Combinatorics and complexity of Stanley's inequality

Igor Pak, UCLA

Link to the paper.

Richard Stanley and P vs NP problem:

"I was watching a lecture by Knuth and he mentioned that apparently you were present at the very first lecture Richard Karp gave where he stated all those combinatorial problems which are NP-complete. I guess you didn't much like the talk ... " -- IP

"I actually don't remember this specific talk though I remember going to many of these seminars at Knuth's house ... when I was a postdoc at Berkeley 1971-73." -- Richard Stanley

Richard Stanley and P vs NP problem:

Richard's email also included an interesting story how he was offered, accepted by mail and then declined over the phone Stanford's joint Math/CS postdoc offer.

"I felt especially bad that I had in some sense betrayed Knuth, but things worked out okay in the end. But who knows, if I had gone to Stanford maybe now it would not be a conjecture that P\neq NP ... (ha!)."

Linear extensions

Let $P = (X, \prec)$ be a poset on n = |X| elements.

Linear extension of P is a bijection $f: X \to \{1, \ldots, n\}$, s.t. f(x) < f(y) for all $x \prec y$.

Denote $\mathcal{E}(P)$ the set of linear extensions of P, and $e(P) := |\mathcal{E}(P)|$.

Example: $X = \{a, b, c, d\}, n = 4, e(P) = 5.$

Let $P = (X, \prec)$ be a poset on n := |X| elements.

A *linear extension* of P is a bijection $f: X \to \{1, \ldots, n\}$, s.t. f(x) < f(y) for all $x \prec y$.

Denote by $\mathcal{E}(P)$ the set of linear extensions of P.

Fix $x \in X$, and let $N(a) := \# \{ f \in \mathcal{E}(P) : f(x) = a \}$.

Theorem [Stanley, 1981]: $N(a)^2 \ge N(a-1)N(a+1)$ for all 1 < a < n.

Conjectured: Kislitsyn (1968), Rival, Chung-Fishburn-Graham (1980)

Log-concavity

Let $P = (X, \prec)$ be a poset on n := |X| elements.

A *linear extension* of P is a bijection $f: X \to \{1, \ldots, n\}$, s.t. f(x) < f(y) for all $x \prec y$.

Denote by $\mathcal{E}(P)$ the set of linear extensions of P.

Fix $x \in X$, and let $N(a) := \# \{ f \in \mathcal{E}(P) : f(x) = a \}$.

Theorem [Stanley, 1981]: $N(a)^2 \ge N(a-1)N(a+1)$ for all 1 < a < n.

Let $P = (X, \prec)$ be a poset on n = |X| elements.

Linear extension of P is a bijection $f: X \to \{1, \ldots, n\}$, s.t. f(x) < f(y) for all $x \prec y$.

Denote $\mathcal{E}(P)$ the set of linear extensions of P.

Fix $x, z_1, \ldots, z_k \in X, c_1, \ldots, c_k \in \{1, \ldots, n\}.$

Let $N(a) := \#\{f \in \mathcal{E}(P) : f(x) = a, f(z_1) = c_1, \dots, f(z_k) = c_k\}.$

Theorem [Stanley, 1981]: $N(a)^2 \ge N(a-1)N(a+1)$ for all 1 < a < n.

Log-concavity

Two Combinatorial Applications of the Aleksandrov–Fenchel Inequalities*

JOURNAL OF COMBINATORIAL THEORY, Series A 31, 56-65 (1981)

Theorem [Stanley, 1981]:
$$N(a)^2 \ge N(a-1)N(a+1)$$
 for all $1 < a < n$.

Log-Concave and Unimodal Sequences in
Algebra, Combinatorics, and Geometry^a

RICHARD P. STANLEY

Sketch of proof: Let $P = \{v_1, \ldots, v_{n-1}, v\}$. Let K be the set of all points $(t_1, \ldots, t_{n-1}) \in \mathbb{R}^{n-1}$ satisfying:

- (a) $0 \le t_i \le 1$,
- (b) if $v_i \le v_j$ in P, then $t_i \le t_j$,
- (c) if $v_i < v$, then $t_i = 0$.

Similarly define $L \subset \mathbb{R}^{n-1}$ by (a), (b), and:

(c') if
$$v_i > v$$
, then $t_i = 1$.

Then K and L are convex polytopes. By an explicit decomposition of xK + yL into products of simplices, it can be computed that $V_i(K, L) = N_{i+1}/(n-1)!$. The proof follows from Theorem 4. \square

Variations on Stanley's inequality

Let $P = (X, \prec)$ be a poset on n = |X| elements.

Order preserving maps: $h: X \to \{1, \ldots, t\}$, s.t. $f(x) \leq f(y)$ for all $x \prec y$.

Denote $\mathcal{O}(P,t)$ the set of OPMs, and $\Omega(P,t) = |\mathcal{O}(P,t)|$ the order polynomial.

Theorem 4.2 (log-concavity, Brenti [Bre89, Thm 7.6.5]). Let $P = (X, \prec)$ be a poset with |X| = n elements. Then, for all integer $t \geq 2$, we have:

$$(4.2) \qquad \qquad \Omega(P,t)^2 \geq \Omega(P,t+1) \ \Omega(P,t-1).$$

Injective proof!

Variations on Stanley's inequality

Let $P = (X, \prec)$ be a poset on n = |X| elements.

Order preserving maps: $h: X \to \{1, \ldots, t\}$, s.t. $f(x) \leq f(y)$ for all $x \prec y$.

Denote $\mathcal{O}(P,t)$ the set of OPMs, and $\Omega(P,t) = |\mathcal{O}(P,t)|$ the order polynomial.

Theorem 9.9 (Daykin–Daykin–Paterson inequality [DDP84, Thm 4]). Let $P = (X, \prec)$ be a finite poset, and let $x \in X$. Denote by $\Omega(P, t; x, a)$ the number of order preserving maps $h: X \to [t]$, such that h(x) = a. Then, for all integer t > a > 1, we have:

(9.7)
$$\Omega(P, t; x, a)^2 \ge \Omega(P, t; x, a+1) \cdot \Omega(P, t; x, a-1).$$

Injective proof!

Log-concavity

Variations on Stanley's inequality

Let $P = (X, \prec)$ be a poset on n = |X| elements.

Order preserving maps: $h: X \to \{1, \ldots, t\}$, s.t. $f(x) \leq f(y)$ for all $x \prec y$.

Denote $\mathcal{O}(P,t)$ the set of OPMs, and $\Omega(P,t) = |\mathcal{O}(P,t)|$ the order polynomial.

Theorem 9.10 (generalized DDP inequality [DDP84, Thm 4]). Let $P = (X, \prec)$ be a finite poset, let $x \in X$. Fix $k \in \mathbb{N}$ and let $\mathbf{z} \in X^k$. Denote by $\Omega(P, t; \mathbf{z}, \mathbf{c}; x, a)$ the number of order preserving maps $h: X \to [t]$, such that h(x) = a, and $h(z_i) = c_i$ for all $1 \le i \le k$. Then, for all integer t > a > 1, we have:

(9.8)
$$\Omega(P,t;\boldsymbol{z},\boldsymbol{c};x,a)^2 \geq \Omega(P,t;\boldsymbol{z},\boldsymbol{c};x,a+1) \cdot \Omega(P,t;\boldsymbol{z},\boldsymbol{c};x,a-1).$$

Log-concavity

Injective proof!

"It appears unlikely that Stanley's Theorem for linear extensions quoted earlier can be proved using the kind of injection presented here." [DDP84, §4].

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 0}

There is no <u>nice</u> injective proof of Stanley's inequality.

Definition: Injection $\varphi : A \to B$ is *nice* if both φ and φ^{-1} are poly-time computable.

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 1}

For $k \geq 2$, there is no <u>nice</u> injective proof of Stanley's inequality unless something bad happens in CS.

Note: Nice injection gives a combinatorial interpretation for

$$|B|-|A|=\#\big\{b\in B:b\notin\varphi(A)\big\}$$

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 2}

For $k \geq 2$, the defect $\delta(P, a) := N(a)^2 - N(a-1)N(a+1)$ of Stanley's inequality does not have a combinatorial interpretation unless something bad happens in CS.

Mathematics > Combinatorics

[Submitted on 13 Sep 2022]

What is a combinatorial interpretation?

Igor Pak

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 3}

For $k \geq 2$, the defect $\delta(P, a) := N(a)^2 - N(a-1)N(a+1)$ of Stanley's inequality is not in #P unless something bad happens in CS.

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 4}

For $k \geq 2$, the defect $\delta(P, a) := N(a)^2 - N(a-1)N(a+1)$ of Stanley's inequality is not in #P unless the polynomial hierarchy PH collapses.

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 4'}

For $k \geq 2$, the defect $\delta(P, a) := N(a)^2 - N(a-1)N(a+1)$ of Stanley's inequality is not in #P unless $PH = \Sigma_2$.

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 5}

For $k \ge 2$, the equality $\{N(a)^2 = N(a-1)N(a+1)\}$ of Stanley's inequality is not in CONP unless PH collapses.

"We can ask about the conditions for equality..."

-- [Stanley'81]

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 6, final}

For $k \ge 2$, the equality $\{N(a)^2 = N(a-1)N(a+1)\}$ of Stanley's inequality

is not in PH unless PH collapses.

Main Theorem: [Swee Hong Chan, IP, 2023] \leftarrow {level 6, final}

For $k \ge 2$, the equality $\{N(a)^2 = N(a-1)N(a+1)\}$ of Stanley's inequality

is not in PH unless PH collapses.

Theorem: [Shenfeld – van Handel'23, Chan–P'23]

For $k \in \{0,1\}$, the equality $\{N(a)^2 = N(a-1)N(a+1)\}$ of Stanley's inequality is in P.

Proof ingredients:

Main Lemma [Swee Hong Chan, IP'23] For $k \ge 2$,

Given $P = (X, \prec)$, deciding $\{N(a) = N(a+1)\}$ is not in PH unless PH collapses.

Proof ingredients:

Main Lemma [Swee Hong Chan, IP'23] For $k \geq 2$,

Given $P = (X, \prec)$, deciding $\{N(a) = N(a+1)\}$ is not in PH unless PH collapses.

Theorem [Brightwell–Winkler'91, formerly *Linial Conjecture*'84]

The number of linear extensions e(P) is #P-complete.

Proof ingredients:

Theorem [Kravitz–Sah'21]

$$\mathcal{T}_e(n) \supseteq \{1,\ldots,c^{n/(\log n)}\}$$
 for some $c>1$, where

$$\mathcal{T}_e(n) := \{ e(P) : P = (X, \prec), |X| = n, \text{ width}(P) = 2 \}.$$

$$S_n(m) := \sum_{i=0}^s a_i(m)$$
 where $\frac{m}{n} = a_0 + \frac{1}{a_1 + \frac{1}{\cdots + \frac{1}{a_s}}}$

Lemma 8.6 (Yao-Knuth [YK75]). We have:

$$\frac{1}{n} \sum_{n} S_n(m) = \frac{6}{\pi^2} (\log n)^2 + O((\log n)(\log \log n)^2) \quad as \quad n \to \infty.$$

Happy Birthday, Richard!