June 8, 2023 CanaDAM
2023

Poset inequalities
Igor Pak, UCLA

pdf file of the paper


https://www.math.ucla.edu/~pak/papers/ThreeBijections25.pdf
https://arxiv.org/abs/2110.10740

Plan of the talk:

1) Overview of combinatorial inequalities and their proofs
2) Recent results on poset inequalities

Main thing to remember:
Good inequalities deserve good proofs!



Binomial coefficients

(0) < (1) = (3) = = (i)

(1) Direct calculation

(Z) B (’f?il) - k!(n—n;g+1)! (n—k)—k) >0




Binomial coefficients

(0) < (1) = (3) = = (i)

2) Real roots = log-concauvit
(2) g 7/ Newton (1707)

T 1
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log-concavity = unimodality

T
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Binomial coefficients

(0) < (1) = (3) = = (i)

(3) Combinatorial interpretation

Bertrand’s ballot theorem (1887)

(:) _ (k’ " l) = number of ballot sequences of length n

ballot sequences = (/1 sequences with (n — k) Os, with & 1s, 0100101011
and #0’'s > #1’s in every prefix

n — 21 Catalan Numbers



Binomial coefficients

(0) < (1) = (3) = = (i)

(4) Symmetric saturated chain decomposition

De Bruijn, Tengbergen, Kruyswijk, 1951]

Greene, Kleitman, 1976]




Binomial coefficients

(0) < (1) = (3) = = (i)

(5) Linear algebra

Ezxterior algebra N = C(&1,...,&), &&= —&;&, Vi, )

Linear map ®: f — f- (& +...+&,), O : A1 5 AF

Observation: & is injective for 1 < k < n/2



Binomial coefficients

(0) < (1) = (3) = = (i)

1) Direct calculation (6) Hard Lefschetz theorem

)
2) Real roots = log-concavily Stanley, 1980]

(3) Combinatorial interpretation
(4) Symmetric saturated chain decomposition

5) Linear algebra




Gaussian coefficients

Unimodality of Gausstan coefficients:

Pab(0) < pap(l) < oo < pap(lab/2])

a—+ b B (q‘l+1_1)...(qa+b_1) - ab )
( a )q_ (q—1)---(¢¢ = 1) - Zpab(n)q

Pap(n) = number of partitions of n which fit rectangle [a x b]

6
() = 1+¢+2¢°+3¢° +3¢" +3¢° +3¢" + 2¢" + ¢° + ¢’
q



More examples

(6)  Unimodality of Gaussian coeﬁicz’ents pab(U) < pap(l) < ... < pap(lab/2])
a+b\ (¢ —1)--(¢""—
( a )q (g—1)-- (q—l Zpab

pap(n) = number of partitions of n which fit rectanglc la x b

Congectured: [Cayley, 1856]

Sylvester, 1878| (inwvariant theory)
Stanley, 1980] (hard Lefschetz theorem)
Proctor, 1982] (linear algebra)

O’Hara, 1990] (combinatorial proof, not injective!)
P.—Panova, 2013] (Kronecker coefficients, strict)




More examples

(6)  Unimodality of Gaussian coeﬁicz’ents pab(U) < pap(l) < ... < pap(lab/2])
a+b\ (¢ —1)--(¢""—
( a )q (g—1)-- (q—l Zpab

pap(n) = number of partitions of n which fit rectanglc la x b

[P.—Panova, 2013] (Kronecker coefficients, strict)

g(a’,a’, (ab—k,k)) = pap(k) — pap(k — 1)

= pah(k) _ pa-b(k — 1) Z 1 \G/(j‘,j b 2 8



More examples

(6)  Unimodality of Gaussian coeﬁicz’ents pab(U) < pap(l) < ... < pap(lab/2])
a+b\ (¢ —1)--(¢""—
( a )q (g—1)-- (q—l Zpab

pap(n) = number of partitions of n which fit rectanglc la x b

Open: Find a symmetric chain decomposition proof.

This would give an ezplicit combinatorial interpretation for puy(k) — pay(k — 1).



Counting subgraphs

Kleitman’s inequality |[Kleitman, 1966] (induction)
Example:
]P’[H 1S Hamiltonian] > P[H is Hamiltonian ’ H is planar]
H is a random subgraph of a fixed G = (V, E)

Why works: planarity is closed down, Hamailtonicity is closed up,

so they have negative correlation.

Kleitman’s inequality generalizes to
o the FKG inequality (Fortuin—Kasteleyn—Ginibre, 1971)
o the four functions inequality (Ahlswede-Daykin, 1978)



Matching numbers

Log-concavity of the matching numbers: my(G)* > my1(G)my_1(G)

my(G) := # k-matchings in G = (V, F)

Heilmann-Lieb, 1972| (unterlacing of eigenvalues)

Krattenthaler, 1996] (injective proof)

Theory of monomer-dimer systems

OJ Heilmann, EH Lieb - Statistical Mechanics, 1972 - Springer

We investigate the general monomer-dimer partition function, P(x), which is a polynomial in

the monomer activity, x, with coefficients depending on the dimer activities. Our main result is ...

¢ Save Y9 Cite Cited by 752 Related articles All 14 versions




Matching numbers

Log-concavity of the matching numbers: my(G)* > my1(G)mp_1(G)

mi(G) := # k-matchings in G = (V, F)

‘Heilmann-Lieb, 1972] (interlacing of eigenvalues)
Krattenthaler, 1996] (injective proof)

‘Outsiders’ Crack 50 -Year-Old
Math Problem

Three computer scientists have solved a problem central to a dozen far-

flung mathematical fields.
[Submitted on 17 Jun 2013 (v1), last revised 14 Apr 2014 (this version, v4)]

Interlacing Families Il: Mixed Characteristic
Polynomials and the Kadison-Singer Problem

Adam Marcus, Daniel A Spielman, Nikhil Srivastava



Matching numbers

Log-concavity of the matching numbers: my(G)* > my1(G)my_1(G)
mi(G) := # k-matchings in G = (V, F)

‘Heilmann-Lieb, 1972] (interlacing of eigenvalues)

Krattenthaler, 1996] (injective proof)




Forest numbers

Log-concavity of the forest numbers: fi.(G)? > fii1(G) fi_1(G)
fi(G) := # spanning k-forests in G = (V, F)

Conjectured: [Mason, 1972], [Welsh, 1976]

Adiprasito-Huh-Katz, 2018] (Hodge theory)

Briandén-Huh, 2020], [Anari et. al, 2018] (Lorentzian polynomials)
Chan—P., 2021] (linear algebra)

Adiprasito, Huh and Katz announce a proof of Rota's
log-concavity conjecture

SATURDAY, AUGUST 15, 2015



Forest numbers

Log-concavity of the forest numbers: fi.(G)* > f1.1(G) fr_1(G)
f1(G) :== # spanning k-forests in G = (V, E)

Positivity Problems and Conjectures
in Algebraic Combinatorics

Richard P. Stanley!
24 September 1999

Problem 25. Are the sequences below unimodal or log-concave?

(a) The absolute value of the coefficients of the chromatic polynomial of a
graph, or more generally, the characteristic polynomial of a matroid.

(b) The number of i-edge spanning forests of a graph, or more generally,
the number of 1-element independent sets of a matroud.

Our own feeling is that these questions have negative answers, but that
the counterexamples will be huge and difficult to construct.




Motivation

1. Better proofs give better results. Algebraic proofs can be

so rigid as not allow extensions, deformations (g-analogues), etc.

2. Better proofs give combinatorial interpretations.

J =2 g and f,g€ #P. Question: Is f — g € #P7

Open Problem:
Find a combinatorial interpretation for pp(G) = fi(G)?* — fii1(G) fi1(G)
More precisely, is pi(G) € #P ¢

Krattenthaler’s proof =— mi.(G)? — my.1(G)m_1(G) € #P

[Submitted on 27 Apr 2022]

What is in #P and what is not?
Note: Computing my(G) and fi.(G) is #P-complete.

Christian Ikenmeyer, lgor Pak



Linear extensions of posets

Let P := (X, <) be a poset on n := | X| elements.
Linear extension of P is a bijection L : X — {1,..., n}, st. L(z) < L(y) for all x < y.

4 a

Denote E(P) the set of linear extensions of P, and e(P) := |E(P)|.

aV]b 1 2 1 2 ) 1 ) 1 3 1
¢ Z S/L 4|/L 3I/L 4|/L 4/12

a<c, b<e, b<z



Linear extensions of posets

Let P := (X, <) be a poset on n := | X| elements.

4 a

Denote E(P) the set of linear extensions of P, and e(P) := |E(P)|.

Linear extension of P is a bijection L : X — {1,..., n}, st. L(z) < L(y) for all x < y.

Theorem [Bjorner—Wachs, 1989

Note: original proof shows this inequality is in #P.



Linear extensions of posets

XYZ inequality [Shepp, 1982]

Let P = (X, <) be a finite poset, z,y,z € X incomparable elements, and
Py =PU{x <y}, P :=PU{r <z} Pry- =PU{zr<y,zx <z}
Then:
e(P) e(Pry.) > e(Pyy) e(Pr.)

Equivalently,

P[L(z) < L(y) | L(z) < L(z)] > P[L(z) < L(y)]
Open Problem: Is XYZ inequality in #P7

Note: The original proof uses the FKG inequality and a limit argument.
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[Submitted on 20 Oct 2021]
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Stanley’s inequality

Let P := (X, <) be a poset on n := | X| elements. Fix z € X.

A linear extension of P is a bijection L : X — {1,...,n}, such that L(x) < L(y) for all z < y.
Denote by & := E(P) the set of linear extensions of P.

Let & ={L €& :L(z) =k}, Nk)=|&]

Theorem [Stanley, 1981]:  N(k)* > N(k—1)N(k+1) forall 1 <k <n.

a b 1M2 1M2 QMI 2M1 SMI
VI 3 4 4 3 3 4 4 3 4 2
C Z

a<c, b<e, b<z N2)=1, N3)=2, N4) =2



Weighted Stanley inequality

Let w: X — R.g be weight function on X. We say that w is order-reversing if:
r=<xy = wx) > wy).
Fix z € X. Define w: £ — Ry by
w(l) = H w(x),
: L(z)<L(2)
and

No(k) = Z w(L), forall 1 <k<n.

Theorem [Chan P.21]: Ny (k)? > N,(k—1)Ny(k+1) forall 1 <k <n.

Note: Our proof uses a completely novel technology of combinatorial atlas.



Alexandrov-Fenchel inequalities

Theorem |Alexandrov’'37, Fenchel’36] K;,..., K, C R" convex polytopes. Define:

1V(f{1j ‘v 0y K”) = [/\1 v )\n] VO](/\lKl + ...+ )\.an_,-L)
Then: |
V(KHKﬁaKﬁh”'aK}fl)2 > V(KlaKlaK?n"';Kn) V(K%KQ}KE}M“}K?I)

Corollary: Sequence {V;} islog-concave, where V, == V(P,....P,Q,...,Q)
for every P, Q) C R" convex polytopes. ; n — k

The van der Waerden Conjecture:
Two Proofs in One Year

J. H.van Lint (1980)
Note: AF is super powerful! For example, for bores K; = [aﬂ X ... X ai?-g_] we have:

V(Ky,...,K,) = Per(A), where A= (a,.,-_j)

1<i,9<n

Now AF implies identity for the permanents which in turn easily implies Van der Waerden Conjecture



JOURNAL OF COMBINATORIAL THEORY, Series A 31, 56—65 (1981)

Proof of Stanley’s inequality

Two Combinatorial Applications of the
Aleksandrov—Fenchel Inequalities*

n RICHARD P. STANLEY

Vi{xK + yL) = ) (T) Vi(K, LYx"'y',

i)

THEOREM 4 {The Aleksandrov-Fenchel inequalities): For any convex bodies K, L
in R”, the sequence

VoK, L), VK, L), ...,V K, L) {9

is log-concave (with no internal zeros).



P ro Of Of Sta n I ey’s i n eq ud I ity Log-Concave and Unimodal Sequences in

Algebra, Combinatorics, and Geometry“

RICHARD P. STANLEY

Theorem [Stanley, 1981]:  N(k)* > N(k—1)N(k+1) forall 1 <k <n.

Sketch of proof: Let P = {vi..., v, v). Let K be the set of all points
(2,,...,1,_;) € R"'satisfying:

(a) <t <1,
(b) ifz;,- = in P, then I =1,
(c) ify, < v, thent, =0,

Similarly define L C R""' by (a), (b), and:
(¢') fz,> o thent;, = 1.

Then K and L are convex polytopes. By an explicit decomposition of xK + yL into
products of simplices, it can be computed that Vi(K, L) = N,,,/(n ~ 1)!. The proof
follows from Theorem 4. O



Proving AF inequalities

TO THE THEORY OF MIXED VOLUMES
OF CONVEX BODIES
PART IT

MATEMATICHESKIT SBORNIK, VOL. 2 (44), No. 6, 1205-1238 (1937).

CHAPTER IV

A Series of Comp Studi

Yu. D. Burago
V. A. Zalgaller

Geometric Inequalities

BONNESEN-TYPE INEQUALITIES IN ALGEBRAIC
GEOMETRY, I: INTRODUCTION TO THE PROBLEM  jAlexandrov—Fenchel

From the book Seminar on Differential Ceometry. (AM-102), Volume 102 Presented by Gilles Pisier
B. Teissier

Annals of Mathematics 176 (2012), 925-978
http://dx.doi.org/10.4007 /annals.2012.176.2.5

Newton-Okounkov bodies, semigroups
of integral points, graded algebras
and intersection theory

By Kiumars Kaved and A. G. KHOVANSKII

CLASSICS OF SOVIET MATHEMATICS
VOLUME 4

PART )

Journal of Functional Analysis
Volume 274, Issue 7, 1 April 2018, Pages 2061-2088

ELSEVIER

A remark on the Alexandrov—Fenchel
inequality

Xu Wang &

Comptes Rendus Mathematique

?'
v Volume 357, Issue 8, August 2019, Pages 676-680 M
ELSEVIER o=

Functional analysis/Geometry

One more proof of the Alexandrov—Fenchel
inequality

Une autre preuve de 1'inégalité

Dario Cordero-Erausquin ? &, Bo'az Klartag °, Quentin Merigot €, Filippo Santambrogio ¢

FROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 147, Number 12, December 2019, Pages 53855402
https://doi.org/10.1090/proc/14651

Article electronically published on June 10, 2019

MIXED VOLUMES AND THE BOCHNER METHOD

YAIR SHENFELD AND RAMON VAN HANDEL



Does an elementary proof of AF inequality give
an elementary proof of Stanley’s inequality?

PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 147, Number 12, December 2019, Pages 53855402
https://doi.org/10.1090/proc/14651

Article electronically published on June 10, 2019

MIXED VOLUMES AND THE BOCHNER METHOD

YAIR SHENFELD AND RAMON VAN HANDEL

Answer: Yes. This is what we did!
Along the way we introduces new linear algebraic setting
which proved useful for other log-concave inequalities.



How to start:

Definition: d x d symmetric real M is hyperbolic:
(Hyp) (v,Mw)* > (v, Mv){(w,Mw) for every
v,w € R’ such that (w,Mw) > 0.

Lemma: (Hyp) <& M has at most one positive eigenvalue.

(counting multiplicity)

Note: (Hyp) is used to imply log-concavity,
it is established by an elaborate induction,

(OPE) is used to establish (Hyp) in base cases.

41 a;
a; a;—1

has non-positive determinant,



How the induction works

Atlas A construction:

Acyclic digraph T' .= (2,0), d :=2(n — 1), and
symmetric (nonnegative) d X d matrix M, for every v € €,
nonnegative vector h, € R for every v € (.

map T : R? — R? for every edge (v, w) € O.

Theorem 5.2 (local-global principle). Let A be a combinatorial atlas that satisfies properties (Inh) and
(Pull), and let v € Q1 be a non-sink reqular vertexr of T'. Suppose every out-neighbor of v is hyperbolic.
Then v 1s also hyperbolic.

In the base cases, (Hyp) is proved by direct calculation in all posets
on 3 elements. Conditions on w are exactly those which work

for the base cases, and cannot be improved for general posets.



What works for Stanley’s inequality

v=(a, B, k,t) € QQ,

b t if * € Zyown,
T T M
1 - t ].f :I: 6 Zup .
M, = tC(a, B,k +1) + (1—1t)Cla, B, k)
Ca:y = Cy:.': = Z qr_x,ﬁ(‘r'}/y) for =€ Ziown, yezup
vy € Compy, 4 (ax,yfB)

Cmy = Z qa,ﬁ(wy’}/) for =z H Yy, X,y € Zdown

v € Comp,, 4 (axy, B)
Cpy = Cyp := 0 for <y, =, v€ Ziown
Coy = > das(yzy)  for z|ly, =,y Zy

v € Compy, 4 (o, xyf3)
Czy = Cyz =0 for z<y, =z y€Zy
Cpp = Z Z Ao, (YY) for x € Zaown

y>x ~ € Comp,, _,(azy, )
C.’I.'II.' - Z Z qa,ﬁ(ﬁyym) for =z < ZUP

Y=z v € Comp,,_, (a,yxzf3)

h, € R? defined to have coordinates

T . RY - R? associated to the edge (v, v*))

if y € supp(M),
if ye Z\ supp(M).

AQap(7) = qlayp)

{w(a) for a € &,
0 otherwise. qr_x,ﬁ(A) — Z (o)
yEA
m=4 m=3 m=2 m =1 m=0
t=0 =0 t=0 t=0 =0
L‘{ , / / / /
=1
"_&'—" =1 t=1 t=1
t=0 =0 t=0
t=1 =1 t=1
=0 =0
t=1 =1
t=0

t=1

Ficure 14.1. Graph I' of the combinatorial atlas A for linear extensions of P.



Observations on the proof

1) Stanley’s inequality corresponds to t=0 case.

2) This limit is mild enough to allow reversing the graph and obtaining
the equality conditions.

3) For general AF inequalities for general convex polytopes, the SvH proof works
by induction on the dimension for combinatorially equivalent polytopes with
equal normals. There is no way to avoid taking nontrivial limits in this case.

4) The proof of Stanley’s inequality is substantially harder than the proofs of
Mason inequalities and their refined versions, including their equality conditions
which uses the same setup of combinatorial atlas, but much simpler matrix
construction and case by case analysis.



Further applications: correlation inequality

Theorem [Fishburn’84, Chan-P."22]

Let P = (X, <) be a poset with z,y € min(X) distinct minimal elements. Then:

n e(P)-e(P—x—1y)

< < 9
n—1 = e(P—x)-eP—y) —
Notes:
(0) This is a correlation inequality:
. PlL@=1lw=2 _,
w1 = PLr) =1 PL) =]

(1) The LHS is tight for P = A,,. Fishburn’s proof use the FKG inequality.

(2) The RHS is tight for A, @& C,_5. Our proof uses the combinatorial atlas.



Thank you!




