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PREFACE

These Lecture Notes are the work~out of a seminar hald at the Technological University
Eindhoven (THE) in the years 1971-1972 and 1972-1973. As a guide for the seminar the
book "Combinatorial Theory" by Marshall Hall, Jr. was chosen. Since this book is used
by so many combinatorialists it was considered worthwhile to publish our notes as a
service to the mathematical community. The contents fall into the following catego-
ries: anwers to questions which came up during the seminar, extensions and generali-
zations of theorems in Hall's book, references and reports on results which appeared
after the book, and finally a number of research results of members of the group.

The members of the seminar were M,L.J. Hautus, H.J.L. Kamps, J.H. van Lint, K.A. Post,
C.P.J. Schnabel, J.J. Seidel, H.C.A. van Tilborg, J,H. Timmermans and J.A.P.M. van de
Wiel. The author of these notes acted as leader of the seminar. A number of valuable
suggestions is due to N.G. de Bruijn.

The chapters in these notes have the same titles as those in Hall's book and the mo-
tation is the same. References to this book are preceded by H., e.g. H. Theorem 8.3.2
or (H.8.3.10); definitions and theorems are not repeated. -

For her excellent typing of these lecture notes I thank Mrs. E. Baselmans-Weijers.

J.H. van Lint,

Eindhoven, November 1973



I.

II.

III.

Iv.

VI.

CONTENTS

Permutations and combinations
1.1, Combinations of n things taken r at a time, etc.

1.2, 1Identities involving binomial coefficients

Inversion formulae

2.1. The principle of inclusion and exclusion; permanents
2.2, Derangements

2.3, Ménage numbers

2.4, Incidence algebras and Mobius functions

2.5, An application of Mdbius inversion

2.6, Permutations with restricted position

Generating functions and recursions

n
3.1 The rec ion u_ = u. u_ .
.1, recursi a igl i Yn-i

3.2. Stirling numbers

Partitions
4.1, The number p3(n)
4.2, Asymptotic properties of p(n)

4.3, Partitions, series and products

Distinct representatives

5.1. On the number of systems of distinct representatives of sets
5.2. Independent representatives

5.3. A problem on SDR's

5.4. An application of linear recurrences

5.5, Permanents

5.6. Partial Latin squares

5.7. A matching problem

5.8. Theorems of Birkhoff and Caratheodory

Ramsey's theorem

6.1, Introduction; elementary theorems
6.2. Some values of N(p,q;2)

6.3, The numbers N(p,p;2)

6.4. Inequalities for N(p,3;2)

6.5, Turan's theorem

6.6. Infinite graphs

13
15

21
27

33
34
36

40
43
50
52
54
62
63
65

69
72
72
73
74
74



- 21 -

III. GENERATING FUNCTIONS AND RECURSIONS

3.1. The recursion u_ = I u;u _..
i=1

In H. § 3.2 the combinatorial problem of counting the number of ways a sequence

Ay yAgyeeoyX, may be combined in this order by a binary nonassociative product is
treated, This leads in a natural way to the recursion in the title. The solution of
the problem is

2n-2

1
(3.1.1) u —;(n_]) s

n

The same result, generally derived from the same recursion, is found for many other
combinatorial problems. We shall list a number of these problems below and then give
a number of combinatorial demonstrations that these problems indeed have the same

solution. The sequence (un) is known as the Catalan sequence. A bibliography of

nelN
243 papers and books in which the Catalan numbers occur can be found in [8].

PROBLEM 1. The nonassociative product problem mentioned above.

PROBLEM 2. Consider a random walk in the plane, where the steps are from (x,y) to
(x+1,y+1) or (x+1,y-1), starting at a given point. In how many ways can the random
walk go from (0,0) to (2n,0) through the upper halfplane without crossing the X-axis?
Similarly we can demand that the walk does not meet the X-axis between (0,0) and

(2n,0).

PROBLEM 3. A tree on n vertices is a connected graph with n vertices and n- 1 edges.
Such a graph is planar. If the graph is drawn in the plane we refer to it as a plane
tree. A rooted tree is a tree with a distinguished vertex r called the root. If the
valency of the root is | we say the tree is a planted tree. How many planted plane

trees are there with n vertices?

PROBLEM 4. A planted plane tree is called trivalent (or binary tree or bijfurcating
tree) if every vertex has valency 1 or 3. It is easily seen that if there are n ver-
tices of valency 1 then there are n-2 vertices of valency 3. How many trivalent

planted plane trees are there with n vertices of valency ! ?

PROBLEM 5. In how many ways can one decompose a convex (n+l)-gon into triangles by n~-2

nonintersecting diagonals?

PROBLEM 6. In how many ways can 2n points on a circle be joined by n nonintersecting

chords?
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PROBLEM 7. A less familiar problem is the following. Let An be the set of n-tuples
(al,az,...,an) of integers > 1 such that in the sequence l,a],az,...,an,] every a;
divides the sum of its two neighbors. Let Un be defined in the same way, replacing

> 1 by 2 1. Determine |A | and |U |.
n n

0f the very many references for these seven problems we list a few. Problem 1: [I],
[2]; Problem 2: [3] Ch. 3; Problems 3 and 4: [4], [5]; Problem 5: (61.

Before showing the equivalence of the problems 1 to 7 we solve Problem 2 by a combi-
natorial argument. The method used is due to D. André and is called the reflection
principle (cf. [3]). Let A and B be two points in the upper halfplane as in figure 9,

and consider a path from A to B, which meets (or crosses) the X-axis.

Al

//c \/

Fig. 9

By reflecting the part of the path between A and the first meeting with the X-axis (C
in figure 9) with respect to the X-axis, we find a path from the reflected point A'
to B. This establishes a 1-1 correspondence between paths from A' to B and paths from
A to B which meet or cross the X-axis.

It follows that if A = (0,k) and B = (n,m), then there are [z ] paths from A to B
1

which cross or meet the X-axis, where 221 = n-k-m. Since there are [n ] paths from

Ly

A to B, where 212 t=n-m+k, we find [z ] - [2 ] paths from A to B which do not meet
2 1

the X-axis. Any path from (0,0) to (2n,0) through the upper halfplame which does not

meet the X-axis between these points goes from (0,0) to (1,1) =: A, from A to

B := (2n-1,1) without meeting the X-axis, and then from (2n-1,1) to (2n,0). By the

argument above there are u such paths. If we allow the paths to meet the X-axis,

without crossing, then there are u such paths. It seems very hard to find this

number by a combinatorial argumentn;;ich yields the factor n ! (resp. (n-fl)—]) in a
natural way.

We remark that the number of paths from (0,0) to (2n,0) through the upper halfplane
which do not meet the X-axis between these points is equal to the number of sequences

of zeros and ones

(x],xz,...,x2n)



with
(3.1.2) Xt X, ta., t x, < §j, j=1,24000420~1 ,
(3.1.3) %, Ky ..t X0 =n .

The correspondence is given by letting a | correspond to a step (x,y) - (x+1,y~1) of

the path.

We now turn to the problem of showing the equivalence of problems | to 7. In most
cases we do not give a formal proof but simply illustrate the correspondence by a

figure.

(i) Problems 1 and 4: The correspondence is shown by figure 10.

x; ((xp%4) (%)) =2

Fig. 10

It follows that the solution to Problem 4 is Uy

(ii) Problems 2 and 4: Consider the trivalent planted plane tree in figure 1.

~-s level 4
/’ -s. level 3
e level 2
~es level 1
.-+ level O
1
Fig. 11
>
We have ordered the vertices in levels and in each level we read from left to
right. We describe the tree by a sequence of zeros and ones, taking a O for a
vertex of valency 3, a | otherwise. We find 010100111, If we add a 0 in
front (corresponding to the root) we have a sequence as in (3.1.2), (3.1.3)
with n = 5, That (3.1.3) is satisfied is obvious and (3.1.2) follows from the
fact that (x],xz,...,xj) is a sequence describing a partial tree corresponding
to a lower part of figure 11, To finish the sequence a number of ones would

have to be added. E.g. 0010 1... and 001011 correspond to figure [2:
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~ e

Fig. 12

(iii) Problems 2 and 3: Consider a planted plane tree as in figure 13, Again the

vertices are in levels and numbered in the obvious way.

~~~ level 4

v, wea- level 3
cewe level 2
—~ .~ level 1

Fig. 13

We describe this tree by a sequence of e's (for edge) and the vertices Vis each

followed by as many e's as there are edges going up from vyt
ev,eevyeeevgeev, Voevy Vo Vg evg vy, .

If we now replace each e by 0, each A by 1 we have a sequence LI STERERE W

with X+ Xy b e 4 Xy = 10 and X4 X, 4 e 4 X, < 4j for j = 1,...,20.
This corresponds to the first question in Problem 2. Another mapping giving a
correspondence with the second question in Problem 2 is given by the "up-down"

code. This code is discussed in [4]. The idea is shown in figure 14.

—
— UuuUDUDDUUDDD

Fig. 14

The dotted line describes a path around the tree. For each edge, U (up) or D
(down) gives the direction of the path. Clearly the number of U's exceeds the
number of D's at every stage except when the path is complete. This corresponds
to (3.1.2), (3.1.3) by taking U =0, D = 1.
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(iv) Problems 3 and 4: We take this correspondence from [4]. As the authors of [4]
say: "The principle is so simple that it seems to be a pity to obscure it by

giving a formal description ...". See figure 15.

]
]
: planted trivalent plane tree
i
. 13 vertices of valency 3 planted plane tree
15 vertices of valency ! 15 vertices

Fig. 15

(v) Problems 1, 4 and 5: We distinguish an edge of an (n+!)-gon, then consider the
(n+1)~gon, decomposed into triangles as a planar graph and draw a modified
"dual" graph of this graph. The rule is demonstrated in figure !6a. Subsequent

application of the mapping discussed in (i) yields figure 16b.

Fig. l6a Fig. 16b

Clearly the "dual" graph in figure 16a is a trivalent plane tree which becomes
planted if we consider the edge crossing the distinguished edge of the (n+1)-
gon as coming from the root., (Note that the usual concept of dual graph is the
same as ours if we identify all vertices of valency 1.) In this case a decompo-
sition of an (n+l)-gon corresponds to a trivalent planted plane tree with n+]1

vertices of valency 1. Hence the solution to problem 5 is u,-
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(vi) Problems 3 and 6: Again a figure (figure 17) illustrates the equivalence. We

leave a formal proof to those readers who are not convinced by figures.

1

Fig. 17

The chords divide the circle into n parts, For each we have a vertex. The root
is outside the circle and the edge from the root crosses the circle between I

and 2n. The tree has n+ | edges. Hence the solution to problem 6 is Ul
Problems 7 and 2: To show the correspondence with the previous combinatorial problems
we analyze a sequence l,al,az,...,an,l as described in Problem 7. If, for any i, we

have a, = a,
1 1+1
of them are divisible by a; and hence all the a,'s are |. Otherwise there is at least

then the divisibility condition for the integers ay implies that all

one a. such that a. < a, and a, > a,
1 i-1 i 1 1+]

= a; (we take a

. Then ai| (ai_1 + ai+l) implies that a;_; +

+ = a 1). It is easily checked that we can now remove a;

Fi4] (] n+l
from the sequence, thus obtaining a sequence with one element less which still satis-

fies the divisibility condition. Conversely, any sequence can be lengthened by adding

the term a, + a. between a. .
h T i i+ twe i and a;, For example

1 1

(1, 1) » (1,2,1) >~ (1,2,3,1) » (1,2,5,3,1) = (1,2,5,3,4,1)

or
*

(1, 1) > (1,2,1) > (1,2,3,1) » (1,2,3,4,1) > (1,2,5,3,4,1) .

. is added between a., and a. we
1+1 1 i+l

insert a mark before a; and are allowed to make subsequent changes after the mark

We repeat this example, but now when a term a; +a

only. The second of the sequences does not satisfy this condition. The first example

becomes
(L, > (1,2,1) = (1]2,3,1) > (|1]]2,5,3,1) > (]1]]2,5]3,4,1) .

The places of the 4 marks completely determine the sequence ay,3,,a4,3, (in this case
2,5,3,4) and obviously the marks precede the corresponding numbers. The sequence
starts with a mark. If we replace the sequence of marks and ai's by 0's and 1's re-

spectively and then omit the last two zeros, we have shown the correspondence with
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the first question in Problem 2. To show that this is indeed a I-1 correspondence we
note that a given sequence a;58y5000,2 Can be reduced inductively by subsequently
removing the term a; with a;_, *va,=ag, i maximal. This reverses the procedure

1 1

described above.

The sequences forming the set Un are treated in the same way, starting from (0,1,0).
In this case we have three more integers than marks. Our rule says these are at the
end. An example illustrates the procedure. Start from a sequence of 0's and 1's as in

Problem 2, say 00101 l. This corresponds to
Iloj?22710,

where we have added three more integers at the end, of which | and 0 are known. This
describes the sequence generated as follows:

0,1,0) > (|o,1,1,00 > ({l0,1,1,1,0) ~ (}]o|1,2,1,1,0) .
We have shown that

(3.1.4) [u_|

nl " IAn+l' T Ype2 v

3.2. Stirling nuwmbers.

We recall the definitions of the Stirling numbers as given in H.Ch.3, Problem 2. We

have
(3.2.1) (x)O =1,
(3.2.2) (x)n = x(x=1) ... (xX-n+1) , (n eN) .

Then the Stirling numbers of the first kind s(n,r) are defined by
r

(3.2.3) (x)_=: § s(n,r)x (n>0) .

The Stirling numbers of the second kind S(n,r) are defined by

n

(3.2.4) x = ] S(n,1) (%), (n20) .
r=0

It is often useful to extend these definitions by defining s(n,r) = S(n,r) = 0 if

r<Qorr >n (e.g. in H.p.27, Problem 3).

Generating functions. From (3.2.3) we find, for |z| < I,

3

Gea%= ] O=- ] @, "=
n=0 n=0
= Z —%-z z s(n,r)xr = Z b'q Z s(n,r) ET .
n=0 ™ r=0 r=0 n=r n.
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On the other hand, we have
(1 + z)x = ¥ log(l+z) _ ;%—(log(l+ z))r < .
r=0 ~°
Hence it follows that
v 2" 1 r
(3.2.5) I s,r) Zr = = (log(i+2)" .

n=r . r.

In the same way we find from (3.2.4)

Xz s xR T 2R s et 2"
el = ] S ] 5 ] s, = ] ®, ] s .
n=Q0 n= ° r=0 r=0 n=r :

Since we also have

Xz z - b'q s (ez - 1)r

el = 1+ (ef-1T = ] (0,

r=0 :
we find that
z

(3.2.6) I st &= (e® - DF.

n=r

For different proofs of (3.2.5) and (3.2.6) see [7].

Relations. The Stirling numbers of the first and second kind are connected by the
relation

(3.2.7) § S(n,r)s(r,m) =8 .

This immediately follows from (3.2.4) by substituting (3.2.3). Now we interpret this
using the terminology of H. § 2.2. Let P :=N u {0} with the usual ordering reversed.
Then the functions s and § are elements of the incidence algebra A(P) of P. Since

S(n,n) = 1 for n 2 0, we find from H. Lemma 2.2.1 that S has an inverse Sé, i.e.

* -«
I S(,r)s (r,m) = o *
nxram
Apparently s is the inverse of S in A(P). If (an)neli and (bn)neli are sequences, we

define the functions a and b in A(P) by

a(x,y) = ax—y (xz2y),
b(x,y) := by (x=2y) .

By (H.2.Z,1) we can then interpret a relation

a = ) s(n,r)b (n=1,2,...)
r
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as
a=sb .
This implies

b=1s2=5a ,

bn = z S(n,r)ar .
r

This explains the relations (a), (b) of H.Ch.2 Problem 2 in terms of incidence alge-

bras.

We now return to the formula (3.2.6). Expand the right-hand side and then expand ekz

in a power series and change the order of summation. This yields

n

v s -k k
et ] s EH= ] (OEDT e P -
n=r De k=0
§ r r-k E n 2"
= ()¢ k" — =
k=0 * =0 ™
s 2" T r~k,r..n
It follows that
r r! S(n,r) (n2r),
(3.2.8) I DT -
k=0 0 (n <) .

The special case r = n was treated in (2.1.6). We take a second look at (2.1.7).

Apply (3.2.4):

L Kk @ Kk n
£ (0 = K? X = x ] stom®, =
k=0 k=0  r=0
' B b k_ ¢ r -r-1
= ] S } W, x = ] S@or! x (1-x) .
r=0 k=0 r=0
Hence fn(x) = (1- x)-n-1 Pn(x) where
n -
(3.2.9) P(x) = § S(,onr! L -x"T
r=Q

and again we find P (1) = nl.
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Combinatorial interpretations. There are a number of combinatorial interpretations of
the Stirling numbers of the second kind. We shall consider these below. For the sake
of completeness we remark that s(n,r) is the number of permutations of n symbols

which have exactly r cycles (cf. [7] Ch.4.3).

Consider all the permutations of b1 I's, b, 2's, v.u, b, r's. Their number is the
]
multinomial coefficient 3‘1‘—2;“—‘r (cf. (H.2.1.20)). Now, we wish to count the

number of permutations (with repetition) of n symbols chosen from X 9XgyeeerX, with
the property that each symbol occurs at least once. Clearly this is the coefficient of
" £ . t? r

o in the expansion of (- + T * .+») . Hence, by (3.2.6) we have

. .

THEOREM 3.2.1. The number of permutations of r things taken n at a time, repeats per-

mitted, such that each of the r things occurs at least once, is r! S(m,r).
This can also be formulated as follows.

THEOREM 3.2.2. The number of ways n distinct objects can be divided over r distinct

bozes, with no box empty, 78 r! S(m,r).

Proof. Let 013095+ 450 be the objects and number the boxes KysXgpeeesX o Consider
one of the permutations LI PTRRRTL N counted by Theorem 3,2.1. This permutation cor-
responds to a division of the objects over the boxes in which o, is in box xj if

a; = xj (i=1,2,...,n). This is clearly a |-1 correspondence.

COROLLARY. S(n,r) ©s the number of ways of partitioning a et of n elements into r
nonempty subsets.

Proof. This follows from Theorem 3.2.2 by disregarding the order of the boxes.

Remark. If we also no longer consider the n elements of the set as distinguishable,
then the number of partitions is pr(n) (cf. H.Ch.4). (For further results see [7]
Ch.5.)

Two recent problgms, We apply the results of this section to two interesting problems

which appeared in Elemente der Mathematik.
PROBLEM | (El. d. Math. 27 (1972), Aufgabe 654, p.110). Show that

(3.2.10) S(n+r,n) = ) Ky ky vn ko (k; €N .
1Sle...SkrSn

(This is a different formulation from the one which originally appeared.)

First solution. Apply the corollary of Theorem 3.2.2. Let the elements be

et If we divide {XI’XZ""'xn+r—l

choices for the place of x . We can also let {x
n+r n

Xy Xgyeen Xy }_into n subsets then there are n

+r} be one of the subsets and then
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divide {X,3X5ysceyX } into n- | subsets. It follows that
1’72

n+r—1
(3.2.11) S(n+r,n) = nS(n+r-1,n) + S(n+r-1,n-1) .

Let F(r,n) be the right-hand side of (3.2.10). Divide the sum into two parts: (i) the

terms with kr =n and (ii) the terms with kr < n-l., It follows that

(3.2.12) F(ryn) =nF(r-1,n) + F(r,n~1) .

Now, (3.2.10) follows by induction from (3.2.11) and (3.2.12) since the two sides are
obviously equal for r = 1, (We could also define F(0,n) := 1, in which case (3.2.12)

remains correct for r = 1.)

Second solution. Instead of using recursion we can also prove (3.2.10) by dividing
the partitions counted by S(n+r,n) into classes, each of which is counted by one term
on the right-hand side of (3.2.10). Let the set {XI’XZ""’Xn+r} be partitioned into
n nonempty subsets. We label a subset by the minimal i such that X, is in the subset.

Then order the labels: | = a, < 2y < eee < a <n+r. Let b, <b

| | 2
remaining xi's. Define k, := [{j em | a; < bi}l = b, - i. Then the numbers

< ++s < b_ be the
r

bl’bz""’br can be divided over the subsets in kl k2 ‘e kr ways in accordance with
the labeling. It is easily seen that the sequence kl’kZ""’kr satisfies I < kl < kzs
< .00 < kr £ n and that any such a sequence uniquely determines a sequence of labels

1 = a <a;<...<a Sn+r. This proves (3.2.10).

PROBLEM 2 (El. d. Math. 27, 1972, Aufgabe 673, p.95). Let ¢ denote a permutation of

1,2,...,n and let F(%) denote the number of fixed points of ¢. Show that

(3.2.13) A(n,k) := Fl" § (F(e = A s
e

where Ak is the number of partitions of {1,2,...,k} and the summation is over all

permutations of {1,2,...,n}.

Solution. Let Dm be the number of derangements of m symbols. Then

1 g n k
Alnk) = o 2 (m)Dn-m
* m=0

and by (2.2.5) this is the coefficient of x" in the product

Ll m
(3.2.14) e -0 ] WX
m=0 *

An immediate consequence of (3.2.11) is
k L m
k
(3.2.15) e* ] stouxt s k) e¥= ] nf X,
X m!
2=1 m=0

(3.2.14) and (3.2.15) imply that A(n,k) is the coefficient of x® in



(1-x)"
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k k
! Z S(k,k)xl and for n > k this coefficient is Z S(k,%). By the corollary
1

=1 2=

to Theorem 3.2.2 this is equal to Ak'

The material of this section gives an impression of the many connections between the

Stirling numbers and several of the topics treated in H.Ch.1,2,3, For much more on

Stirling numbers we refer to [7].
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