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Plan of the talk:

0) What to do with combinatorial sequences?

1) What is the cogrowth sequence and why study it?
2) Recent results

Main thing to remember:
We are only beginning to understand the subject!



Combinatorial sequences:

OEIS now has over 300,000 sequences!

Our policy has been to include all interesting sequences, no matter

how obscure the reference. [N.J.A. Sloane, S. Plouffe, EIS, 1995]

The EIS contains| the unrelenting cascade of numbers, |..]
lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]

A307468 Cogrowth sequence for the Heisenberg group.
1, 4, 28, 232, 2156, 21944, 240280, 2787320, 33820044, 424925872, 5486681368, 72398776344
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Ad hoc combinatorial sequences

a, = + of triangulations of a convex n-gon = %ﬂ(ij)

a, = 7 of domino tilings of [n x n] = det M,

a, = # of connected labeled graphs on n vertices <+ RR
. . . 2

a, = # of triangulations of an x n grid =~ (+ol)

Families of sequences

a, = # walks (0,0) — (0,0) in N? using n steps {(1,1), (1,0),(—=1,0), (=1, —1)}
< Gessel walks

a, = # walks (0,0) — (0,0) in N? using n steps {(1,1),(—1,0), (0, —1)}
< Kreweras walks



Combinatorial sequences:

First Question: Does A(t) =) a,t" have a formula?

Second Question: What is a formula’



Classes of combinatorial sequences

(1) rational GF A(t) = P(t)/Q(t), P,Q € Zlt|.
E.g. a, = Fib(n), A(t)=1/(1 -1t —t*).

(2) algebraic GF co A" +ci AP+ .. 4+ =0, ¢ € Zt
Eg a, = Cat(n), A(t)=(1—-+1—4t)/2t.
(3) Diagonals A(t) = diagP/Q, P,Q € Z|xy, ...,z

B = Z b(i];...,’ik;)iﬁ?---.’_Ifji" —  diagB —Zb (n,...,n)t"

n=(

E.g.  Delannoy numbers {D, } and Apéry numbers {A,}

- () = - ZEOCT0)



Classes of combinatorial sequences

(4) D-finite GF cpA+c A+ ...+ AW =0, ¢; € Z[t].

E.g. a, = # involutions in S,,, a, = a,—1 + (n — 1)a,_o.

The sequences {a,} are called P-recursive

(5) D-algebraic GF Q(t? A A ... ?.,4(“) =0,Q € Z[t,xy, x1,...,x}

Eg a,=#{c(l)<c(2)>03)<...€ S}, A"=A- A
Also p(n) = # integer partitions of n. Then F'(t) = > p(n)t" satisfies:

4F3FH + 5tF3FIH + tQFSF(Ll} o 16F2(F:')2 o 15tF2F:‘FH . Sgtng (FHJQ
+ 20t FPF'F" + 10t F(F')’ + 1268 F(F'*F" + 6t*(F')* = 0.

(Jacobi, Ramanujan)



Classes of combinatorial sequences

(4) D-finite GF cpA+c A+ ...+ AW =0, ¢; € Z[t].

E.g. a, = # involutions in S, a, = a,—1 + (n — 1)a,—o.

The sequences {a,} are called P-recursive

4

Ee a,=#{c(1)<o(2)>03)<...€5,},A"=A-A.

(5) D-algebraic GF Q(t, A A ... ;A(kj) =0,Q € Z[t,xy, x1,...,x}

Rational C Algebraic C Diagonal C D-finite C D-algebraic




Christol’s conjecture:

a, €N, a,<c" VneN

{a,} € D-finite = {a,} € Diagonal

Analytic Number Theory pp 45-64 | Cite as

Globally bounded solutions of differential
equations

Christol Gilles

“Conjecture 4.
Every D-finite globally

:)ounded function 1s the
diagonal of a rational

function.”




State of the art:

(1) Remarkable successes proving/disproving formulas in enumerative combinatorics
(counting walks; trees, maps, etc.)

(2) Minor successes proving/disproving formulas in number theory

E.g. P(t) =), p,t" € D-finite (p, := n-th prime). [Flajolet-Gerhold-Salvy, 2005
[s P(t) D-algebraic? (surely not!?)

Also 0(t) = >, " € D-algebraic [Jacobi, 1848]
OTOH 6(t) ¢ T-algebraic < version of N-D-algebraic [Drmota-P., 2023+]

3 . ¢
[s Y t" € D-algebraic? (surely not!?)

(3) Moderate successes proving/disproving formulas in geometric group theory

(this talk)



Growth and cogrowth sequences

Definition:

Let G be a finitely generated group, G = (S), where S = S~! symmetric generating set
length:  0(g) = min{l : g =s1---5¢, (51,...,8/) € S}
growth sequence: growthg(n) = |{g eG :lg) < n}|

cogrowth sequence:  cogg(n) = |{(s1,...,8,) € " 1 15, =1}

oo o0

Gs(t) = Z growthg(n)t"  Cs(t) = Z cogg(n)t" 177

n=(0 n=0




Growth sequences vs. cogrowth sequences

Observation: growth sequence can be harder to compute than
the cogrowth sequence (think matrix groups)

Note: much more is known about the cogrowth sequence!




Examples:

1) G=17Z, S={%x1}, growthg(n)=2n+1
cogq(2n) = (T) coge(2n +1) = 0,

2) G =17 S={(£1,0),(0,£1)}, growthg(n)=2n*+2n + 1,

cogq(2n) = (2:)2 coge(2n + 1) =0,

3) G=F, S={a,a'bb '} growthe(n)=(4"-1)/3.
Cs(t) = 3/(1+2v1 — 12%)




Properties of growth sequences:

(1) Ay 4+ growthe(Cin) < growthg(n) < As + growthg(Con) V.S, S, where Cy,Cy > 0

(asymptotics is independent of the generating set)

(2) 9 uncountably many f.g. groups = d non-D-algebraic growth sequences

(3) 3 groups of polynomial, exponential, intermediate growth (Grigorchuk groups)

(4) linear groups have polynomial or exponential growth ( Tits alternative, Milnor—Wolf theorem)
(5) groups of polynomial growth are virtually nilpotent (Gromouv theorem)

(6) for many classes of groups Gs € Rational V S (abelian, hyperbolic, Hj)

(7) 3 examples Gs € Rational and Gg ¢ Algebraic
(nonamenable [Shapiro, 1994|, nilpotent [Stoll, 1996])



Properties of cogrowth sequences:

(1) Ay + cogg(Cin) < cogg(n) < Ay +cogg(Con) VS, S’ where Cy,Cy > 0

(asymptotics is independent of the generating set)

(2) G is finite <= Cg € Rational [Kuksov'98| (in fact, N-Rational)

(3) G is abelian = Cg € Diagonal (folklore for Z¢, [Kuksov'98])

(4) G = F, = Cg € Algebraic ([Aomoto’84], [Figa-Talamanca, Steger'94|, [Haiman93])
(5) G € solvable, exponential growth = Cg ¢ D-finite V.S [Garrabrant-P.’17]

This resolved Kontsevich’s question: Is Cg € D-finite V linear G

(6) G € intermediate growth = Cg ¢ D-finite VS |Bell-Mishna20)]



Open problems for cogrowth sequences:

(1) Does there exist finitely presented G with Cg ¢ D-algebraic?

(2) Does there exist G with Cg € Algebraic but Cq» ¢ Algebraic?

(same question for Diagonal, D-finite, D-algebraic)

(3) Are there (not virtually abelian) nilpotent G with Cg ¢ Diagonal?

(same question for D-finite, D-algebraic)

(3") Are there (not virtually abelian) nilpotent G with Cg € Diagonal?

(same question for D-finite, D-algebraic)

Today: We came really close to resolving (3)




Unitriagular group

1\ Z 4 - 1 7

UT(3,Z) = H, 01%Z-- 77

UT(m,Z) := 00 l o ZZ

(/1 £1 0 10 000--- 1%

S =101 0 01 +1 00 0 - 0 1
001 001 FrE > 1T

cogg(2n) = # walks v : O — O in Z* with signed_area(y) =0

A307468 Cogrowth sequence for the Heisenberg group.
1, 4, 28, 232, 2156, 21944, 240280, 2787320, 33820044, 424925872, 5486681368, 72398776344



Cogrowth sequences of unitriangular groups:

(1) m=3, G=UT(3,Z) = Hy = cogg(2n) ~ C|S|"/n?
—> (g ¢ Algebraic [Jungen’31]

(2) m = 6 G — UT((); Z) — C{Jg,};‘(zﬂ) ~ OISITL/nBﬁ/‘Z

—> Cg ¢ N-algebraic [Banderier-Drmota’l5]
(3) Conjecture: Cg ¢ D-algebraic for all m > 3 and all S
(4) Open: 4 Cg ¢ Diagonal for some m > 3 and S

(5) Open: 1 Cg € D-algebraic for some m > 3 and S



New results

Main Theorem

For a fixed sufficiently large integer m, the following problem is not computable:

Given a symmetric generating set S of the unitriangular group UT(m,7Z), write
the cogrowth series Cs(t) as diag P/Q, for some P,Q € Z|xy,..., x|, and k > 1.

Moreover, the result holds for some m < 9.6 - 10%°.

Moral: Even if Cg € Diagonal for all (S) = UT(m, Z), the proof would be ineffective.

In fact, the claim “Cg € Diagonal for all m > 3 and all S” could be independent of ZFC



New results

Theorem 1.

There exist m > 3, a > 1, and prime p, s.t. the following problem s undecidable:

Given finite symmetric generating sets S, T in UT(m,7Z), determine whether

Vn € N : cogg(n) = cogp(n) mod p“.
Moreover, the result holds for p =2, a = 40, and some m < 9.6 - 10%.

Theorem 2.

Let a > 1, let p be a prime, and let G be a finitely generated abelian group.
The following problem is decidable:

Guven finite symmetric generating sets S, T in G, determine whether

Vn € N : cogg(n) = cogp(n) mod p”.



Proof of Theorem 2

Theorem 2.

Let a > 1, let p be a prime, and let G be a finitely generated abelian group.
The following problem is decidable:

Given finite symmetric generating sets S, T in G, determine whether

Vn € N : cogg(n) = cogp(n) mod p”.

Lemma 1. [Kuksov, 1998]
Let G = (S) be an abelian group, S = S~*. Then Cs(t) € Diagonal.

Lemma 2. [Adamczewski-Bell, 2013]

Let C(t) = an(l c,t" € Diagonal, let p be a prime, and let a > 1, b > 0.
The following problem is decidable:
dneN : ¢, =b mod p”.




Understanding Theorem 1

Corollary 1.
For some integer m < 9.6 - 10%°, there are symmetric g.s. S,T of UT(m,Z),

such that the following problem is independent of ZFC:

Vn € N : cogg(n) = cogp(n) mod 2%

Corollary 2.

For some integer m < 9.6 - 10°°, there are symmetric g.s. S,T of UT(m,7Z), s.t.
dn € N : cogg(n) # cogr(n) mod 2%,

but the first time the inequality holds is for n > Tow(Tow(Tow(¢))),

where ¢ = @(S) + o(T) is the sum of absolute values of matriz entries,
and Tow(N) is the tower of 2°s of length N.



Theorem 1 implies Main Theorem

Main Theorem

For a fized sufficiently large integer m, the following problem is not computable:

Given a symmetric generating set S of the unitriangular group UT(m,Z), write
the cogrowth series Cs(t) as diag P/Q, for some P,Q € Z|xy, ... x|, and k > 1.

Moreover, the result holds for some m < 9.6 - 10.

PROOF BY CONTRADICTION

Lemma 2. [Adamczewski-Bell, 2013]
Let C(t) = anu c,t" € Diagonal, let p be a prime, and let a > 1, b > 0.

The following problem is decidable:
dneN : ¢, =b mod p“.




Towards the proof of Theorem 1

Hilbert's tenth problem

From Wikipedia, the free encyclopedia

A

Theorem  (unsolvability of Hilbert’s tenth problem). One CANNOT construct an algorithm
that would determine, for an arbitrary Diophantine equation, whether or not it has a solution in

integers. [Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson, 1970]

Main idea: embedding Diophantine equations into the cogrowth


https://en.wikipedia.org/wiki/Martin_Davis_(mathematician)
https://en.wikipedia.org/wiki/Yuri_Matiyasevich
https://en.wikipedia.org/wiki/Hilary_Putnam
https://en.wikipedia.org/wiki/Julia_Robinson

Towards the proof of Theorem 1

Main Lemma

Let f € Zlxy, ..., x| with D =deg f > 2. Then for some

m < 4D+1)(7FF) +8+ (P (D+ 1),

there exists matrices P, Q, Ay, ..., A € UT(m, Z), s.t. every word of the form

PWQWL P~ 'W3Q~ ',

where W; € (AT, .., A" is a cogrowth word only if

T —] T 7—] X Iy
Wi=Wy ' =Wy=W;'=Al"-- A}

for some integer root of f. ie. f(xy,...,xr) = 0.



Dreaming beyond diagonals

Denote ¢ = (x1,...,xx), and let f € Z[x1,...,x,|. Consider a Diophantine equation f(x) = 0.
Denote by R(f) := {x € Z* : f(x) = 0} be the set of roots.

We say that f is sparse if all roots & € R(f) have distinct ¢! norm: |x| # |y| for all =,y € R(f).
In this case we can assume that the roots of f are ordered according to the norm: R(f) = {ri, ro,...},
where |ri| < |ra| < ... For a sparse f, we use p; := |r,|.

Finally, for z € Z, let bin(z) denote the number of 1’s in the binary expansion of |z|.

Conjecture 3.4. There exists k € N and a sparse f € Z[x1, ..., x| which satisfies:

(1) pi is even for all i > 1,

(2) piv1/pi = 00 as i — o0,

(3) for every integers a,b > 1, there exists i > 1, s.t. p;/2 =a mod 2b

(4) for every integers a,b,h > 1, there exists some N = N(a,b,h) > 1, s.t. for all i > N we have:
min{ y : bin(ep; —y) <a} > bpiy  forall 1<c<h.

Theorem 4. Suppose Conjecture 3.4 holds. Then there exists m > 1 and
a symmetric g.s. S of UT(m,Z), s.t. the cogrowth series Cs(t) ¢ D-algebraic.



Dreaming beyond diagonals

Lemma 3.6. Let {\,,} € N> be an integer sequence s.t. \g = 1. Suppose there exists an increasing
integer sequence {ny; < ng < ...} with the following properties:
(1) A, is odd for every i € N,
(2) nji1/n; — 00 as i — oo,
(3) for every integers a,b > 1, there exists i > 1, s.t. n; = a mod 20,
(4) for every C,D > 1, there exists N = N(C, D) > 0, s.t. for every i1,...,ip > N, if

for some nonnegative integers by, ...,bp, then either:
o A 18 even for at least one j.
J
o {b1,...,bp} and {n1,...,np} are equal up to rearrangement.

Then the sequence {\,} is not D-algebraic.



Thank you!




