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Platonic solids ELEMENTS BOOK 13

The Platonic solids’
Tetrahedron Cube Octahedron Dodecahedron lcosahedron
Four faces Six faces Eight faces Twelve faces Twenty faces

Question 1: How do you know the icosahedron really exists?

Question 2: And if it does, how do you know it’s inscribed into a sphere?

Answer: That depends on how icosahedron is defined!
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Platonic solids

Definition 1: Regular polytopes = convex polytopes where all sides are regular polygons
with the same number of sides, and where every vertex has the same degree

Need: Alexandrov Works by continuity. Question:
Unfolding Theorem Is it inscribed into a sphere?



Platonic solids

Definition 2: Regular polytopes = convex polytopes P whose group of symmetries acts
transitively on complete flags of P.

Adrien-Marie Legendre

Discovered and fixed the
mistake in his translation of

Eléments de géométrie, 1794

(0, %1, +¢), (£1,+¢,0), and (£¢, 0, £1),

O = 1+‘/_ 1s the golden ratio Modern day approach:
Cauchy Rigidity Theorem (1813)

Note: Still need a calculation to check Def. 2




Archimedean solids

Definition: all faces are regular polygons, and

symmetry group acts transitively on vertices

Note: Archimedes did not miss one!
(don’t trust Wikipedia)




Johnson solids

Norman Johnson 1966

Victor ZE[lQE”EI‘ 1969 (218 pages, habilitation)

Proof ingredients:

Alexandrov unfolding theorem, variation on
Volkov stability theorem, heavy computer
calculations (BESM-3M at S.Pb. University)




Kepler—Poinsot polyhedra

Johannes Kepler
Harmonices Mundi 1619




Steinhaus problem (Scottish book, 1957)

(1) Does there exist a closed tetrahedral chain? <— Cozeter helix

(2) Are the end-triangles dense in the space of all triangles?

Art Tower Mito

A length-36 fake tetratorus with a final gap of about 0.0005 cm.

Part (1) was resolved negatively by Swierczkowski (1959)
Part (2) was partially resolved by Elgersma—Wagon (2015) and Stewart (2019)

Idea: The group of face reflections is isomorphic to Zs * Zo % Zs * Zo which is dense in O(3, R)



General surfaces with regular polyhedral faces

Square surfaces: Dolbilin-Shtanko-Shtogrin (1997)

(no new polyhedra of this kind)

Pentagonal surfaces: Alevy (2018+)

(for small genus all such polyhedra are comprised of dodecahedra
attached along faces)

Many ad hoc examples:




Integral curves

A PL-curve v C R? is called integral if comprised of unit length intervals.
A dome is a 2-dim PL-surface S C R? comprised of unit equilateral triangles.

Integral curve v can be domed if there is a dome S s.t. 0S5 = 7.

Problem [Kenyon, ¢. 2005]: Can every closed integral curve be domed?

A0 Q&

Dome constructions over regular n-gons, n=4, 5, 10, 12




Other domes

Question: Is this a dome
over a planar n-gon?

Buckminster Fuller’s real
dome and his sketch of the
Dome over Manhattan (1960)




Positive results:

Theorem 1 |Glazyrin—P., 2020+]
For every integral curve v C R? and € > 0, there is an integral curve 7' C R,

such that |v| = [¥|, |v,7|r < e and the curve +" can be domed.

Here |v,~'|F is the Fréchet distance |v,~'|r = maxi<j<, |v;, vi].

Theorem 2 [Glazyrin-—P., 2020+]

Every regular integral n-gon in the plane can be domed.



How to prove positive results?

Definition: p(a,b) isarhombus with unit sides and diagonals a and b.

Rhombus Lemma

Fix a ¢ Q. The set of b for which rhombus p(a, b) which can be domed is dense in (0, v/4 — a?).

Open: Can all planar unit rhombi p(a, b) be domed?



Domes over regular polygons

Construction sketch:

Wayman AME Church
Minneapolis, MN

Tilt blue triangles by Zf#. Make near-planar rhombi until the center is overshot.

Use continuity to find € for which the tip of the slice is on the vertical axis.



Negative results:

Theorem 3 |[Glazyrin—P., 2020+ ]
Let p(a,b) C R? be a unit thombus with diagonals a, b > 0. Suppose p(a,b) can be domed.

Then there is a nonzero polynomial P € Q[z, y|, such that P(a* b?) = 0.

Theorem 4 [Glazyrin—P., 2020+
Let p(a,b) C R? be a unit rhombus with diagonals a, b > 0.
If a ¢ Q and a/b € Q, then p(a,b) cannot be domed.

Proof ingredients:
Examples:

e heavy use of theory of places

p(%\;;_?) «— Thm 3,

e technical inductive topological argument

1 1

1 1Y . e € , . _
p (’?T ’ TT) and p (\/ﬁ’ \/E) < Thm4 |Conelly-Sabitov-Walz, 1997]
|Gaifullin- Gaifullin, 2014]

(Connelly, 2009]



Conjectures and open problems

Conjecture 1. An isosceles triangle A = (2,2,1) cannot be domed.

Proposition: Conjecture 1 false = every triangle A = (p,q,r) can be domed.

1 3

Conjecture 2. Every non-degenerate closed dome is rigid.

Proposition: Conjecture 1 is false = Conjecture 2 is false.




Conjectures and open problems

Conjecture 3:

The set of a, s.t. planar rhombus p(a, V4 — az) can be domed, is countable.

Conjecture 4:

There are unit triangles A;, Ay C R?. such that A; U Ay cannot be domed.

Conjecture 5 |“cobordism for domes”|:

For every integral curve v € R?, there is a unit thombus p, and a dome over y U p.



Thanf you!




