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What is this all about?

Let P C R? be a convex polytope given by Ax <b. Say, d = 3.
Can one compute #E(P) — the number of integer points in P? (Yes!)
How about #E(P \ Q)? Or #|E(P) |,]? (Yes, yes!)

Theorem 1 (Nguyen—P.)
For P, Q € R?, computing #[E(P \ Q) |.] is #P-complete.

Theorem 2 (Nguyen-P.)
Given three polytopes Uy, Us, Us C R* and two boxes [ C Z, K C Z?,

deciding the following sentence is NP-complete:
drel Vze K : ([E,Z)EUlL_JUQUUg

Note: the abstract says R* in Theorem 1. We improved this since then.
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Background: IP and #IP

Theorem (Lenstra, 1983) In R?, dimension d fixed, IP € P:
(IP)  3xe€Z?: Ax < b.

Theorem (Barvinok, 1993) In R?, dimension d fixed, #IP € FP:
(#1P)  #{x: Ax < b}.

Note: The system can be long here (i.e. has unbounded size)

Proof ideas: 1) Geometry of numbers (flatness theorem), lattice reduction (LLL).

2) Brion—Verge generating function approach, cone subdivisions, combinatorial tools.



From Long to Short

Theorem (Doignon—Bell-Scarf)

Let A be a n x d real matrix and b € R Suppose

{XGZd:AXSZ_)} = .

Then there is a subset S of rows of A, |S| <24, s.t.

{xGZd : ASXSZ_)S} = .

Corollary: It suffices to solve IP for short systems (of bounded size n).

Note: One should think of this as the integral version of the Helly Theorem.

Indeed, Helly’s theorem says: (d + 1)-intersections are nonempty = all are nonempty.



More background: PIP and #PIP

Theorem (Kannan, 1990) For all dimensions d, k fixed, PIP € P:
(PIP) VyeQnZF IxcZ?: Ax + By < b.

Theorem (Barvinok—Woods, 2003) For all dimensions d, k fixed, #PIP € FP:
(#PIP)  #{yeQnZ' 3xeZ': Ax + By < b}.

Translation: These are E(Q) C; E(P)] and #[E(Q) NE(P)]].

Proof ideas: More of the same (geometry of numbers, GFs, + ad hoc arguments)

Note: DBS theorem applies, so PIP and #PIP hold for long systems.



What happens for three quantifiers?

Open Problem (Kannan, 1990) Is GIP € P for all dimensions d, k, ¢ fixed?
(GIP) 3Jze€RNZ'  VyeQnZ IxeZ? : Ax + By + Cz < b.

Theorem 3 (Nguyen—P.) For dimensions d > 3, k,¢ > 1 fixed, GIP is NP-complete.
The corresponding counting version #GIP is #P-complete.

Theorem (Nguyen—P., STOC’17) KPT implies that SHORT-GIP € P.

KPT = Kannan’s Partition Theorem (1990) is the Main Lemma
in the proof of Kannan’s PIP Theorem.

Note: DBS theorem no longer can be applied in this case (so no contradiction).



Many alternating quantifiers

Theorem (Schoning, 1997) Fix & > 1. Let ¥(x,y) be a Boolean combination of

linear inequalities with integer coefficients in the variables x = (z1,...,z) € Z* and
y = (Y1,%2,¥3) € Z3. Then deciding the sentence
(*) Qir1 €Z ... Qpar€Z Qruy€eZ® : Y(x,y)

is XF-complete if Q; = 3, and IT;-complete if @, = V. Here Qy,...,Qry1 € {V,3}
are (k + 1) alternating quantifiers.

Theorem (Nguyen—P.) Integer Programming () in a fixed number of variables with
(k +2) alternating quantifiers is 3} /TI} -complete, depending on whether @, = 3/V.
Here the problem is allowed to contain only a system of inequalities.

Note Tradeoff: Boolean system <+— extra quantifier.



Proof idea: reduction to GSA

For a vector a = (a, ..., aq) € Q% and an integer k € 7Z, let
(e = o (ko)
where for each rational 8 € Q, the quantity {5} is defined as:
{8} = min |8 —nl = min {5 —[8],[5] - 8}

GOOD SIMULTANEOUS APPROXIMATION (GSA)
Input: A rational vector a = (a,...,aq) € Q¢ and N € N, € € Q.
Problem: Is an integer € [1, N] such that {{ra}} <e?

Theorem (Lagarias, 1985) GSA is NP-complete.

Main ideas: Use continuing fraction for ¢ = p/q to study integer points under y < ex
line. Note that for p,q Fibonacci numbers the resulting set is both large and has poly-
size description. Generalize this observation. Convert the problem into a problem about
polytopes by adding auxiliary variables. Proofs of all theorems 1,2 and 3 follow this pattern.



Coming attractions

Theorem (Nguyen—P., FOCS 2017)
Problem SHORT-GIP is NP—complete.

Note: This is a strong extension of our Theorem 3.

It should be compared to our STOC theorem: KPT = SHORT-GIP € P.

Natural Questions: Did we prove P = NP? (No!)
Is STOC Theorem correct? (Yes!)
Is FOCS Theorem correct? (Yes!)

What gives? (We'll explain in Berkeley. See you then!)



Thank You!




