Combinatorics and computational complexity of counting coincidences

GSCC, CMU, Pittsburgh, PA

What's a counting coincidence?

\leftarrow Not that!

What's a counting coincidence?

Two graphs with the same number of perfect matchings

What's a counting coincidence?

Two graphs with the same number of Hamiltonian cycles

What's a counting coincidence?

Two graphs with the same number of spanning trees

What's a counting coincidence?

Two partitions with the same number of standard Young tableaux:
\#SYT(10,2,1) = \#SYT(9,4) = 429

Definition of counting coincidences

Let $f \in \# \mathrm{P}$ counting function. The coincidence problem for f is defined as:

$$
\mathrm{C}_{f}:=\left\{f(x)=^{?} f(y)\right\}
$$

Observation 1: $f \in \mathrm{FP} \Longrightarrow \mathrm{C}_{f} \in \mathrm{P}$.
Observation 2: $\{f(x) \geq 1\} \in$ NP-complete $\Longrightarrow \mathrm{C}_{f} \in$ coNP-hard.

Definition of counting coincidences

Let $f \in \# \mathrm{P}$ counting function. The coincidence problem for f is defined as:

$$
\mathrm{C}_{f}:=\left\{f(x)=^{?} f(y)\right\}
$$

Definition:

$$
\mathrm{C}_{=} \mathrm{P}:=\{f(x)=? g(y): f, g \in \# \mathrm{P}\}
$$

Note:

$$
\mathrm{C}_{f} \in \mathrm{C}_{=} \mathrm{P} \quad \text { and } \quad \mathrm{C}_{\# 3 S A T} \in \mathrm{C}_{=} \mathrm{P} \text {-complete }
$$

Theorem:

$$
\mathrm{C}_{=} \mathrm{P} \subseteq \mathrm{coNP} \Longrightarrow \mathrm{PH}=\Sigma_{2}
$$

Problems with parsimonious reductions

- number of Hamiltonian cycles in a graph
- number of 3-colorings of a planar graph
- number of π-patterns in a permutation $\sigma \in S_{n}$
- Kronecker coefficients $g(\lambda, \mu, \nu)$

In all these cases $f \in \# \mathrm{P}$-complete via parsimonious reduction from \#3SAT Therefore, $\mathrm{C}_{f} \notin \mathrm{PH}$ unless PH collapses

Problems without parsimonious reductions

- number of perfect matchings in a simple bipartite graph
- number of independent sets in a planar graph
- number of order ideals of a poset
- number of linear extensions $e(P)$ of a poset
- number of bases of a rational matroid

In all these cases $f \in \# \mathrm{P}$-complete

Theorem [Chan-P.'23]
For all f as above, $\mathrm{C}_{f} \notin \mathrm{PH}$ unless PH collapses

Proof idea: these functions are concise

Main Definition:

Let $X=\cup_{n} X_{n}$ be set of combinatorial objects.
Let $\mathcal{T}_{f}:=\{f(x): x \in X\}$ set of all values of f.
Function $f: X \rightarrow \mathbb{N}$ is concise if $\exists C, c>0$, s.t.
for all $k \in \mathcal{T}_{f}$ there is $x \in X_{n}$ with $f(x)=k$ and $n<C(\log k)^{c}$.

Main Lemma:

f is \#P-complete and concise $\Longrightarrow \mathrm{C}_{f} \notin \mathrm{PH}$ unless PH collapses

Meta Lemma:

All functions f above are concise.

Concise functions all over the place

Let $\Gamma \subset \mathbb{Z}^{2}$ be a finite region of area $2 n, \tau(\Gamma)$ number of domino tilings of Γ.
Let $\mathcal{T}(n)$ the set of numbers of domino tilings over all regions of size $2 n$:

$$
\mathcal{T}(n):=\left\{\tau(\Gamma), \text { where } \Gamma \subset \mathbb{Z}^{2},|\Gamma|=2 n\right\} \subseteq\left\{0,1, \ldots, 4^{n}\right\}
$$

Theorem [Chan-P'23] ($\Rightarrow \tau$ is concise)
There is a constant $c>1$, such that $\mathcal{T}(n) \supseteq\left\{0,1, \ldots, c^{n}\right\}$, for all $n \geq 1$.

Proof idea

Denote by $\mathcal{D}(a, b)$ the set of regions Γ such that $\tau(\Gamma)=a$ and $\tau(\Gamma-x-y)=b$

Figure 3.1. Region $\Gamma \in \mathcal{D}(1,1)$, and two transformations $\Gamma \in \mathcal{D}(a, 1) \Rightarrow \Gamma^{\prime} \in$ $\mathcal{D}(2 a, 1)$, and $\Gamma \in \mathcal{D}(a, 1) \Rightarrow \Gamma^{\prime \prime} \in \mathcal{D}(2 a+1,1)$.

Note: τ is concise on simply-connected regions. Proof is much harder.
Conjecture: The exponential bound in the theorem still holds.

Concise functions all over the place

1	2			6
3	5			
7				

Theorem [Kravitz-Sah'21] ($\Rightarrow e$ is concise)
Let $\mathcal{T}_{e}(n)$ the set of numbers of linear extensions of all posets of size n. Then:

$$
\mathcal{T}_{e}(n) \supseteq\left\{1, \ldots, c^{n /(\log n)}\right\} \quad \text { for some } c>1
$$

Conjecture: e is concise on posets of height 2 .

Concise functions all over the place

Theorem [Stong'22] (\Rightarrow number of spanning trees is concise)
Let $\mathcal{T}_{s}(n)$ the set of numbers of spanning trees of all graphs with n vertices. Then:

$$
\mathcal{T}_{s}(n) \supseteq\left\{0, \ldots, c^{c^{2 / 3}}\right\} \text { for some } c>1
$$

Conjecture [Azarija-Škrekovski'12]: $\mathcal{T}_{s}(n) \supseteq\left\{0, \ldots, c^{n}\right\}$.

Concise functions all over the place

Definition:
Let $\boldsymbol{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$, s.t. $0 \leq d_{1}, \ldots, d_{n} \leq n-1$.
Denote by $g(\boldsymbol{d})$ the number of simple graphs with degree sequence \boldsymbol{d}.
Conjecture: Function g is concise (in unary).

Concise functions all over the place

Definition:

Let $\sigma \in S_{n}$. A reduced factorization is a shortest product $\sigma=\left(i_{1}, i_{1}+1\right) \cdots\left(i_{\ell}, i_{\ell}+1\right)$
Denote by $\operatorname{red}(\sigma)$ the number of reduced factorizations of σ, for example:

$$
\operatorname{red}(2,1, n, 3,4, \ldots, n-1)=n-2 \quad \text { for } \quad n \geq 3
$$

Conjecture: red is concise.

Concise functions all over the place

$$
s_{\mu} \cdot s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

Conjecture:
Littlewood-Richardson coefficients $c_{\mu \nu}^{\lambda}$ is a concise function (in unary).
$c_{1,1^{2}}^{3}=0, \quad c_{1,1}^{2}=1 \quad$ and $\quad c_{k(21), k(21)}^{k(321)}=k+1$ for all $k \geq 1$

Thank you!

