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Limit shape of partitions via bijections
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Partitions
A= (A1, A2, ... Ay is a partitionof n if Ay > X >...>2 X >0
and A\ + X +...+ X =n.

Ai - parts of the partition A
¢ = {()\) - the number of parts in \.

Example n =25
(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1)
all partitions of 5.
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Young diagrams of partitions A = (6,5,5,3) and A" = (4,4,4,3,3,1).
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Theorem (Euler)
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where p(n) is the number of partitions of n.

Similarly:
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where ¢(n) is the number of partitions of n into distinct parts.



Euler’s Theorem

o Number of partitions of n into distinct parts is equal to the number of partitions

of n into odd parts.
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Glaisher’s bijection (distinct — odd)

(7,6,4,1) — (7,4,3,3,1) — (7,3,3,2,2,1) — (7,3,3,2,1,1,1) — (7,3,3,1,1,1,1,1)

Sylvester’s bijection
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J. J. Sylvester:

|Glaisher’s| correspondence is eminently arithmetic and transcendental in its na-

ture, depending as it does on the forms of the numbers of repetitions of each integer
with reference to the number 2.

Very different is [Sylvester’s correspondence| which is essentially graphical, as in
its operation, which 1s to bring into correspondence the two systems, not as wholes
but separated each other of them into distinct classes; and it is a striking fact that
the pairs arithmetically and graphically associated will be entirely different, thus

evidencing that correspondence is rather_a creation of the mind than a property
inherent in the things associated.
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Limit shapes

3.2. Limiting shape. Let A = U,.A,, be a set of partitions. For every x > 0, think
of the a scaled shape value a, := py\(z), a, : A — R as of a statistic on A. We say
that A is asymptotically stable if o, are asymptotically stable statistics with uniform

convergence: there exist a function a = a(z) : R, — R, such that fﬂ
and for every ¢ > 0

P(|a,(A) —a(z)| <e forallz > 0| A€ A,) =1 as n— oo,
The function a(x) is called the limiting shape of A.

Example 3.5. [t was shown in [23] that the set of all partitions P is asymptotically

stable with the limiting shape <I>( ) defined as:

s
d(r) = —— 10‘ 1—e ), where ¢c = —.
() - log ( ) 7

[23] A. M. Vershik. Statistical mechanics of combinatorial partitions, and their limit shapes, Funct.
Anal. Appl. 30:2 (1996), 90-105.

[8] A. Dembo, A. Vershik, and O. Zeitouni, Large deviations for integer partitions, Markov Process.
Related Fields 6 (2000), 147-179.
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The nature of partition bijections II. Asymptotic stability (p, 2004)

Definition 3.9. Let A, B be asymptotically stable sets of partitions. We say that (]Ai -& ﬂ
bijection ¢ : A — B defined as above is asymptotically stable if ©,(X,Y’) are asymptot- i

ically stable statistics with uniform convergence, i.e. there exist a measurable function

F(X.,Y) > 0, such that for every € > 0

P(|0,(X,)Y)-F(X)Y)|<e foral X CV,Y C W

A E An) — 1 asn — oo,

where the probability is over uniform A € P,.
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The nature of partition bijections II. Asymptotic stability (p, 2004)

Definition 3.9. Let A, B be asymptotically stable sets of partitions. We say that
bijection ¢ : A — B defined as above is asymptotically stable if ©,(X,Y’) are asymptot-
ically stable statistics with uniform convergence, i.e. there exist a measurable function
F(X.,Y) > 0, such that for every € > 0

P(|O\X,Y)—F(X,)Y)| <eforal X CV,Y CW |A€A,) =1 asn — o,

where the probability is over uniform A € P,.

Meta Theorem. All known “good” partition bijections are asymptotically stable.

Theorem 4.1. Let A C P be an asymptotically stable set of partitions, let B C P.
and let ¥ : A — B be a size preserving one-to-one correspondence. Suppose a natural
geometric byjection o defines ©'. Then  is asymptotically stable. Moreover, this holds
iof 0 1s an AG-bijection with asymptotically stable parameters.



(P, 2004)

A G-bijections.
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Is Sylvester’s bijection a good bijection?
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Pak-Postnikov version of Sylvester’s bijection (1998)
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Corollary 9.2. One-to-one correspondence v : D" — O" defined above is given by an
asymptotically stable AG-bijection.

Theorem (\ershik, 1996) Lety = V(x) denote the limit shape of integer partitions into distinct
parts. Then:

(1.2) eV — 4% — 1 x>0, where d=
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Theorem (\ershik, 1996) Let y = V(x) denote the limit shape of integer partitions into distinct
parts. Then:

(1.2) edV — 7% = 1, xr > 0, where d =

=
L Jz

0,

:
\




FIGURE 2. The bijection between self-conjugate partitions and partitions into dis-

tinct odd parts.
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FIGURE 2. The bijection between self-conjugate partitions and partitions into dis-
tinct odd parts.
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New results (some special cases)

Corollary 1.4. Let L denote the set of partitions p with consecutive parts p; — pti—1 > 2 for even
part sizes p;, and p; — pi—1 > 4 for all odd part sizes p;, i > 1. Let m(x) denote the limit shape
of L, and let w=e2™%)  and u = eT™. Then the limit shape satisfies

T _|_ 1

u = ; .

Corollary 1.5. Let k,, denote the number of parts in a random partition of size n in L. We have

kn 2log (1 + /2
(1.4) > p ( )
V4D T

where — p denotes convergence in probability.

= 0.561099852 ... ,



New results (some special cases)

Corollary 1.4. Let L denote the set of partitions p with consecutive parts p; — pti—1 > 2 for even
part sizes p;, and p; — pi—1 > 4 for all odd part sizes p;, i > 1. Let m(x) denote the limit shape
of L, and let w=e2™%)  and u = eT™. Then the limit shape satisfies

w+ 1
U= — :
we —w

Corollary 1.5. Let k,, denote the number of parts in a random partition of size n in L. We have

k, 2log (1 + /2 _—
(1.4) ~ —p 8 ) _ 0561000852 .. ,
V4D T
where — p denotes convergence in probability. p wv
S
Corollary 1.6. Let 0, denote the size of the largest Durfee square in a random partition of size n 1

in L. Let yo, = 4.171195932 ... denote the real-valued solution to

\:1 + 2y — 9y* — Ty° — 2y* +yr’\:01
Then we have:

On 4 1 ( .
(1.5) f —p |- log E(E: — 30y, — 249> — 9y> + 4;{-;;11 — 0.454611067 . . . |
T (s

where —p denotes convergence in probability.




LEBESGUE’S IDENTITY
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Let A,, denote the set of partitions of size n into distinct parts which are congruent to 0,1 or 2
modulo 4. Let £, denote the set of partitions p of size n with consecutive parts p; — pi—1 > 2 for
even part sizes pu; and pu; — puj—; > 4 for all odd part sizes pu;, i > 1.

Fressmud’s bijection ¥ : Ay = Ly J
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Bressoud’s bijection ¢: A, — L,
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Limit shape of Lebesgue partitions
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Theorem 7.1. Let 1 < ¢ < k. Let LF denote the set of partitions p into parts congruent to 0 or
¢ mod k such that parts differ by at least k, and parts congruent to £ mod k differ by at least 2k.
The limit shape of LY* is given by
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Thank you!




