CHAPTER V

LATTICE PERMUTATIONS

93. Consider an assemblage of letters a? 8% ... in which the numbers
P, ¢ T, ... are in descending order of magnitude. This particular permuta-
tion of the assemblage can be denoted by a regular graph consisting of rows
of nodes. The successive rows will have p, g, r, ... nodes respectively and
the graph is the same as serves to denote the partition (pgr...) of the
number p+gq +7+....

Such a graph may be

for p=6,9g=4,r=1.

The successive rows correspond to the letters «, B3, v, ... respectively.

If we take any permutation of a?8%y” ... we shall arrive finally at the
same graph by proceeding from left to right of the permutation and placing
a node in the first row, or in the second, or in the third according as we reach
a letter a or 8 or v, ete.

Thus if we take the permutation aB8aB of the assemblage we obtain
successively in this manner
first row ° ° ° o e o
second row

«a af aBa aBaf,
and it will be observed that each of the four graphs thus reached is regular
and is in fact the graph of a partition of a number.

Since the permutation possesses this property of yielding a succession of
regular graphs it is termed a “lattice permutation.”

On the other hand if we treat the permutation a88a in the same way we
reach the graphs :

ﬁrst row ° ° ° e o
second row e e o o o

a af afB affa,
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and since the third of these graphs is irregular we have not had before us a
“lattice permutation.”

In general for a permutation of a?8%” ... if the successive graphs are
all regular it is a “lattice permutation.”

In other words if a dividing line be drawn between any two letters of the
permutation and the assemblage of letters to the left of the line is found to
be amBuq ..., where p, > ¢, > 7, > ..., the permutation is said to be a lattice
permutation.

Ex. gr. of the assemblage a*@", there are only two lattice permutations,
viz. aaB8 and aBaS.

These special permutations are of much use in the Theory of Partitions
taken up in Volume II of this work, but they also have a special interest of
their own. For instance in the Theory of Probabilities:

Suppose that there are p +gq +r + ... electors at an election and that
P, ¢ 1, ... electors vote for candidates a, 8,4, ... by handing in tickets marked
a, B, 1, ... respectively. The electors may present themselves in any order
and if such gives a lattice permutation it is clear that if the flow of electors
be stopped at any time and the votes be counted, the count will give a result
which is not inconsistent with the final result. The enumeration of the
lattice permutations leads therefore to the probability of such non-incon-
sistency obtaining. :

94. We will first set forth certain properties possessed by the permu-
tations.

Every permutation necessarily commences with a.
Consider any lattice permutation, say aBay8, of the assemblage a*S*y.
Write underneath the letters the first five numbers in descending order,

aBaypB
54321

Starting from the left, place each number in the first, second or third row
of a graph according as it stands beneath an a,a 8 or a yv. Thus:

53
41
2

This graph, since it has been formed. from a lattice permutation, has the
property that the numbers are in descending order of magnitude in each row
read from left to right and in each column read from top to bottom. There
is a one-to-one correspondence between the two-dimensional array of numbers,
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formed upon the graph of the partition (221) of the number 5, which possess
this property and the lattice permutations of the assemblage a*S%. For we
can pass uniquely from any such array to the corresponding permutation.

Thus from the array - :
. 54

31
2

we consider the numbers in descending order of magnitude and write down
from left to right an a, a 8 or a « according as the number considered is in
the first, second or third row. We thus reach the permutation

aaSByB.

In general we see that there exists a one-to-one correspondence between
the lattice permutations of the assemblage a?8%¢"... and the two-dimensional
arrays of the first p+¢+ 7+ ... numbers at the nodes of the graph of the
partition (pgr...) of the number p + g +r 4+ ..., which are such that there is a
descending order of magnitude alike in each row and in each column of the

graph.

95. We can now transform these arrays so as to establish and exhibit an
important property of lattice permutations. For suppose that we take the

array
3
1

DO & Ot

and write the rows as columns thus:

542
31

we obtain an array at the nodes of the graph of the partition (32) which is
the partition conjugate to the partition (221) appertaining to the former
graph. The transformed array leads to the lattice permutation

aaBafB of the assemblage o*3?,

and in consequence there must be a one-to-one correspondence between the
lattice permutations of the two assemblages

@y, o'
The lattice permutations of these two assemblages are therefore equi-

numerous. In general we may say that there is a one-to-one correspondence
between the lattice permutations-of the two assemblages

a?Bly ..., a¥Biy"...,
if (pgr...), (p'q’Y...) are conjugate partitions.
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96. There is another correspondence which it is useful to note.

If we take the graph

53

41
2

we observe descending orders of magnitude five times, viz. in the three rows

and in the two columns. The descending orders are 53, 41, 2, 542, 31.

We can arrange these five numbers in a row so that the five descending
orders are in evidence. To do this we proceed from the lattice permutations

aaBBy aaByB aBayB aBaBy aByafB
53412 53421 54321 54312 54231

and write 5, 8 in order underneath the letters a; 4, 1 in order underneath
the letters 8 and 2 underneath the .

We have thus a line-arrangement exhibiting the five descending orders in
correspondence with each lattice permutation, and the descending orders have
been derived from one (any one) of the associated two-dimensional arrays.

In general we determine a one-to-one correspondence between the lattice
permutations of the assemblage a?8%"... and the permutations of the first
p+gq+r... natural numbers which exhibit the descending orders which are
derived from the rows and columns of any one of the two-dimensional arrays
associated with the lattice permutations.

97. We will now be concerned with the enumeration of the lattice
permutations. First let us take the assemblage a?8? and denote by (pg;)
the number of the lattice permutations. If g =p, the last letter of a lattice
permutation must be 8, and if we delete this 8 we shall get every lattice
permutation of the assemblage a?87~. Hence

(pp3)=(p,p—-1;)

If p >gq, the last letter may be a or 8; if this last letter be deleted we
obtain all the lattice permutations of «?~!8? and of a?87!; hence

(pg)=(@-Lg)+(p,g—1,).

!
Of this difference equation (IDT({:)%-.:W is a solution, and the particular
solution required is
NP (p+9!  _ (p+9)!
(Pg)= Tl @+ D=1 (p+DigtP I+
ye 2P
Also #P)= G nyipr
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It follows from the expression obtained for (pg;) that if two candidates
A, B at an election can command p, g voters respectively (p > q), the proba-
bility that at no time during the balloting 4 will have fewer votes than B is

p-g+1
p+1
It is seen without difficulty that (pg;) is equal to the coefficient of z?y?
in the expansion of the function

y

——

1-z—y

(p+9)! (ptg)!

plq! and (p+Dig-Dr’
This is a redundant generating function because it contains many terms

which are not applicable to the question under examination.

for (pq;) has been shewn to be the difference of

98. The exact generating function is obtained in the following manner.
Consider

2 (pps) (zy)? =1+ ay + 22% + 5% + 1oty + ... = ugy.
14

The general term in ug is

(2p)!

PV pyp
p+1)ipt® ¥
and since
- _ __2@p)! o
VA —day) =1 - 2zy — 22%* — ... (p_'_l)!p!(wy)? ceey
we find that 2ryuz =1 — N/(1 — 42y).
1
Thus Ugy = 92y 1-v/Q1 -4ay)),
and thence a relation that will be useful
w1
Yl —ayuy’

99. There is another way of establishing this result which is valuable
for the purpose in hand. If we examine the various lattice permutations of
the assemblage a?B8P we find that they are of two kinds, viz. prime and
composite. Composite arrangements are those which are decomposable into
shorter lattice permutations appertaining to assemblages a?/8%, where ¢ < p.
The prime lattice permutations are those which are not so decomposable.

Thus the assemblage a?3* has the two lattice permutations
aaBB, aB|af8;

the first is prime; the second is composite, because it is decomposable into
two shorter lattice permutations, each of which is aB.
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Similarly the assemblage «°8* has two prime arrangements, viz.
aaaBBB8, azBaBB, and three which are composite, viz.

aafB|aB, afB|aafBB, aB|aB|af.

The theory of prime lattice permutations becomes very simple directly
the observation is made, that from every lattice permutation of the assemblage
aP~'8P~1 g prime lattice permutation of the assemblage a?8? is derivable by
simply prefixing the letter @ and affixing the letter 3, and that in this way
the whole of the lattice permutations are obtained.

Thus we have

Lattice Permutations Prime Lattice Permutations
1 a8
aB {aaB8
aaB8 aa2B3B8
aBaf aaBaS
aca388 aaaaBBB8B
aafaSB aaaBaBB8
aazfBRBaf aaaBBaB8
aBaaBR aafBaaSBL

a8aSaf aaBafafl

Lattice permutations are either prime or decomposable into primes.
This fact will lead us to the generating functions. For it is clear that
the enumerating generating function of the prime lattice permutations is
TY Uzy-
Moreover these permutations may be combined in all ways to produce
lattice permutations. Hence the relation

1
Ugy = ].Tﬁysz .
The relation shews simply the derivation of all lattice permutations from
prime lattice permutations.

The same principle will now be applied to determine the enumerating
generating function of lattice permutations of the assemblage a?3? where
p>q. When p>gq there is no prime lattice permutation except in the
particular case p =1, ¢ =0, when the form is

a.
Ex. gr. for the assemblage a*8* the arrangements are all composite, viz.
a|aaBB, ajaB|aB, aaBB|a,
aB|ajaB, aB|aB|a



130 RELATIONS CONNECTING [sECT. 11

The generating function for the prime lattice permutations is now
& + TY gy,
and if we write 2 (pg;)x*y? = v, ,, the fact that the arrangements are
either prime or composed of primes leads at once to the relation
1 .
1-z—azyuy’
and this, using the relation above satisfied by u,, may be written

Vz,y =

?. =
BV — zuy,’

1

where Ugy = %oy {1 -/ — day)).

This is the exact form of generating function to which we have been led
by the notion of prime lattice permutations. '

If s be a given integer we deduce from the above result that

2(g+8 ) (ay)t =3}

a relation which leads to the expression of (¢+ s, ¢;) in terms of (11;), (22;),
(33 ,)x ete.

Thus (s+1,1)= ("“) ary),

(5+2,2)= ("“)(22,)+(‘*+1)(11 )
etc.

100. Reverting to the difference equation, we find
(pp)=(p.p—- 1))
=(pp-2))+(p-Lp-1y
=(p,p-3)+2(p-1,p-2;
=(pp—4)+3(p-1p-3)+2(p—-2,p-2),
and we notice that the last result may be written
(pp)=(40)(p, p—4)+@BLl)(p-1,p—8)+(22;)(p—2,p—2)).
In view of this it is natural to suspect the law
(pp)=2(st;)(p—t, p—s;)
where 8 + t = constant.

This may be established by utilizing the correspondence between lattice
permutations and the arrangements of different numbers at the nodes of the
graph of the partition (pp) of the number 2p.
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For consider the graph

4 B

E
e o o o o o o
°
4

tye o M

The four lowest numbers may be placed
(1) at the points 4, B, C, D,

(i) » B, C D, F,
(iii) » C,D, E,F.
Taking the case (ii) the numbers may be
2 3 4
431, 421, 321.

Subtracting each of these numbers from the number 5, the arrangements

become
3 2 1

124, 134, 234,
and it is clear that they are enumerated by the number (31;).

Similarly the arrangements at the nodes 4, B, C, D and C, D, E, F are
enumerated by the numbers (40;), (22;) respectively, and we are led to the
relation

(pp)=040)(p.p-4)+(BL)(p—-1p—-3))+(22;)(p—-2,p-2)).
Similarly it is shewn that

(pp;)=2(st;)(p—t, p—s;), where s+ ¢t = constant.

101. Putting herein s + ¢ = p, we find
(pp3)=(p, 0;P+(p-1, 1 +(p-2,2;0+... to 4(p+1) or §(p+2) terms,
according as p is uneven or even.
Hence the identity
2p)! 1 s
G- Ut (- +{p(p=-3) +igyp(p- 1)(p—5)} +o
to 4 (p+1) or $(p+2) terms,
102. Taking up the lattice permutations of the assemblage a?8%" and
considering the associated graph
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with different numbers placed at the nodes in such wise that descending
order of magnitude is visible alike in each row and in each column, we find
that we may detach a node without destroying the regularity of the graph in
three ways. The nodes are marked 4, B, C, ....

But if ¢ were equal to p we could not detach 4 ; if » were equal to g we
could not detach B; if ¢ and r were both equal to p we could not detach

B or A.

Hence the difference equations
(pard)=(p=1,¢r)+(p.g=Lr)+(pgr-1;,
(ppg)=(p,p-1,¢)+(pp g-15),

(peg)=(p-1,¢ ¢ +(p. ¢ 9-1%),
(ppp3)= (P, P, p—13).
A solution of the first of these equations is
___(p+g+nt
(P+p)Hg+g)i(r+7 )”
where p’, ¢, 7’ are positive or negative (including zero) integers, such that
p+qg+7=0.
This may be at once established by applying to it, the difference equation.

The particular solution which corresponds to the present problem is

(p+g+n!  (p+g+n)! — (p+g+n)!
plgtir! (p+ Dl g-Dir! plg+1DI(r-1)!
(p+g+n)! (ptg+n)! _(p+g+n)!

TErDI@-DIG-D1 (p+ )@+ D=2 (p+Digir-2)
This may be simplified so as to exhibit the result

._(p+q+r)!< __4q )( = " \1__r
(pgr3)= plglr! 1 p+1 1 q+1><1 p+2>’

which is true whatever equalities subsist between p, ¢, and 7.

The unsimplified form shews that (pgr;) is equal to the coefficient of
@Pyz" in the expansion of the redundant generating function

(=9 (-7) (-7

l-z—-y—2

for the expanded numerator is
y 2., yz 2 22
1- z ¥y e = Ty 2y 2’
and its six terms yield respectively the six terms of the unsimplified expression
for (pgr;).
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The reader should also make note of another form of ( pgr;), viz.

!
(Pig;gqir;)-!r!(p—q+1)(‘1"‘+ D(p—r+2)

The Theory of the Prime Lattice Permutations of the assemblage a?8%"
awaits investigation. It seems to present a certain amount of difficulty.
Until this has been surmounted we cannot pass to the real generating
function from the redundant form above given.

103. We now pass to the general case, viz. the number
(Drpaps -+« Pn3)-

The difference equation to be satisfied is
(Prpaps - Pn3)
=(p;m-1, PaDs .- Pn ) +(P1: D=1, ps .. Pa DR S (plpxpa veepa—1 )
We are led to the redundant generating function
g=n (=n-1
7T 03

s=t+1 {=1
l—-(my+as+ 2+ ... +ap)

and to the two forms of result

(pr+p+ps+ ... +pn)! 'ﬁ” t=1"‘1—1(1—— Pa )’
D ipyl o pal et g=1

(PrpaPs -+« Pn3) = Sy

(Prpsps .- Pn3)

= (P1+P2+P:+...+Pn)! ’l=—f t=n-1
(pr+n—=D1(pa+n—=2)I(ps+n—38)!... palazttr ¢=1

The question in probability that is here solved may be stated as follows:

(pt—ps+8—10).

If n candidates at an election have

. Pn pﬂr Pu eon pﬂ
voters in their favour respectively, where
Pr2PsZPs-ee 2 Pn

and if at any instant P,, P,, P,, ... P, voters have recorded their votes in
favour of the several candidates respectively, the probability that

P, >P,>P,...2 P,
®

nI=_In t=ﬁ—1( Dy )
e=t+1 t=1 p+s-t)’

always is

It will be remarked also that the number (p, p.p; ... ﬁ,. ;) enumerates the
arrangements of p, + p, + p; + ... + p, different numbers at the nodes of a
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lattice which has p,, p,, ps, ... pn nodes (respectively) in the successive rows
where the arrangements are such that there is in evidence a descending
order of magnitude alike in each row and in each column.

The circumstance that this enumeration is not altered by interchanging
.all the rows and all the columns establishes the fact that if

(Pr2aps ---), (91995 ---)
be conjugate partitions
(P1paps -+ 3) = (019395 -+ 3)

In view of the results above set forth this involves a remarkable property
of numbers.



