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Plan of the talk:

1) Overview of combinatorial inequalities and their proofs
2) Recent results

Main thing to remember:
good inequalities deserve a good proof!



First examples

(1) Fib(n+1) < 2"  Definition: Fib(n+1) = # 0/1 sequences of length n with no 11



First examples

(1) Fib(n+1) < 2™  Definition
(2) (n) < (”) < (”’) < ... < (['n:r;Qj) Direct calculation

(3) Cat(n) < Bell(n) Induction [Kuznetsov—P.—Postnikov’94]

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975

(4)  pn) <pn+1) Injection p(n)= number of integer partitions of n
1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231

p(n + 1) — p(n) = number of partitions of (n + 1) with no parts 1



FirSt examples Note: inequalities (1) — (4)

can be proved by direct injection,
=

Fib(n + 1) < 2"  Definition while (5) <« unlikely!

) <) <) <... < (L'T:;QJ) Direct calculation (7) = (,",) = # ballot sequences
[Bertrand, 1887]

Cat(n) < Bell(n)  Induction [Kuznetsov—P.—Postnikov’94]
1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
1, 2, 5, 15, 52, 203, 877, 4148, 21147, 115975

p(n) <pn+1) Injection p(n)= number of integer partitions of n
3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231

p(n)>>pn+1)p(n—1) n>25 Asymptotics [DeSalvo-P.'15] 1 o
p(n) ~ exp (ﬂ' —)
4n+/3 3



More examples

(6)  Unimodality of Gaussian coefficients pab(o) < pa(l) < ..

(a:b)q _ (qf‘;_—ll)) ...((qaibl Z .

pap(n) = number of partitions of n which fit rectanglc la x b

. S pab( Lab/gj)

6
() = 14+q¢+2¢"+3¢"+3¢" +3¢° +3¢" +2¢" + ¢" + ¢"
q




More examples

(6)  Unimodality of Gaussian coeﬁ%cz’ents pab(U) < pa(l) < ... < pap(lab/2])

( a+b

(1), - e

pap(n) = number of partitions of n which fit rectanglc la x b

Congectured: [Cayley, 1850]

Proctor, 1982] (linear algebra)
(O’Hara, 1990

Sylvester, 1878| (invariant theory)
Stanley, 1980] (hard Lefschetz theorem)

(q _1 Zpab

(combinatorial proof, not injective!)
P—Panova, 2013| (Kronecker coefficients, strict)

Want: Combinatorial interpretation for pg(n) — pa(n — 1)
(none “nice” are known, cf. [P.—Panova’15])



M ore exam p | es Want: Combinatorial interpretation

for the difference

(7)  Log-concavity of the matching numbers: m(G)? > mp1(G)my_1(G)
my(G) == # k-matchings in G = (V, E)

'Heilmann-Lieb, 1972] (interlacing of eigenvalues)

Krattenthaler, 1996] (injective proof)

Theory of monomer-dimer systems
QOJ Heilmann, EH Lieb - Statistical Mechanics, 1972 - Springer
We investigate the general monomer-dimer partition function, P(x), which is a polynomial in

the maonomer activity, x, with coefficients depending on the dimer activities. Our main result is ...

v¢ Save 99 Cite Cited by 752 Related articles All 14 versions




More exam o les Want: Combinatorial interpretation

for the difference

(8)  Log-concavity of the forest numbers: fi.(G)?* > fii1(G) fi_1(G)
f1(G) := # spanning k-forests in G = (V, E)

Conjectured: [Mason, 1972], [Welsh, 1976]

Adiprasito-Huh-Katz, 2018] (Hodge theory)

Briandén-Huh, 2020], [Anari et. al, 2018] (Lorentzian polynomials)
Chan—P., 2021] (linear algebra)

Open Problem:

Find a combinatorial interpretation for pp(G) = fi.(G)? — fii1(G) fr_1(G)
More precisely, is pp(G) € #P ¢

Note: Computing fi(G) is #P-complete.



Want: Combinatorial interpretation
for the difference

More examples

(9)  Grimmelt’s inequality |[Grimmett, 1976] (linear algebra)

“G) < %( oIm )nl

n—1

t(G) = number of spanning trees in simple G = (V, E), |V|=n and |E| =m

Observation:

7(G) € FP, ie. can be computed in polynomial time (by matriz-tree theorem)

r(G) = @m)" — n(n —1)""H(G) > 0

Therefore, 7(G) € #P, i.e. 7(G) has a combinatorial interpretation

(from Computational Complexity POV).



More exam o les Want: Combinatorial interpretation

for the difference
(10)  Kleitman’s inequality [Kleitman, 1966] (induction)

Example:
]P’[H 1S Hamiltonian] > P[H is Hamiltonian ’ H is planar]

H is a random subgraph of a fixed G = (V, E)

Why works: planarity is closed down, Hamiltonicity is closed up,

so they have negative correlation.

Kleitman'’s inequality generalizes to
e the FKG inequality (Fortuin—Kasteleyn-Ginibre, 1971)
e the four functions inequality (Ahlswede-Daykin, 1978)



Computer Science > Computational Complexity

Where are we?

What is in #P and what is not?

Christian Ikenmeyer, Igor Pak 82 pp.

Theorem |Ikenmeyer P.; 2022

The four functions inequality is not in #P.

Mid talk summary:
e Combinatorial inequalities can be easy, hard and very hard.

e The way to judge an inequality is by its prootf.

e (Combinatorial proofs are the best, but not all have them.

e Sometimes linear algebra proofs come to the rescue. Look for those!

Note: From this point on, we consider only log-concave poset inequalities.



arXiv.org > math > arXiv:2110.10740

Mathematics > Combinatorics

[Submitted on 20 Oct 2021]

Log-concave poset inequalities

Swee Hong Chan, Igor Pak

Comments: 71 pages, 4 figures
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Stanley’s inequality

Let P := (X, <) be a poset on n := | X| elements. Fix z € X.

A linear extension of P is a bijection L : X — {1,...,n}, such that L(x) < L(y) for all z < y.
Denote by & := E(P) the set of linear extensions of P.

Let & ={L €& :L(z) =k}, Nk)=|&]

Theorem [Stanley, 1981]:  N(k)* > N(k—1)N(k+1) forall 1 <k <n.

a b IM:E 1M2 QMI 2M1 SMI
VI 3 4 4 3 3 4 4 3 4 2
C Z

a<c, b<e, b<z N2)=1, N3)=2, N4) =2



Weighted Stanley inequality

Let w: X — R.g be weight function on X. We say that w is order-reversing if:
r=<xy = wx) > wy).
Fix z € X. Define w: £ — Ry by
w(l) = H w(x),
: L(z)<L(2)
and

No(k) = Z w(L), forall 1 <k<n.

Theorem [Chan P.21]: Ny (k)? > N,(k—1)Ny(k+1) forall 1 <k <n.

Note: Our proof uses a completely novel technology of combinatorial atlas.



Example: Bruhat orders

Let o € S,,. Define the permutation poset P, = (|n], <), [n|] ={1,...,n} by:

1<y & 1<) and o(z) <a(j).

Then &(P,) C S, is the lower ideal of o in the (weak) Bruhat order B, = (.5, <).

Fix z € [n]. Then N(k) = Hl/ €Sy v(z)=k,v<dao}l
Stanley’s inequality: N(k)* > N(k —1)N(k + 1)
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Example: Bruhat orders

Let o € S,,. Define the permutation poset P, = (|n], <), [n|] ={1,...,n} by:
i<7 < <7 and o(1) <a(j).
Then &E(P,) C S, is the lower ideal of o in the (weak) Bruhat order B, = (S,, <).

Fix z € [n]. Then N(k) = !{1/ €Sy v(z)=k,v<dao}l
Stanley’s inequality: N(k)* > N(k —1)N(k + 1)

Fix 0 < g < 1, and let w(i) := ¢, so w is order-reversing. Then: w(v) = ¢’¥), where

Blv) = Z i x(k—v(i) and x(t) =

(]

L if t>0
0 if t<0

Weighted Stanley inequality: N, (k)* > Ny(k — 1) N,(k+ 1), where

Noh) = Y,

veS, :v<o,v(z)=k

S O = OO

SO OO

= OO O O

o O O O

o~ O O O




JOURNAL OF COMBINATORIAL THEORY, Series A 31, 56—65 (1981)

Proof of Stanley’s inequality

Two Combinatorial Applications of the

? Aleksandrov—Fenchel Inequalities*

V(xK + yL) =) (") Vi(K, Lyx"~"y",
im0 A1 RICHARD P. STANLEY

THEOREM 4 (The Aleksandrov-Fenchel inequalities): For any convex bodies K, L
in R”, the sequence

VG(K* L): V|(K, L)1 “v vy VH(K'J L) {9)

is log-concave (with no internal zeros).

Sketch of proof: Let P = {v,...,u, ;, v} Let K be the set of all points Log-Concave and Unimodal Sequences in
n—1 : . .
(f, -5 1) € R™ satisfying: Algebra, Combinatorics, and Geometry*
(a) 0=, =<1, RICHARD P. STANLEY

(b) ifv; = v;in P, then 1; < 4,
(¢) ify; < v, thent, = 0.

Simitarly define L C R*' by (), (b), and:
(c) fz, > o, thent; = 1.

Then K and L are convex polytopes. By an explicit decomposition of xK + yL into
products of simplices, it can be computed that V(K, L) = N,,,/(n ~ 1)\. The proof
follows from Theorem 4. O



Alexandrov-Fenchel inequalities

Theorem |Alexandrov’'37, Fenchel’36] K;,..., K, C R" convex polytopes. Define:

1V(f{1j ‘v 0y K”) = [/\1 v )\n] VO](/\lKl + ...+ )\.an_,-L)
Then: |
V(KHKﬁaKﬁh”'aK}fl)2 > V(KlaKlaK?n"';Kn) V(K%KQ}KE}M“}K?I)

Corollary: Sequence {V;} islog-concave, where V, == V(P,....P,Q,...,Q)
for every P, Q) C R" convex polytopes. ; n — k

The van der Waerden Conjecture:
Two Proofs in One Year

J. H.van Lint
Note: AF is super powerful! For example, for bores K; = [aﬂ X ... X ai?-g_] we have:

V(Ky,...,K,) = Per(A), where A= (a,.,-_j)

1<i,9<n

Now AF implies identity for the permanents which in turn easily implies Van der Waerden Conjecture



Equality conditions

The equality conditions for AF inequalities is a well known open problem.
For convex polytopes, it was resolved by Shenfeld and van Handel (2020).

In the special case of order polytopes in Stanley’s proot, they obtained:

Theorem: [Shenfeld — van Handel’20] Suppose N(k) > 0. TFAE:

(a) N(k)> = N(k—1) - N(k+1),

(b) N(k+1) = N(k) = Nk —1),

(c) we have f(x) > k for all z > z, and g( )>n—k+1 forall x < z,
where f(x |{y€X y—<3:}|aundg !{yEX Yy - T}
sizes of 10wel and upper ideals of x. excludmg x.

are

arXiv.org > math > arXiv:2011.04059

Mathematics > Metric Geometry

[Submitted on 8 Nov 2020]

The Extremals of the Alexandrov-Fenchel Inequality for Convex Polytopes

Yair Shenfeld, Ramon van Handel ,
Comments: 82 pages, 4 figures



Equality conditions

Theorem: [Shenfeld — van Handel’20] Suppose N(k) > 0. TFAE:

(a) N(k)> = N(k—1) - N(k+1),

(b) N(k+1) = N(k) = Nk —1),

(c) we have f(x) > k for all z > z, and g( )>n—k+1 forall x < z,
where f(x |{y€X y—<3:}|aundg ‘{yEX Yy - T}
sizes of 10wel and upper ideals of x. excludmg x.

are

Theorem |[Chan P.21]:  Suppose that N, (k) > 0. TFAE:
(a) Ny(k)? = Ny(k — 1) - Ny(k + 1),
(b) there exists s =s(k,z) > 0, s.t.
No(k+1) = sNy(k) = N, (k — 1),
(¢) there exists s = s(k,2z) > 0, s.t. f(x) >k forall x = z, g(x) >n —k+ 1 for all x < z, and
w(LNk—=1) =w(L ' (k+1) =s, forall Le& .

Note: Our proof again uses combinatorial atlas and avoids geometry altogether.



Proving AF inequalities

TO THE THEORY OF MIXED VOLUMES
OF CONVEX BODIES
PART IT

MATEMATICHESKIT SBORNIK, VOL. 2 (44), No. 6, 1205-1238 (1937).

CHAPTER IV

A Series of Comprehensive Studies in Mathematics

Yu. D. Burago
V. A. Zalgaller

Geometric Inequalities

BONNESEN-TYPE INEQUALITIES IN ALGEBRAIC
GEOMETRY, I: INTRODUCTION TO THE PROBLEM  jAlexandrov—Fenchel

From the book Seminar on Differential Ceometry. (AM-102), Volume 102 Presented by Gilles Pisier
B. Teissier

Annals of Mathematics 176 (2012), 925-978
http://dx.doi.org/10.4007 /annals.2012.176.2.5

Newton-Okounkov bodies, semigroups
of integral points, graded algebras
and intersection theory

By Kiumars Kaved and A. G. KHOVANSKII

CLASSICS OF SOVIET MATHEMATICS
VOLUME 4

PART )

Journal of Functional Analysis
Volume 274, Issue 7, 1 April 2018, Pages 2061-2088

ELSEVIER

A remark on the Alexandrov—Fenchel
inequality

Xu Wang &

Comptes Rendus Mathematique erowns
v Volume 357, Issue 8, August 2019, Pages 676-680 M
ELSEVIER oz

Functional analysis/Geometry

One more proof of the Alexandrov—Fenchel
inequality

Une autre preuve de 1'inégalité

Dario Cordero-Erausquin ? &, Bo'az Klartag °, Quentin Merigot €, Filippo Santambrogio ¢

PROCEEDINGSE OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 147, Number 12, December 2019, Pages 53855402
https://doi.org/10.1090/proc/14651

Article electronically published on June 10, 2019

MIXED VOLUMES AND THE BOCHNER METHOD

YAIR SHENFELD AND RAMON VAN HANDEL



Does an elementary proof of AF inequality give
an elementary proof of Stanley’s inequality?

PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 147, Number 12, December 2019, Pages 53855402
https://doi.org/10.1090/proc/14651

Article electronically published on June 10, 2019

MIXED VOLUMES AND THE BOCHNER METHOD

Answer: Yes. ThIS |S What we dld! YAIR SHENFELD AND RAMON VAN HANDEL
Along the way we introduces new linear algebraic setting
which proved useful for other log-concave inequalities.

Note: Ironically, [SvH’20] doesn’t actually use [SvH’19]. Our proof uses ideas from [SvH'19]
to obtain re-rederive and generalize equality conditions for Stanley’s inequality in [SvH’20]

“While we originally developed the Bochner method in the hope that it would shed light on AF equality cases, this was a
complete failure. It turns out the Bochner method says nothing new about AF equality.” —Ramon van Handel (Oct 15, 2021)



How to start: Interview with Karim Adiprasito

Toufik Mansour

The idea is quite simple: log-concavity of

sequences a; can be restated as saying that a
certain matrix, the matrix

;41 a;
a; a;—

has non-positive determinant, or equivalently,
it cannot be definite. To prove that, one needs
to establish that the matrix arises as a bilin-
ear form that has a geometric meaning, in our
case, the Hodge-Riemann relations. Proving
them is the major feat of our joint work, as we
had to reprove a classical algebraic geometry
result in a much larger generality than previ-
ously known. The limits of the latter are the
most interesting to me and remain to be ex-
plored.



How to start:

Definition: d x d symmetric real M is hyperbolic:
(Hyp) (v,Mw)* > (v, Mv){(w,Mw) for every
v,w € R’ such that (w,Mw) > 0.

Lemma: (Hyp) <& M has at most one positive eigenvalue.

(counting multiplicity)

Note: (Hyp) is used to imply log-concavity,
it is established by an elaborate induction,

(OPE) is used to establish (Hyp) in base cases.

41 a;
a; a;—1

has non-positive determinant,



How the induction works

Atlas A construction:

Acyclic digraph T' .= (2,0), d :=2(n — 1), and
symmetric (nonnegative) d X d matrix M, for every v € €,
nonnegative vector h, € R for every v € (.

map T : R? — R? for every edge (v, w) € O.

Theorem 5.2 (local-global principle). Let A be a combinatorial atlas that satisfies properties (Inh) and
(Pull), and let v € Q1 be a non-sink reqular vertexr of T'. Suppose every out-neighbor of v is hyperbolic.
Then v 1s also hyperbolic.

In the base cases, (Hyp) is proved by direct calculation in all posets
on 3 elements. Conditions on w are exactly those which work

for the base cases, and cannot be improved for general posets.



What works for Stanley’s inequality

v=(a, B, k,t) € Q,

b t if * € Zyown,
T T M
1 - t ].f :I: 6 Zup .
M, = tC(a, B,k +1) + (1—1t)Cla, 8, k)
Ca:y = Cy:.': = Z qr_x,ﬁ(‘r'}/y) for =€ Ziown, yezup
vy € Compy, 4 (ax,yfB)

Cmy = Z qa,ﬁ(wy’}/) for =z H Yy, X,y € Zdown

v € Comp,, 4 (axy, B)
Cpy = Cyp := 0 for <y, =, v€ Ziown
Coy = > das(yzy)  for z|ly, =,y Zy

v € Compy, 4 (o, xyf3)
Czy = Cyz =0 for z<y, =z y€Zy
Cpp = Z Z Ao, (YY) for x € Zaown

y>x ~ € Comp,, _,(azy, )
C.’I.'II.' - Z Z qa,ﬁ(ﬁyym) for =z < ZUP

Y=z v € Comp,,_, (a,yxzf3)

h, € R? defined to have coordinates

T . RY - R? associated to the edge (v, v*))

if y € supp(M),
if ye Z\ supp(M).

AQap(7) = qlayp)

{w(a) for a € &,
0 otherwise. qr_x,ﬁ(A) — Z (o)
yEA
m=4 m=3 m=2 m =1 m=0
t=0 =0 t=0 t=0 =0
L‘{ , / / / /
=1
"_&'—" =1 t=1 t=1
t=0 =0 t=0
t=1 =1 t=1
=0 =0
t=1 =1
t=0

t=1

Ficure 14.1. Graph I' of the combinatorial atlas A for linear extensions of P.



Observations on the proof

1) Stanley’s inequality corresponds to t=0 case.

2) This limit is mild enough to allow reversing the graph and obtaining
the equality conditions.

3) For general AF inequalities for general convex polytopes, the SvH proof works
by induction on the dimension for combinatorially equivalent polytopes with
equal normals. There is no way to avoid taking nontrivial limits in this case.

4) The proof of Stanley’s inequality is substantially harder than the proofs of
Mason inequalities and their refined versions, including their equality conditions
which uses the same setup of combinatorial atlas, but much simpler matrix
construction and case by case analysis.



Matroids

Definition [H. Whitney, 1933] A matroid M is a pair (X,Z) of a ground set X,
and a nonempty collection of independent sets T C 2% that satisfies the following:
o (hereditary property) SCT,Te€Z = S €T, and
o (cxchange property) S, T €L, |S|<|T| = dxeT\Sst. S+xel.

Main Example: A [lincar matroid M = (X,Z), where fes
X ¢ K? vector space over field K, and 5
7 is a collection of linearly independent subsets of X s

Simpler Example: A graphic matroid M = (E,T), where
E is the set of edges of a graph G = (V, E), and
7 is a collection of forests in GG (subsets of edges with no cycles).



Mason inequalities

K. Adiprasito, J. Huh and E. Katz,

Theorem 1.1 (Log-concavity for matroids, [AHK18, Thm 9.9 (3)], formerly Welsh-Mason conjecture).
For a matroid M = (X,Z) and integer 1 < k < rk(M), we have:

(1.1) I(k)? > I(k — 1) - I(k + 1).
Here Z;, .= {S € Z, |S| = k}, are independent sets in M of size k, I(k) = !Ik’: 0 <k < rk(M).

Theorem 1.2 (One-sided ultra-log-concavity for matroids, [ HSW21, Cor. 9|, formerly weak Mason conjec-
ture). For a matroid M = (X,Z) and integer 1 < k < rk(M), we have:

(1.2) I(k)* > (1 — %) I(k—1) I(k+1).
J. Huh, B. Schroter and B. Wang

Theorem 1.3 (Ultra-log-concavity for matroids, [ALOV18, Thm 1.2] and [BH20, Thm 4.14], formerly
strong Mason conjecture). For a matroid M = (X,Z), |X| =n, and integer 1 < k < rk(M), we have:

1 1
(1.3) I(k)? > (1 + E) (1 + — k) I(k—1) I(k+1).
N. Anari, K. Liu, S. Oveis Gharan and C. Vinzant P. Brandén and J. Huh




Refined Mason inequalities

For an independent set S € Z of a matroid M = (X, Z), denote by

Cont(S) ={ze X\S : S+zeT}

the set of continuations of S.

Let x ~g vy, x,y € Cont(S), when S+ x +y ¢ Z. Note that “~g" is an equivalence relation.
We call an equivalence class of the relation ~g a parallel class of S.

Denote by Par(S) the set of parallel classes of S. Define:

p(k) := maxq |Par(S)| : S €Z;¢.
Clearly, p(k) <n — k. () {’ ( )| !.}

Theorem 1.4 (Refined log-concavity for matroids). For a matroid M = (X,Z) and integer 1 < k < rk(M),

we have:
1

(1.6) I(k)* > (1 + %) (1 + NCESE 1) I(k—1) I(k+1).




Example: graphical matroid Old notation:
iunaL e [(N) = fx(G)

Let G = (V,E) be a connected graph on |V| = N vertices.

Let £ =N — 2. Observe that p(N — 3) < 3 since T'— e — €’ can have at most three

connected components, for every spanning tree 7' in G and edges e, ¢’ € E. Then:

I(N — 2)2 3 1
I(N—3) - I(N—1) > 9 1+ N — 2 Refined Mason inequality [Chan-P.]

I(N-2)% . L] | |
I(N—3) - I(n—1) —&3 E[—N+2 N~ _ 92/ Strong Mason inequality

Note: The refined inequality is sharp and holds if and only if G is a cycle.



Equality conditions

Theorem 1.8 (FEquality for matroids, [MNY21, Cor. 1.2]). Let M = (X,Z) be a matroid on |X| = n
elements, and let 1 < k <1k(M). Then:

(1.9) I(k)* = (1 + %) (1 + nik) I(k—1) I(k+1)

if and only if girth(M) > (k +1). S. Murai, T. Nagaoka and A. Yazawa

Theorem 1.10 (Refined equality for matroids). Let M = (X,Z) be a matroid, 1 < k < rk(M), and let
w: X — Ryg be a weight function. Then:

(1.11) I,(k)?* = (1 + %) (1 + = _11) — 1) I,(k—1)I,(k+1)
if and only if there exists s(k — 1) > 0, such that for every S € I_; we have:
(ME1) | Par(S)| = p(k—1), and

(ME2) Z w(x) = s(k—1) for every C € Par(S).

reC [Chan-P/21]



Thank you!




