq \frac{f^{\lambda} f^{\mu}}{f^{\nu}} \leq f^{\lambda}, \quad \text{for all } f^{\lambda} \leq f^{\mu} \leq f^{\nu} \\ \textbf{Theorem (P.-Panova-Yeliussizov, 2019)} \\ \sum_{\lambda, \mu, \nu \vdash n} g(\lambda, \mu, \nu)^2 = n! \left(1 + \frac{2}{n^2} + O\left(\frac{1}{n^3}\right)\right) \\ \textbf{max-Kron} \qquad \Rightarrow \quad \textbf{VKLS shapes for } \lambda, \mu, \nu \qquad \notin (??) \end{array}$$

Bounds on Kronecker coefficients Theorem (P.–Panova, 2020) > 0 $g(\lambda, \mu, \nu) \leq \operatorname{CT}(\lambda, \mu, \nu)$ where $\operatorname{CT}(\lambda, \mu, \nu) = \# [3\text{-dim contingency tables with marginals } \lambda, \mu, \nu].$ **Theorem** (P.–Panova, 2020) Let $\ell(\lambda) = \ell$, $\ell(\mu) = m$, and $\ell(\nu) = r$. Then: Example: $\lambda = \mu = \nu = (\ell^2)^{\ell}$. Prop. gives $g(\lambda, \mu, \nu) \leq f^{\lambda} \approx e^{\frac{1}{3}n \log n - O(n)}$ $g(\lambda,\mu,\nu) \leq \left(1+\frac{\ell m r}{n}\right)^n \left(1+\frac{n}{\ell m r}\right)^{\ell m r}$ Thm gives $g(\lambda, \mu, \nu) \leq 4^n$. We conjecture: $g(\lambda, \mu, \nu) = 4^{n-o(n)}$. Proof uses [Barvinok'09] and *majorization* over reals. *Issue*: no combinatorial interpretation

Conjectural lower bounds Staircase shape $\delta_k := (k-1, k-2, \dots, 2, 1) \vdash n = \binom{k}{2}$ ∂_6 **Conjecture:** $g(\delta_k, \delta_k, \delta_k) = \sqrt{n!} e^{-O(n)}$ Best known lower bound: $g(\delta_k, \delta_k, \delta_k) \geq 1$ [Bessenrodt–Behns'04] **Saxl Conjecture:** $g(\delta_k, \delta_k, \mu) > 0$ for all $\mu \vdash \binom{k}{2}$. Remains open (2012) [Ikenmeyer'15], [P.–Panova–Vallejo'16] \leftarrow various families of μ [Luo-Sellke'17] \leftarrow random $\mu \vdash \binom{k}{2}$ [Bessenrodt-Bowman-Sutton] $\leftarrow \mu \vdash \binom{k}{2}$ s.t. f^{μ} is odd

Complexity aspects $f^{\lambda} \in \mathsf{FP} \leftarrow \operatorname{can}$ be computed in poly-time (via the hook-length formula) $c_{\mu,\nu}^{\lambda} \in \#\mathsf{P}\text{-complete} \leftarrow \text{ probably not (for input in binary, open in unary)}$ **Theorem** [Ikenmeyer–Mulmuley–Walter, 2017] $g(\lambda, \mu, \nu) \in \#\mathsf{P}\text{-hard} \leftarrow \text{(for input in unary)}$ $g(\lambda, \mu, \nu) >^? 0 \in \mathsf{NP}\text{-hard} \leftarrow (\text{for input in unary})$ **Theorem** [Bürgisser–Ikenmeyer, 2008]: $\exists g(\lambda, \mu, \nu) \in \mathsf{GapP} := \#\mathsf{P} - \#\mathsf{P}$ $g(\lambda,\mu,\nu) = \sum \sum \sum \sin(\omega\pi\tau) \cdot \operatorname{CT}(\lambda+1_{\ell}-\omega,\mu+1_m-\pi,\lambda+1_r-\tau)$ [P.-Panova, 2017] $\omega \in S_{\ell} \ \pi \in S_m \ \tau \in S_r$

Complexity aspects

Theorem [Hepler, 1994]

 $\chi^{\lambda}(\mu) \in \# \mathsf{P}\text{-hard} \leftarrow \text{(for input in unary)}$

Murnaghan–Nakayama rule $\implies = \chi^{\lambda}(\mu) \in \mathsf{GapP} = \#\mathsf{P} - \#\mathsf{P}$

Theorem [Ikenmeyer–P.–Panova, 2021+] $\chi^{\lambda}(\mu)^2 = 0 \in \mathbb{C}_{=}\mathbb{P}$ -hard \leftarrow as hard as any $\mathbb{GapP}^2 = 0$ \implies There is probably NO combinatorial interpretation for $\chi^{\lambda}(\mu)^2$ (unless PH collapses)

Sidorenko inequality

 $\overline{\sigma} := (\sigma(n), \dots, \sigma(1))$

Theorem [Sidorenko, 1991]

 $e(\sigma) \cdot e(\overline{\sigma}) \ge n!$

Theorem [P., 2021+]

 $e(\sigma) \cdot e(\overline{\sigma}) - n! \in \#\mathsf{P}$

Original proof uses Combinatorial Optimization. Alternative proof and generalization to other

root systems by [Gaetz–Gao, 2020]

The *defect* in Sidorenko's inequality has a combinatorial interpretation.

Based on a new proof of Sidorenko's inequality with a computable injection $RHS \longrightarrow LHS$

