Domes over Curves

Igor Pak, UCLA

(joint work with Alexey Glazyrin, UTRGV)

(Polytop)ics: Recent advances on polytopes, April 7, 2021

Integral curves

A PL-curve $\gamma \subset \mathbb{R}^3$ is called *integral* if comprised of unit length intervals.

A dome is a 2-dim PL-surface $S \subset \mathbb{R}^3$ comprised of unit equilateral triangles.

Integral curve γ can be domed if there is a dome S s.t. $\partial S = \gamma$.

Problem [Kenyon, c. 2005]: Can every closed integral curve be domed?

Examples: Domes over square, pentagon, regular 10-gon and 12-gon.

Other domes

Louvre pyramid, glass rooftop, Buckminster Fuller's real dome and his sketch of the *Dome over Manhattan* (1960).

Bonus questions:

Are the second and third domes polyhedral?

Is the boundary curve ∂S a regular polygon?

Is it even planar?

Positive results:

Theorem 1 [Glazyrin-P., 2020+]

For every integral curve $\gamma \subset \mathbb{R}^3$ and $\varepsilon > 0$, there is an integral curve $\gamma' \subset \mathbb{R}^3$, such that $|\gamma| = |\gamma'|$, $|\gamma, \gamma'|_F < \varepsilon$ and the curve γ' can be domed.

Here $|\gamma, \gamma'|_F$ is the Fréchet distance $|\gamma, \gamma'|_F = \max_{1 \leq i \leq n} |v_i, v_i'|$.

Theorem 2 [Glazyrin-P., 2020+]

Every regular integral n-gon in the plane can be domed.

Open: Can all planar unit rhombi $\rho(a,b)$ be domed?

Can all integral triangles $\Delta = (p, q, r), p, q, r \in \mathbb{N}$ be domed?

More conjectures and open problems later in the talk.

Prior work: polyhedra with regular faces

Star pyramid, small stellated dodecahedron, heptagrammic cuploid, and dodecahedral torus.

Johnson solids: Johnson (1966), Zalgaller (1969)

Square surfaces: Dolbilin-Shtanko-Shtogrin (1997)

Pentagonal surfaces: Alevy (2018+)

Steinhaus problem (Scottish book, 1957)

- (1) Does there exist a closed tetrahedral chain? \leftarrow Coxeter helix
- (2) Are the end-triangles dense in the space of all triangles?
- Part (1) was resolved negatively by Świerczkowski (1959)
- Part (2) was partially resolved by Elgersma-Wagon (2015) and Stewart (2019)

Idea: The group of face reflections is isomorphic to $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ which is dense in $O(3, \mathbb{R})$

A length-36 fake tetratorus with a final gap of about 0.0005 cm.

Note: 0.0005 cm = 5000 nm.

Integral triangles

Conjecture 1. An isosceles triangle $\Delta = (2, 2, 1)$ cannot be domed.

Proposition: Conjecture 1 false \Rightarrow every triangle $\Delta = (p, q, r)$ can be domed.

Conjecture 2. Every non-degenerate closed dome is rigid.

Proposition: Conjecture 1 is false \Rightarrow Conjecture 2 is false.

Space colorings

 $\Gamma \leftarrow unit \ distance \ graph \ of \mathbb{R}^3$

Conjecture 3: Let $\rho = [uvwx] \subset \mathbb{R}^3$ be a rhombus with edge lengths 2 and diagonal 1.

Then \exists coloring $\chi:\Gamma\to\{1,2,3\}$ with no rainbow (1-2-3) triangles, s.t.

$$\chi(u) = \chi(v) = 1, \ \chi(w) = 2, \ \chi(x) = 3.$$

Proposition: Conjecture $3 \Rightarrow$ Conjecture 1.

Proof: Dome over $\Delta = (2, 2, 1) \Rightarrow \text{dome } S \text{ over } \rho$.

Sperner's Lemma for (general) 2-manifolds applied to $S \cup \rho \implies \#$ of 1-2-3 Δ is even \leftarrow [Musin, 2015]

Since ρ has one 1-2-3 Δ , dome S also has at least one 1-2-3 Δ , a contradiction. \square

How to prove positive results?

Rhombus Lemma

Fix $a \notin \overline{Q}$. The set of b for which rhombus $\rho(a,b)$ which can be domed is dense in $(0,\sqrt{4-a^2})$.

Domes over regular polygons

Construction sketch:

Tilt blue triangles by $\angle \theta$. Make near-planar rhombi until the center is overshot.

Use continuity to find θ for which the tip of the slice is on the vertical axis.

Domes over generic integral curves

Definition: Integral curve is $[v_1 \dots v_n]$ is generic if all small diagonals $|v_i v_{i+2}| \notin \overline{Q}$, and the same holds after all finite flips sequences

Step 1: Generic integral curves \longrightarrow Generic near-planar integral curves

Idea: Use 2-flips to triangles $v_{i-1}v_iv_{i+1} \to v_{i-1}v_i'v_{i+1}$ until curve is near-planar.

Domes over generic integral curves (continued)

Step 2: Generic near-planar integral curves \longrightarrow Generic compact near-planar integral curves

Idea: Use 2-flips to obtain the desired permutation of unit vectors $\overrightarrow{v_i v_{i+1}}$. Now apply

Steinitz Lemma: Let $u_1, \ldots, u_n \in \mathbb{R}^2$ be unit vectors, $u_1 + \ldots + u_n = 0$.

Then there exists $\sigma \in S_n$, s.t. $\left|u_{\sigma(1)} + \ldots + u_{\sigma(k)}\right| \leq \sqrt{\frac{5}{4}}$, for all $1 \leq k \leq n$.

[Steinitz, 1913] \rightarrow general dimensions, [Bergström, 1931] \rightarrow optimal constant $\sqrt{\frac{5}{4}}$

Step 3: Break the curve into unit rhombi and pentagons.

Domes over generic integral curves (continued)

Step 4: Use an ad hoc construction for pentagons.

Step 5: Fix combinatorial data and undo the construction using the Rhombus Lemma. \square

Negative results:

Theorem 3 [Glazyrin-P., 2020+]

Let $\rho(a,b) \subset \mathbb{R}^3$ be a unit rhombus with diagonals a,b>0. Suppose $\rho(a,b)$ can be domed. Then there is a nonzero polynomial $P \in \mathbb{Q}[x,y]$, such that $P(a^2,b^2)=0$.

Theorem 4 [Glazyrin-P., 2020+]

Let $\rho(a,b) \subset \mathbb{R}^3$ be a unit rhombus with diagonals a,b>0.

If $a \notin \overline{\mathbb{Q}}$ and $a/b \in \overline{\mathbb{Q}}$, then $\rho(a,b)$ cannot be domed.

Examples:

$$\rho\left(\frac{1}{\pi}, \frac{e^{\pi}}{\sqrt{97}}\right) \leftarrow \text{Thm } 3,$$

$$\rho(\frac{1}{\pi}, \frac{1}{\pi})$$
 and $\rho(\frac{e}{\sqrt{17}}, \frac{e}{\sqrt{19}}) \leftarrow \text{Thm } 4.$

Doubly periodic surfaces

 $K \leftarrow \text{pure simplicial 2-dim complex homeomorphic to } \mathbb{R}^2$, with a free action of $\mathbb{Z} \oplus \mathbb{Z} = \langle a, b \rangle$ $\theta : K \to \mathbb{R}^3 \leftarrow \text{linear mapping of } K$, and equivariant w.r.t. $\mathbb{Z} \oplus \mathbb{Z}$, s.t. $a \curvearrowright \alpha, b \curvearrowright \beta$ (K, θ) is called a *doubly periodic triangular surface* $\mathcal{G}(K) \leftarrow \text{set of Gram matrices of } (\alpha, \beta), \text{ over all } (K, \theta)$

Theorem [A. Gaifullin – S. Gaifullin, 2014]

There is a one-dimensional real affine algebraic subvariety of \mathbb{R}^3 containing $\mathcal{G}(K)$. In particular, the entries of each Gram matrix G from $\mathcal{G}(K)$

$$\begin{cases} P(g_{11}, g_{12}, g_{22}) = 0 \\ Q(g_{11}, g_{12}, g_{22}) = 0 \end{cases}$$
 for some $P, Q \in \mathbb{Z}[x, y, z]$.

Special case of Theorem 3

Proposition

Let S be a dome over a rhombus $\gamma = \rho(a, b)$ homeomorphic to a disc. Then there is a nonzero polynomial $F \in \mathbb{Q}[x, y]$, s.t. $F(a^2, b^2) = 0$.

Proof: Attach copies of γ and $-\gamma$ as in Figure. Since α and β are orthogonal, the Gram matrix is diagonal. By G–G Theorem, we have $F \leftarrow P$ or $F \leftarrow Q$.

G-G Theorem does not generalize

Theorem [A. Gaifullin – S. Gaifullin, 2014] Every embedded doubly periodic triangular surface homeomorphic to a plane has at most one-dimensional doubly periodic flex.

Theorem [Glazyrin–P., 2020+, formerly G–G Open Problem]

There is a doubly periodic triangular surface whose doubly periodic flex is three-dimensional.

Moral: Need a better technical result.

Ingredients of the proof of theorems 3 and 4

- heavy use of theory of places
- elementary but lengthy and tedious inductive topological argument
- Cf. [Conelly–Sabitov–Walz, 1997], [Connelly, 2009], [Gaifullin–Gaifullin, 2014]

Case 1 of the induction step.

More conjectures and open problems

Conjecture 4:

The set of a, s.t. planar rhombus $\rho(a, \sqrt{4-a^2})$ can be domed, is countable.

Conjecture 5:

There are unit triangles $\Delta_1, \Delta_2 \subset \mathbb{R}^3$, such that $\Delta_1 \cup \Delta_2$ cannot be domed.

Conjecture 6 ["cobordism for domes"]:

For every integral curve $\gamma \in \mathbb{R}^3$, there is a unit rhombus ρ , and a dome over $\gamma \cup \rho$.

Thank you!

