Poset inequalities

Igor Pak, UCLA

pdf file of the paper

Plan of the talk:

1) Overview of combinatorial inequalities and their proofs
2) Recent results on poset inequalities

Main thing to remember:

Good inequalities deserve good proofs!

Binomial coefficients

$$
\binom{n}{0} \leq\binom{ n}{1} \leq\binom{ n}{2} \leq \ldots \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

(1) Direct calculation

$$
\binom{n}{k}-\binom{n}{k-1}=\frac{n!}{k!(n-k+1)!}((n-k)-k) \geq 0
$$

Binomial coefficients

$$
\binom{n}{0} \leq\binom{ n}{1} \leq\binom{ n}{2} \leq \ldots \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

(2) Real roots \Rightarrow log-concavity

Newton (1707)

$\prod_{i=1}^{n}\left(x+c_{i}\right)=\sum_{k=0}^{n} a_{k} x^{k} \Longrightarrow a_{k}^{2} \geq a_{k-1} a_{k+1}$

$$
\left(e_{k}\right)^{2} \geq e_{k-1} e_{k+1}
$$

log-concavity \Rightarrow unimodality
$a_{k}^{2} \geq a_{k-1} a_{k+1} \quad \Longrightarrow \quad\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is unimodal

$$
\left.(k+1)^{\prime}=\dot{\sum}_{i=1}^{(t)}\right)^{x}
$$

Binomial coefficients

$$
\binom{n}{0} \leq\binom{ n}{1} \leq\binom{ n}{2} \leq \ldots \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

(3) Combinatorial interpretation

Bertrand's ballot theorem (1887)

$\binom{n}{k}-\binom{n}{k-1}=$ number of ballot sequences of length n
ballot sequences $:=0 / 1$ sequences with $(n-k) 0 \mathrm{~s}$, with k 1s, -0100101011 and $\# 0$'s $\geq \# 1$'s in every prefix

Binomial coefficients

$$
\binom{n}{0} \leq\binom{ n}{1} \leq\binom{ n}{2} \leq \ldots \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

(4) Symmetric saturated chain decomposition

[De Bruijn, Tengbergen, Kruyswijk, 1951]
[Greene, Kleitman, 1976]

Binomial coefficients

$$
\binom{n}{0} \leq\binom{ n}{1} \leq\binom{ n}{2} \leq \ldots \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

(5) Linear algebra

Exterior algebra $\Lambda=\mathbb{C}\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle, \quad \xi_{i} \xi_{j}=-\xi_{j} \xi_{i}, \forall i, j$
Linear map $\Phi: f \rightarrow f \cdot\left(\xi_{1}+\ldots+\xi_{n}\right), \quad \Phi: \Lambda^{k-1} \rightarrow \Lambda^{k}$
Observation: Φ is injective for $1 \leq k \leq n / 2$

Binomial coefficients

$$
\binom{n}{0} \leq\binom{ n}{1} \leq\binom{ n}{2} \leq \ldots \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

(1) Direct calculation
(6) Hard Lefschetz theorem
(2) Real roots \Rightarrow log-concavity
[Stanley, 1980]
(3) Combinatorial interpretation
(4) Symmetric saturated chain decomposition
(5) Linear algebra

Gaussian coefficients

Unimodality of Gaussian coefficients:
$p_{a b}(0) \leq p_{a b}(1) \leq \ldots \leq p_{a b}(\lfloor a b / 2\rfloor)$
$\binom{a+b}{a}_{q}=\frac{\left(q^{a+1}-1\right) \cdots\left(q^{a+b}-1\right)}{(q-1) \cdots\left(q^{b}-1\right)}=\sum_{n=0}^{a b} p_{a b}(n) q^{n}$
$p_{a b}(n)=$ number of partitions of n which fit rectangle $[a \times b]$
$\binom{6}{3}_{q}=1+q+2 q^{2}+3 q^{3}+3 q^{4}+3 q^{5}+3 q^{6}+2 q^{7}+q^{8}+q^{9}$

More examples

(6) Unimodality of Gaussian coefficients - $p_{a b}(0) \leq p_{a b}(1) \leq \ldots \leq p_{a b}(\lfloor a b / 2\rfloor)$

$$
\binom{a+b}{a}_{q}=\frac{\left(q^{a+1}-1\right) \cdots\left(q^{a+b}-1\right)}{(q-1) \cdots\left(q^{b}-1\right)}=\sum_{n=0}^{a b} p_{a b}(n) q^{n}
$$

$p_{a b}(n)=$ number of partitions of n which fit rectangle $[a \times b]$

Conjectured: [Cayley, 1856]
[Sylvester, 1878] (invariant theory)
[Stanley, 1980] (hard Lefschetz theorem)
[Proctor, 1982] (linear algebra)
[O'Hara, 1990] (combinatorial proof, not injective!)
[P.-Panova, 2013] (Kronecker coefficients, strict)

More examples

(6) Unimodality of Gaussian coefficients - $p_{a b}(0) \leq p_{a b}(1) \leq \ldots \leq p_{a b}(\lfloor a b / 2\rfloor)$

$$
\binom{a+b}{a}_{q}=\frac{\left(q^{a+1}-1\right) \cdots\left(q^{a+b}-1\right)}{(q-1) \cdots\left(q^{b}-1\right)}=\sum_{n=0}^{a b} p_{a b}(n) q^{n}
$$

$p_{a b}(n)=$ number of partitions of n which fit rectangle $[a \times b]$
[P.-Panova, 2013] (Kronecker coefficients, strict)

$$
\begin{aligned}
& g\left(a^{b}, a^{b},(a b-k, k)\right)=p_{a b}(k)-p_{a b}(k-1) \\
& \quad \Rightarrow \quad p_{a b}(k)-p_{a b}(k-1) \geq 1 \quad \forall a, b \geq 8
\end{aligned}
$$

More examples

(6) Unimodality of Gaussian coefficients - $p_{a b}(0) \leq p_{a b}(1) \leq \ldots \leq p_{a b}(\lfloor a b / 2\rfloor)$

$$
\binom{a+b}{a}_{q}=\frac{\left(q^{a+1}-1\right) \cdots\left(q^{a+b}-1\right)}{(q-1) \cdots\left(q^{b}-1\right)}=\sum_{n=0}^{a b} p_{a b}(n) q^{n}
$$

$p_{a b}(n)=$ number of partitions of n which fit rectangle $[a \times b]$

Open: Find a symmetric chain decomposition proof.
This would give an explicit combinatorial interpretation for $p_{a b}(k)-p_{a b}(k-1)$.

Counting subgraphs

Kleitman's inequality [Kleitman, 1966] (induction)

Example:

$$
\mathbb{P}[H \text { is Hamiltonian }] \geq \mathbb{P}[H \text { is Hamiltonian } \mid H \text { is planar }]
$$

H is a random subgraph of a fixed $G=(V, E)$
Why works: planarity is closed down, Hamiltonicity is closed up, so they have negative correlation.

Kleitman's inequality generalizes to

- the FKG inequality (Fortuin-Kasteleyn-Ginibre, 1971)
- the four functions inequality (Ahlswede-Daykin, 1978)

Matching numbers

Log-concavity of the matching numbers: $m_{k}(G)^{2} \geq m_{k+1}(G) m_{k-1}(G)$ $m_{k}(G):=\# k$-matchings in $G=(V, E)$
[Heilmann-Lieb, 1972] (interlacing of eigenvalues)
 [Krattenthaler, 1996] (injective proof)

Theory of monomer-dimer systems

OJ Heilmann, EH Lieb - Statistical Mechanics, 1972 - Springer
We investigate the general monomer-dimer partition function, $\mathrm{P}(\mathrm{x})$, which is a polynomial in the monomer activity, x, with coefficients depending on the dimer activities. Our main result is ... i Save 50 Cite Cited by 752 Related articles All 14 versions

Matching numbers

Log-concavity of the matching numbers: $m_{k}(G)^{2} \geq m_{k+1}(G) m_{k-1}(G)$ $m_{k}(G):=\# k$-matchings in $G=(V, E)$
[Heilmann-Lieb, 1972] (interlacing of eigenvalues)

[Krattenthaler, 1996] (injective proof)

‘Outsiders' Crack 50-Year-Old Math Problem

Three computer scientists have solved a problem central to a dozen far flung mathematical fields.
[Submitted on 17 Jun 2013 (v1), last revised 14 Apr 2014 (this version, v4)]

Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem

Adam Marcus, Daniel A Spielman, Nikhil Srivastava

Matching numbers

Log-concavity of the matching numbers: $m_{k}(G)^{2} \geq m_{k+1}(G) m_{k-1}(G)$ $m_{k}(G):=\# k$-matchings in $G=(V, E)$
[Heilmann-Lieb, 1972] (interlacing of eigenvalues)

[Krattenthaler, 1996] (injective proof)

Forest numbers

Log-concavity of the forest numbers: $f_{k}(G)^{2} \geq f_{k+1}(G) f_{k-1}(G)$ $f_{k}(G):=\#$ spanning k-forests in $G=(V, E)$

Conjectured: [Mason, 1972], [Welsh, 1976]
[Adiprasito-Huh-Katz, 2018] (Hodge theory)
[Brändén-Huh, 2020], [Anari et. al, 2018] (Lorentzian polynomials)

[Chan-P., 2021] (linear algebra)

Adiprasito, Huh and Katz announce a proof of Rota's log-concavity conjecture

Forest numbers

Log-concavity of the forest numbers: $\quad f_{k}(G)^{2} \geq f_{k+1}(G) f_{k-1}(G)$ $f_{k}(G):=\#$ spanning k-forests in $G=(V, E)$

Positivity Problems and Conjectures in Algebraic Combinatorics

Problem 25. Are the sequences below unimodal or log-concave?

Our own feeling is that these questions have negative answers, but that the counterexamples will be huge and difficult to construct.

Motivation

1. Better proofs give better results. Algebraic proofs can be so rigid as not allow extensions, deformations (q-analogues), etc.
2. Better proofs give combinatorial interpretations. $f \geq g$ and $f, g \in \# \mathrm{P}$. Question: Is $f-g \in \# \mathrm{P}$?

Open Problem:

Find a combinatorial interpretation for $\rho_{k}(G):=f_{k}(G)^{2}-f_{k+1}(G) f_{k-1}(G)$
More precisely, is $\rho_{k}(G) \in \# \mathrm{P}$?
Krattenthaler's proof $\Longrightarrow m_{k}(G)^{2}-m_{k+1}(G) m_{k-1}(G) \in \# \mathrm{P}$

Note: Computing $m_{k}(G)$ and $f_{k}(G)$ is \#P-complete.

What is in \#P and what is not?
Christian Ikenmeyer, Igor Pak

Linear extensions of posets

Let $\mathcal{P}:=(X, \prec)$ be a poset on $n:=|X|$ elements.
Linear extension of \mathcal{P} is a bijection $L: X \rightarrow\{1, \ldots, n\}$, s.t. $L(x)<L(y)$ for all $x \prec y$.
Denote $\mathcal{E}(\mathcal{P})$ the set of linear extensions of \mathcal{P}, and $e(\mathcal{P}):=|\mathcal{E}(\mathcal{P})|$.

$\mathrm{a}<\mathrm{c}, \mathrm{b}<\mathrm{c}, \mathrm{b}<\mathrm{z}$

Linear extensions of posets

Let $\mathcal{P}:=(X, \prec)$ be a poset on $n:=|X|$ elements.
Linear extension of \mathcal{P} is a bijection $L: X \rightarrow\{1, \ldots, n\}$, s.t. $L(x)<L(y)$ for all $x \prec y$.
Denote $\mathcal{E}(\mathcal{P})$ the set of linear extensions of \mathcal{P}, and $e(\mathcal{P}):=|\mathcal{E}(\mathcal{P})|$.

Theorem [Björner-Wachs, 1989]

$$
e(P) \prod_{x \in X} b(x) \geq n!
$$

where $B(x):=\{y \in X: y \succcurlyeq x\}$ and $b(x):=|B(x)|$.

Note: original proof shows this inequality is in \#P.

Linear extensions of posets

XYZ inequality [Shepp, 1982]
Let $\mathcal{P}=(X, \prec)$ be a finite poset, $x, y, z \in X$ incomparable elements, and

$$
\mathcal{P}_{x y}:=\mathcal{P} \cup\{x \prec y\}, \quad \mathcal{P}_{x z}:=\mathcal{P} \cup\{x \prec z\}, \quad \mathcal{P}_{x y z}:=\mathcal{P} \cup\{x \prec y, x \prec z\}
$$

Then:

$$
e(P) e\left(P_{x y z}\right) \geq e\left(P_{x y}\right) e\left(P_{x z}\right)
$$

Equivalently,

$$
\mathbb{P}[L(x)<L(y) \mid L(x)<L(z)] \geq \mathbb{P}[L(x)<L(y)]
$$

Open Problem: Is XYZ inequality in \#P?

Note: The original proof uses the $F K G$ inequality and a limit argument.
arXiv.org > math > arXiv:2110.10740

Mathematics > Combinatorics

[Submitted on 20 Oct 2021]

Log-concave poset inequalities

Swee Hong Chan, Igor Pak

Comments: 71 pages, 4 figures

Introduction to the combinatorial atlas

Swee Hong Chan, Igor Pak

1. Introduction
1.1. Foreword
1.2. What to expect now
1.3. Matroids
1.4. More matroids
1.5. Weighted matroid inequalities
1.6. Equality conditions for matroids
1.7. Examples of matroids
1.8. Morphism of matroids
1.9. Equality conditions for morphisms of matroids
1.10. Discrete polymatroids
1.11. Equality conditions for polymatroids
1.12. Poset antimatroids
1.13. Equality conditions for poset antimatroids
1.14. Interval greedoids
1.15. Equality conditions for interval greedoids
1.16. Linear extensions
1.17. Two permutation posets examples
1.18. Equality conditions for linear extensions
1.19. Summary of results and implications
1.20. Proof ideas
1.21. Discussion
1.22. Paper structure

Stanley's inequality

Let $\mathcal{P}:=(X, \prec)$ be a poset on $n:=|X|$ elements. Fix $z \in X$.
A linear extension of \mathcal{P} is a bijection $L: X \rightarrow\{1, \ldots, n\}$, such that $L(x)<L(y)$ for all $x \prec y$. Denote by $\mathcal{E}:=\mathcal{E}(P)$ the set of linear extensions of \mathcal{P}.
Let $\mathcal{E}_{k}:=\{L \in \mathcal{E}: L(z)=k\}, \quad \mathrm{N}(k):=\left|\mathcal{E}_{k}\right|$.

Theorem [Stanley, 1981]: $\mathrm{N}(k)^{2} \geq \mathrm{N}(k-1) \mathrm{N}(k+1)$ for all $1<k<n$.

$\mathrm{a}<\mathrm{c}, \mathrm{b}<\mathrm{c}, \mathrm{b}<\mathrm{z}$

$$
N(2)=1, \quad N(3)=2, \quad N(4)=2
$$

Weighted Stanley inequality

Let $\omega: X \rightarrow \mathbb{R}_{>0}$ be weight function on X. We say that ω is order-reversing if:

$$
x \preccurlyeq y \quad \Rightarrow \quad \omega(x) \geq \omega(y) .
$$

Fix $z \in X$. Define $\omega: \mathcal{E} \rightarrow \mathbb{R}_{>0}$ by

$$
\omega(L):=\prod_{x: L(x)<L(z)} \omega(x),
$$

and

$$
\mathrm{N}_{\omega}(k):=\sum_{L \in \mathcal{E}_{k}} \omega(L), \quad \text { for all } 1 \leq k \leq n .
$$

Theorem [Chan-P.'21]: $\quad \mathrm{N}_{\omega}(k)^{2} \geq \mathrm{N}_{\omega}(k-1) \mathrm{N}_{\omega}(k+1)$ for all $1<k<n$.

Note: Our proof uses a completely novel technology of combinatorial atlas.

Alexandrov-Fenchel inequalities

Theorem [Alexandrov'37, Fenchel'36] $K_{1}, \ldots, K_{n} \subset \mathbb{R}^{n}$ convex polytopes. Define:

$$
V\left(K_{1}, \ldots, K_{n}\right):=\left[\lambda_{1} \cdots \lambda_{n}\right] \operatorname{vol}\left(\lambda_{1} K_{1}+\ldots+\lambda_{n} K_{n}\right)
$$

Then:

$$
V\left(K_{1}, K_{2}, K_{3}, \ldots, K_{n}\right)^{2} \geq V\left(K_{1}, K_{1}, K_{3}, \ldots, K_{n}\right) V\left(K_{2}, K_{2}, K_{3}, \ldots, K_{n}\right)
$$

Corollary: Sequence $\left\{V_{k}\right\}$ is \log-concave, where $V_{k}:=V(P, \ldots, P, Q, \ldots, Q)$ for every $P, Q \subset \mathbb{R}^{n}$ convex polytopes. $\mid \underbrace{P-}_{k-} \underbrace{P}_{n-k}$

The van der Waerden Conjecture: Two Proofs in One Year

Note: AF is super powerful! For example, for boxes $K_{i}=\left[a_{i 1} \times \ldots \times a_{i n}\right]$ we have:

$$
V\left(K_{1}, \ldots, K_{n}\right)=\operatorname{Per}(A), \text { where } A=\left(a_{i j}\right)_{1 \leq i, j \leq n}
$$

Now AF implies identity for the permanents which in turn easily implies Van der Waerden Conjecture

Proof of Stanley's inequality

Two Combinatorial Applications of the Aleksandrov-Fenchel Inequalities*

$$
V(x K+y L)=\sum_{i=0}^{n}\binom{n}{i} V_{i}(K, L) x^{n+i} y^{i},
$$

Theorem 4 (The Aleksandrov-Fenchel inequalities): For any convex bodies K, L in \mathbb{R}^{n}, the sequence

$$
\begin{equation*}
V_{0}(K, L), V_{1}(K, L), \ldots, V_{n}(K, L) \tag{9}
\end{equation*}
$$

is log-concave (with no internal zeros).

Proof of Stanley's inequality

Theorem [Stanley, 1981]: $\mathrm{N}(k)^{2} \geq \mathrm{N}(k-1) \mathrm{N}(k+1)$ for all $1<k<n$.

Sketch of proof: Let $P=\left\{v_{1}, \ldots, v_{n-1}, v\right\}$. Let K be the set of all points $\left(t_{1}, \ldots, t_{n-1}\right) \in \mathbb{R}^{n-1}$ satisfying:
(a) $0 \leq t_{i} \leq 1$,
(b) if $v_{i} \leq v_{j}$ in P, then $t_{i} \leq t_{j}$,
(c) if $v_{l}<v$, then $t_{i}=0$.

Similarly define $L \subset \mathbb{R}^{n-1}$ by (a), (b), and:
(c') if $v_{i}>v$, then $t_{i}=1$.
Then K and L are convex polytopes. By an explicit decomposition of $x K+y L$ into products of simplices, it can be computed that $V_{i}(K, L)=N_{i+1} /(n-1)$!. The proof follows from Theorem 4.

Proving AF inequalities

CHAPTER IV

TO THE THEORY OF MIXED VOLUMES OF CONVEX BODIES PART II ${ }^{1}$
Comptes Rendus Mathematique

Matematicheskí̀ Sbornik, vol. 2 (44), No. 6, 1205-1238 (1937).

BONNESEN-TYPE INEQUALITIES IN ALGEBRAIC

 GEOMETRY, I: INTRODUCTION TO THE PROBLEM
Yu. D. Burago
 V. A. Zalgaller

Geometric Inequalities

From the book Seminar on Differential Geometry. (AM-102), Volume 102 B. Teissier
Volume 357, Issue 8, August 2019, Pages 676-680

Functional analysis/Geometry
One more proof of the Alexandrov-Fenchel inequality
Une autre preuve de l'inégalité d'Alexandrov-Fenchel

Presented by Gilles Pisier
Dario Cordero-Erausquin ${ }^{\text {a }}$ 区, Boaz Klartag ${ }^{\text {b }}$, Quentin Merigot ${ }^{\text {c }}$, Filippo Santambrogio ${ }^{\text {d }}$

Annals of Mathematics 176 (2012), 925-978 http://dx.doi.org/10.4007/annals.2012.176.2.5

Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory

By Kiumars Kaveh and A. G. Khovanskil

Does an elementary proof of AF inequality give an elementary proof of Stanley's inequality?

Answer: Yes. This is what we did!
Along the way we introduces new linear algebraic setting which proved useful for other log-concave inequalities.

How to start:

Definition: $d \times d$ symmetric real \mathbf{M} is hyperbolic:
(Hyp) $\langle\mathbf{v}, \mathbf{M} \mathbf{w}\rangle^{2} \geq\langle\mathbf{v}, \mathbf{M} \mathbf{v}\rangle\langle\mathbf{w}, \mathbf{M} \mathbf{w}\rangle$ for every

$$
\mathbf{v}, \mathbf{w} \in \mathbb{R}^{d}, \quad \text { such that }\langle\mathbf{w}, \mathbf{M} \mathbf{w}\rangle>0
$$

$$
\left(\begin{array}{cc}
a_{i+1} & a_{i} \\
a_{i} & a_{i-1}
\end{array}\right)
$$

has non-positive determinant,

Lemma: (Hyp) $\Leftrightarrow \mathbf{M}$ has at most one positive eigenvalue.
(counting multiplicity)

Note: (Hyp) is used to imply log-concavity, it is established by an elaborate induction, (OPE) is used to establish (Hyp) in base cases.

How the induction works

Atlas \mathbb{A} construction:

Acyclic digraph $\Gamma:=(\Omega, \Theta), d:=2(n-1)$, and
symmetric (nonnegative) $d \times d$ matrix \mathbf{M}_{v} for every $v \in \Omega$, nonnegative vector $\mathbf{h}_{v} \in \mathbb{R}^{d}$ for every $v \in \Omega$, $\operatorname{map} \mathbf{T}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ for every edge $(v, w) \in \Theta$.

Theorem 5.2 (local-global principle). Let \mathbb{A} be a combinatorial atlas that satisfies properties (Inh) and (Pull), and let $v \in \Omega^{+}$be a non-sink regular vertex of Γ. Suppose every out-neighbor of v is hyperbolic. Then v is also hyperbolic.

In the base cases, (Hyp) is proved by direct calculation in all posets on 3 elements. Conditions on ω are exactly those which work for the base cases, and cannot be improved for general posets.

What works for Stanley's inequality

$$
v=(\alpha, \beta, k, t) \in \Omega, \quad \mathbf{h}_{v} \in \mathbb{R}^{d} \text { defined to have coordinates }-\mathbf{T}^{\langle x\rangle}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \text { associated to the edge }\left(v, v^{\langle x\rangle}\right)
$$

$$
\mathrm{h}_{x}:=\left\{\begin{array}{lll}
t & \text { if } & x \in Z_{\mathrm{down}} \\
1-t & \text { if } & x \in Z_{\mathrm{up}}
\end{array}\right.
$$

$$
\left(\mathbf{T}^{\langle x\rangle} \mathbf{v}\right)_{y}:= \begin{cases}\mathbf{v}_{y} & \text { if } y \in \operatorname{supp}(\mathbf{M}) \\ \mathbf{v}_{x} & \text { if } y \in Z \backslash \operatorname{supp}(\mathbf{M})\end{cases}
$$

$$
\mathbf{M}_{v}:=t \mathbf{C}(\alpha, \beta, k+1)+(1-t) \mathbf{C}(\alpha, \beta, k)
$$

$$
\mathrm{q}(\alpha):=\left\{\begin{aligned}
\omega(\alpha) & \text { for } \alpha \in \mathcal{E}, \\
0 & \text { otherwise }
\end{aligned} \quad \square \begin{array}{l}
\mathrm{q}_{\alpha, \beta}(\gamma):=\mathrm{q}(\alpha \gamma \beta) \\
\mathrm{q}_{\alpha, \beta}(A):=\sum_{\gamma \in A} \mathrm{q}(\alpha \gamma \beta)
\end{array}\right.
$$

$$
\mathrm{C}_{x y}:=\mathrm{C}_{y x}:=\sum_{\gamma \in \operatorname{Comp}_{k-1}(\alpha x, y \beta)} \mathrm{q}_{\alpha, \beta}(x \gamma y) \quad \text { for } \quad x \in Z_{\text {down }}, y \in Z_{\text {up }}
$$

$$
\mathrm{C}_{x y}:=\sum_{\gamma \in \operatorname{Comp}_{k-1}(\alpha x y, \beta)} \mathrm{q}_{\alpha, \beta}(x y \gamma) \quad \text { for } \quad x \| y, \quad x, y \in Z_{\mathrm{down}}
$$

$$
\mathrm{C}_{x y}:=\mathrm{C}_{y x}:=0 \text { for } x \prec y, \quad x, y \in Z_{\mathrm{down}}
$$

$$
\mathrm{C}_{x y}:=\sum_{\gamma \in \operatorname{Comp}_{k-1}(\alpha, x y \beta)} \mathrm{q}_{\alpha, \beta}(\gamma x y) \quad \text { for } \quad x \| y, \quad x, y \in Z_{\text {up }}
$$

$$
\mathrm{C}_{x y}:=\mathrm{C}_{y x}:=0 \quad \text { for } \quad x \prec y, \quad x, y \in Z_{\mathrm{up}}
$$

$$
\mathrm{C}_{x x}:=\sum_{y \succ x} \sum_{\gamma \in \operatorname{Comp}_{k-1}(\alpha x y, \beta)} \mathrm{q}_{\alpha, \beta}(x y \gamma) \quad \text { for } \quad x \in Z_{\text {down }}
$$

$$
\mathrm{C}_{x x}:=\sum_{y \prec x} \sum_{\gamma \in \operatorname{Comp}_{k-1}(\alpha, y x \beta)} \mathrm{q}_{\alpha, \beta}(\gamma y x) \quad \text { for } \quad x \in Z_{\mathrm{up}}
$$

Observations on the proof

1) Stanley's inequality corresponds to $t=0$ case.
2) This limit is mild enough to allow reversing the graph and obtaining the equality conditions.
3) For general AF inequalities for general convex polytopes, the SvH proof works by induction on the dimension for combinatorially equivalent polytopes with equal normals. There is no way to avoid taking nontrivial limits in this case.
4) The proof of Stanley's inequality is substantially harder than the proofs of Mason inequalities and their refined versions, including their equality conditions which uses the same setup of combinatorial atlas, but much simpler matrix construction and case by case analysis.

Further applications: correlation inequality

Theorem [Fishburn'84, Chan-P.'22]
Let $P=(X, \prec)$ be a poset with $x, y \in \min (X)$ distinct minimal elements. Then:

$$
\frac{n}{n-1} \leq \frac{e(P) \cdot e(P-x-y)}{e(P-x) \cdot e(P-y)} \leq 2
$$

Notes:

(0) This is a correlation inequality:

$$
\frac{n}{n-1} \leq \frac{\mathbf{P}[L(x)=1, L(y)=2]}{\mathbf{P}[L(x)=1] \cdot \mathbf{P}[L(y)=1]} \leq 2
$$

(1) The LHS is tight for $P=A_{n}$. Fishburn's proof use the FKG inequality.
(2) The RHS is tight for $A_{n} \oplus C_{n-2}$. Our proof uses the combinatorial atlas.

Thank you!

