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What is this all about?

Let P ⊂ Rd be a convex polytope given by Ax ≤ b. Say, d = 3.

Can one compute #E(P ) – the number of integer points in P? (Yes!)

How about #E(P rQ)? Or #
[
E(P ) ↓x

]
? (Yes, yes!)

Theorem 1 (Nguyen–P.)

For P, Q ∈ R3, computing #
[
E(P rQ) ↓x

]
is #P-complete.

Theorem 2 (Nguyen–P.)

Given three polytopes U1, U2, U3 ⊂ R4 and two boxes I ⊂ Z, K ⊂ Z3,

deciding the following sentence is NP-complete:

∃x ∈ I ∀z ∈ K : (x, z) ∈ U1 ∪ U2 ∪ U3

Note: the abstract says R4 in Theorem 1. We improved this since then.
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Background: IP and #IP

Theorem (Lenstra, 1983) In Rd, dimension d fixed, IP ∈ P:

(IP) ∃x ∈ Zd : Ax ≤ b.

Theorem (Barvinok, 1993) In Rd, dimension d fixed, #IP ∈ FP:

(#IP) #
{
x : Ax ≤ b

}
.

Note: The system can be long here (i.e. has unbounded size)

Proof ideas: 1) Geometry of numbers (flatness theorem), lattice reduction (LLL).

2) Brion–Verge generating function approach, cone subdivisions, combinatorial tools.



From Long to Short

Theorem (Doignon–Bell–Scarf)

Let A be a n× d real matrix and b ∈ Rd. Suppose{
x ∈ Zd : Ax ≤ b

}
= ∅.

Then there is a subset S of rows of A, |S| ≤ 2d, s.t.{
x ∈ Zd : Asx ≤ bS

}
= ∅.

Corollary: It suffices to solve IP for short systems (of bounded size n).

Note: One should think of this as the integral version of the Helly Theorem.

Indeed, Helly’s theorem says: (d+ 1)-intersections are nonempty ⇒ all are nonempty.



More background: PIP and #PIP

Theorem (Kannan, 1990) For all dimensions d, k fixed, PIP ∈ P:

(PIP) ∀y ∈ Q ∩ Zk ∃x ∈ Zd : Ax + By ≤ b.

Theorem (Barvinok–Woods, 2003) For all dimensions d, k fixed, #PIP ∈ FP:

(#PIP) #
{
y ∈ Q ∩ Zk ∃x ∈ Zd : Ax + By ≤ b

}
.

Translation: These are E(Q) ⊆? E(P )↓ and #
[
E(Q) ∩ E(P )↓

]
.

Proof ideas: More of the same (geometry of numbers, GFs, + ad hoc arguments)

Note: DBS theorem applies, so PIP and #PIP hold for long systems.



What happens for three quantifiers?

Open Problem (Kannan, 1990) Is GIP ∈ P for all dimensions d, k, ` fixed?

(GIP) ∃z ∈ R ∩ Z` ∀y ∈ Q ∩ Zk ∃x ∈ Zd : Ax + By + Cz ≤ b.

Theorem 3 (Nguyen–P.) For dimensions d ≥ 3, k, ` ≥ 1 fixed, GIP is NP-complete.

The corresponding counting version #GIP is #P-complete.

Theorem (Nguyen–P., STOC’17) KPT implies that Short-GIP ∈ P.

KPT = Kannan’s Partition Theorem (1990) is the Main Lemma

in the proof of Kannan’s PIP Theorem.

Note: DBS theorem no longer can be applied in this case (so no contradiction).



Many alternating quantifiers

Theorem (Schöning, 1997) Fix k ≥ 1. Let Ψ(x,y) be a Boolean combination of
linear inequalities with integer coefficients in the variables x = (x1, . . . , xk) ∈ Zk and
y = (y1, y2, y3) ∈ Z3. Then deciding the sentence

(?) Q1 x1 ∈ Z . . . Qk xk ∈ Z Qk+1 y ∈ Z3 : Ψ(x,y)

is ΣP
k -complete if Q1 = ∃, and ΠP

k -complete if Q1 = ∀. Here Q1, . . . , Qk+1 ∈ {∀,∃}
are (k + 1) alternating quantifiers.

Theorem (Nguyen–P.) Integer Programming (?) in a fixed number of variables with
(k + 2) alternating quantifiers is ΣP

k/Π
P
k -complete, depending on whether Q1 = ∃/∀.

Here the problem is allowed to contain only a system of inequalities.

Note Tradeoff: Boolean system ←→ extra quantifier.



Proof idea: reduction to GSA

For a vector α = (α1, . . . , αd) ∈ Qd and an integer k ∈ Z, let

{{kα}} = max
1≤i≤d

{{kαi}},

where for each rational β ∈ Q, the quantity {β} is defined as:

{{β}} := min
n∈Z
|β − n| = min

{
β − bβc, dβe − β

}
.

GOOD SIMULTANEOUS APPROXIMATION (GSA)

Input: A rational vector α = (α1, . . . , αd) ∈ Qd and N ∈ N, ε ∈ Q.

Problem: Is an integer x ∈ [1, N ] such that {{xα}} ≤ ε?

Theorem (Lagarias, 1985) GSA is NP-complete.

Main ideas: Use continuing fraction for ε = p/q to study integer points under y ≤ εx
line. Note that for p, q Fibonacci numbers the resulting set is both large and has poly-
size description. Generalize this observation. Convert the problem into a problem about
polytopes by adding auxiliary variables. Proofs of all theorems 1,2 and 3 follow this pattern.



Coming attractions

Theorem (Nguyen–P., FOCS 2017)

Problem Short-GIP is NP–complete.

Note: This is a strong extension of our Theorem 3.

It should be compared to our STOC theorem: KPT ⇒ Short-GIP ∈ P.

Natural Questions: Did we prove P = NP? (No!)

Is STOC Theorem correct? (Yes!)

Is FOCS Theorem correct? (Yes!)

What gives? (We’ll explain in Berkeley. See you then!)



Thank You!


