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Motivation: Hilbert’s 18th Problem (1900)

Question 1: What polyhedra tile Sd, Ed and Hd with congruent copies?

Question 2: Are all such polyhedra fundamental regions of group actions?

People: Fricke, Klein, Fëdorov, Voronoy, Schoenflies, etc.

Answer to 1: What is known is very small compared to what is not known.

Answer to 2: Not at all. Which explains the previous answer.



Basics:

Tile: Convex polyhedron in Sd, Ed and Hd.

It is bounded unless explicitly stated otherwise.

Polytope: Bounded convex polyhedron in Ed.

Tiling: Face-to-face partition of the space into congruent copies

of the same tile, unless explicitly stated otherwise.



The Good:

Theorem [Bieberbach, 1911]

Crystallographic groups Γ (discrete cocompact subgroups of SO(d,R)⋉ Rd)

are finite extensions of Zd by a finite G ⊂ GL(d,Z).

Theorem [Minkowski, 1910]: |G| ≤ (2d)! Thus, # of such Γ is C(d) < ∞.

Sequence C(d) grows rapidly: 2, 17, 230, 4894, 222097, 28934974, ...

Theorem [Feit, 1996]: |G| ≤ 2dd! = |Bd| (this uses CFSG).



From groups to tilings:

Let Γ be crystallographic, and let R = Γ(p) be an orbit of a generic point p.

Take the Voronoi diagram V(R) of R (= Dirichlet domain).

Then Γ acts transitively on V and the cell V (p) tile the space.

More generally, let P be a fundamental region of the action of Γ.

Take Q ⊂ P s.t. congruent copies of Q tiles P (not necessarily face-to-face).





Some quotes:

“Perhaps our biggest surprise when we started collecting material for the present
work was that so little about tilings and patterns is known. We thought, naively as
it turned out, that the two millenia of development of plane geometry would leave
little room for new ideas.”

B. Grünbaum &G. C. Shephard, Tilings and Patterns, 1986.

“[In H3] there is absolutely no hope of giving any reasonable kind of answer to this
question; there is a plethora of possible groups, and each group has a continuum of
orbits, which can lead to a variety of Voronoi polyhedra.”

John H. Conway (Wed, 13 Dec 1995, 11:26:55)



The Bad:

Theorem [Sommerville, 1923]: Classification of tetrahedra which

tile E3 when rotations are not allowed. Open in full generality.

Theorem [Davies, 1965]: Classification of triangles which tile S2.

Warning: In both cases there are nontrivial NON-face-to-face tilings.



The Ugly:

Open Problem 1. [aka the einstein conjecture]

Does there exist a (non-convex) polygon which tiles the plane E2,

but only aperiodically?

Open Problem 2.

Is the tileability problem by a convex polyhedron in Hd decidable?

Open Problem 3.

Does there exist a tile such that the tileability problem is independent of ZFC?

Remark: NO on OP2 implies YES on OP3 (easy).



Main question: how bad can it get?

Open Problem [Fëdorov, Voronoy, etc.]

Does every P which tiles E3 has a bounded number of facets?

More generally, let X be either Sd, Ed or Hd. Denote by φ(X) the

maximum fd−1(P ) over P which tiles X, or ∞ if max does not exist.

Question: What can be said about all φ(X)?

Easy: φ(E2) = 6, φ(S2) = 5, φ(H2) = ∞, φ(H3) ≥ 12 (just wait!).

Current champion: φ(E3) ≥ 38 [Engel, 1980].



Euclidean tilings: parallelohedra

Theorem [Minkowski, 1911]

In Ed is tiled by parallel translations of P , then fd−1(P ) ≤ 2d+1 − 2.

We have fd−1(P ) = 2d+1 − 2 when P = Πd+1 is a permutohedron.

Π4

Note: This proof is an application of the Minkowski Uniqueness Theorem

(that the polytope is uniquely determined by the facet volumes).

Note: Fëdorov proved there are exactly five parallelohedra in E3 (1885).



Euclidean tilings: stereohedra

Theorem [Delone & Sandakova, 1969]

If P is a fundamental region of crystallographic Γ acting on E3, then

fd−1(P ) ≤ 2d (h+ 1) − 2, where h = |G|, G = G(Γ).

Moral: aperiodic constructions are needed to show φ(E3) = ∞.

Note: Using Feit’s estimate H = |G| ≤ 2dd!, in E3 this gives f2(P ) ≤ 390.

This bound was improved by Tarasov (1997) to 378.



Spherical tilings: the unbounded number of facets

Theorem [Dolbilin & Tanemura, 2006]

φ(Sd) = ∞ for d ≥ 3.

Construction: Let d = 3, S3 →֒ R4. Fix n ≥ 2.

Let R1 be the set of points (sin 2πj

n
, cos 2πj

n
, 0, 0), 0 ≤ j < n

Let R2 be the set of points (0, 0, sin 2πj

n
, cos 2πj

n
), 0 ≤ j < n.

The set R = R1 ∪ R2 has a transitive group of symmetries.

Now take the Voronoi diagram of R with Voronoi cell P .

Check that P is combinatorially an n-prism, so f2(P ) = n+ 2.

Question: Can we get larger f2(P ) for spherical tiles of S3?



Spherical tilings: the neighborly construction

Definition: A (finite) tiling is neighborly if every two tiles have a common facet.

Theorem [Nguyen & P., 2015+]: For n ≥ 2 and d ≥ 3, there is a neighborly tiling
of Sd with n congruent polyhedra.

Corollary [Nguyen & P., 2015+]: For n ≥ 2 and d ≥ 4, there is a neighborly tiling
of Ed with n congruent (unbounded) polyhedra.

Theorem [Erickson, 2001; Erickson & Kim, 2003]: For every n ≥ 1, there is a tiling
of E3 with infinitely many congruent (unbounded) polyhedra with n facets.

Theorem [Nguyen & P., 2015+]: There is a neighborly tiling of E3 with n congruent
(unbounded) polyhedra only for n ≤ 4, and possibly n = 12.



Erickson’s construction: points on a helix

Let Rn =
{(

t, sin 2πt
n
, cos 2πt

n

)

, t ∈ Z
}

.

Take the Voronoi diagram of Rn with Voronoi cells Pt.

Check that Ps and Pt have common facet if |s− t| ≤ n/2.

Note: Compare with points on a trigonometric moment curve whose convex

hull gives neighborly polytopes:
(

sin t, cos t, sin 2t, cos 2t, . . . , sin kt, cos kt
)

⊂ R2k.



Our construction: points on a spherical helix

Fix 0 < θ < π/2,m ≥ 2. Let Aθ,n(α) =
(

cos θ cosα, cos θ sinα, sin θ sinmα, sin θ cosmα
)

.

Take Rn =
{

Aθ,m

(

2πj

n

)

, 0 ≤ j < n
}

and the Voronoi diagram of Rn.

Explanation: Spherical helix Aθ,n(α) winds m times around the torus

Tθ =
{

(x1, x2, x3, x4), x
2
1 + x22 = cos2 θ, x23 + x24 = sin2 θ

}

⊂ S3.

Now observe that Zn acts transitively on Rn.

Note: Drawing spherical tiles is a challenge, but for m large, the front end looks like this:



Hyperbolic tilings: the generalized Böröczky construction

Theorem [Böröczky, 1974; Zare, 1995; etc.]: φ(Hd) = ∞ for d ≥ 3. Specifically,

for n ≥ 2, there exist a polyhedron Pn with (n2 + 5) facets, which tiles H3.

Construction: In the upper half-space H3, let An = {(1, i, j) : 0 ≤ i, j ≤ n},

Bn = {(n, 0, 0), (n, n, 0), (n, 0, n), (n, n, n)}, and Pn = conv(A ∪B).

P2



Hyperbolic tilings: combinatorial constructions

Theorem [Pogorelov, 1967; see also Andreev, 1970]:

A 3-connected planar graph G can be realized in H3 as a bounded right-angled
polyhedron if and only if it is cubic, every face is a k-gon with k ≥ 5, and every
simple closed circuit in G∗ which separates some two faces intersects at least 5 edges.

Poincaré’s Polyhedron Theorem (1883):

Sufficient combinatorial conditions on T , which can be checked

locally to prove that T tiles Hd.



Case study: Löbell polyhedra (after [Vesnin, 1987])

Theorem [Löbell, 1931]:

Let Pn be right-angled hyperbolic polyhedron with two n-gonal and 2n pentagonal
faces (see the Figure). Then they tile H3.

Construction: Start with n-biprism. Take dual: n-spindle. Cut top and bottom: Pn.

In particular, P5 is a right-angled dodecahedron (recall Figure on p.6).



Hyperbolic tilings: basic arithmetic constructions

Recall: PSL(2,C) acts on H3 by isometries.

Matrix A ∈ PSL(2,C) is loxodromic if tr2A /∈ [0, 4]

(as opposed to elliptic or parabolic).

Theorem [Jørgensen, 1973; Drumm & Poritz, 1999]:

Let A ∈ PSL(2,C) be loxodromic, Γ = 〈A〉. Take Voronoi diagram V
(

Γ(p)
)

.

Then number of facets of the (unbounded) polyhedron V (p) can be arbitrary large.

Note: This is a hyperbolic analogue of Erickson’s construction.



Hyperbolic tilings: nested property

Let Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ . . . be a chain of subgroups acting on Ed or Hd.

Let P1 ⊂ P2 ⊂ P3 ⊂ . . . be the corresponding Voronoi cells on the same point.

Question: Can we have fd−1(Pn) → ∞ as n → ∞?

Note: Erickson’s construction is suited for ascending, not descending chains.

Theorem [Nguyen & P., 2015+]:

For every Hd, d ≥ 3, there exists such a chain.

Proof is based on two difficult results: [Millson, 1976], [Lubotzky, 1996]

and an observation that fd−1(Pn) ≥ rank(Γn).



Aperiodicity of Euclidean tilings

Tile T is weakly aperiodic if no tiling of Ed with T is invariant under Zd.

Tile T is strongly aperiodic if no tiling of Ed with T is invariant under Z.

Theorem [Conway, 1995]

In E3, there exists a weakly aperiodic tile P . There is an action of Z, however.

P



Aperiodicity of Euclidean tilings: some questions

Question: Does there exist a weakly aperiodic tile in any E3

with a dense set of rotations in SO(3,R)?

Question: Does there exist a strongly aperiodic tile in any Ed?

Question: Is self-similarity decidable in E2?



Aperiodicity of hyperbolic tilings

Tile T is weakly aperiodic if there is no tiling with T of a compact Hd/Γ, for any Γ.

Tile T is strongly aperiodic if no tiling of Hd with T is invariant under Z.

Theorem [Margulis & Moses 1998]

In H2, there are weakly aperiodic n-gons, for all n ≥ 3. There is an

action of Z, however.

Proposition: In Hd, d ≥ 3, Böröczky polyhedra Pn are weakly aperiodic.

There is an action of Z, however.

Question: Does there exist a weakly aperiodic right-angled polyhedral tile H3,

with an unbounded number of facets?



The mysteries of volume: the spherical case

Polyhedron with all dihedral angles in πQ is called rational.

For ∆ ⊂ S2 is a triangle with angles (α, β, γ), then area(Q) = α + β + γ − π.

Thus, all rational spherical triangles have rational area (i.e. in πQ).

Conjecture [Schläfli, 1860]

Every rational simplex T ⊂ S3 has volume in π2Q.

Note: If true for rational simplices, then also true for all rational polyhedra.

Comment [Cheeger & Simons, 1973]

“It seems highly unlikely that [the volume as a function of dihedral angles]

takes rational values at all rational points, but we do not know a counterexample.”



The mysteries of volume: the hyperbolic case

For ∆ ⊂ H2 is a triangle with angles (α, β, γ), then area(Q) = π − α− β − γ.

Open Problem [Gromov, W. Neumann & Zagier, Milnor, Gabai, etc.]

For any rational polytope P ⊂ H3 decide whether its volume is in Q.

Comment [Gromov, 1979]: “Can some of the numbers vol(P )/vol(P ′) be irrational?”

Here P and P ′ are rational polyhedra in H3.

Example:

Let Q be the right-angled regular octahedron in H3. Then vol(Q) = 4G, where

G = 1 −
1

32
+

1

52
−

1

72
+ . . .

is Catalan’s constant. Compare with:

π

4
= 1 −

1

3
+

1

5
−

1

7
+ . . .



Thank you!

Image credit: Most images in this talk are from Wikipedia.

The Wikipedia image of dedecahedral tiling of H3 is by Roice Nelson.

Three mages on p.8 are by to Robert J. MacG. Dawson.

The remaining images are self-made, or made with a PolyMake.


