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! ' Abstract

We review the fundamental properties of inner plethysm, and give

applications to the computation of Poincaré series, and to the root-

number functions in symmetric groups.

1. Introduction

The aim of this paper is to givé a coherent presentation of some of the very
few known facts about the so-called inner plethysms, and to point out some
applications. '

The name inner plethysm has been given by D.E. Littlewood [Lil] to the
operation on symmetric functions corresponding to the composition of a
representation &, — GL(m,C) of the symmetric group G, by a repre-
sentation GL(m,C) — GL(g,C) of a linear group, the correspondence ‘
between symmetric group representations and symmetric functions being
given, as usual, by the Frobenius characteristic map (see section 2). In 1

other words, the study of inner plethysm is the same as the study of the
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standard A-ring structure of the complex representation ring R(S,), as de-
scribed for example in [Kn]. In what follows, we shall emphasize the A-1ing
formalism and use it to give short proofs of some classical results and to de-
rive a number of interesting facts from Aitken’s elementary computation of
the exterior powers of the representation by permutation matrices. For ex-
ample, we give short derivations of the Poincaré series of the Weil algebras
S(V) ® A(V) and of the space H,, of &,-harmonic polynomials, recently
computed by Kirillov and Pak [KP] and Kirillov {[KM] (section 4). In
section 5, we make a detailed study of the Adams operations, and use them
to give a simple theory of the root number functions in symmetric groups.

2. Notations and background

We denote by R(3,,) the complez Grothendieck ring of the symmetric group
&,,, that is, the ring generated by the isomorphism classes of complex fi-
nite dimensional representations of &,, addition and multiplication being
induced by direct sum and tensor product. It is well known (see e.g. [Kn])
that R(S,) is isomorphic with the ring CF(S,) of central functions on &y,
(generated by the irreducible characters), the isomorphism being given by
the map x which associates to the class [p] of a representation p its character
Xp- The canonical A-ring structure of R(5,), defined by A¥([p]) = [A®(p)],
where A is the k-th exterior power, induces via this isomorphism a A-ring
structure on CF(S,,), whose Adams operations, denoted ¥, are given, for
¢ € CF(S,) and o € 6,, by the formula (cf. [Kn])

(#*(€))(o) = &(o").

"The ring CF(S,,) is endowed with its usual scalar product

Em = 3 o)
| 066.,,,

and the adjoint of the linear operator ¥* for this scalar product is denoted

by 1.
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On the Z-module R = @.>0R(6r), we define the induction product, also
called outer tensor product and denoted by a dot, as follows: for [o] € R(6m)
and [1] € B(S4),
o] - [n] = [ind g:;’”gn(p X n)]

(¢f. [Mcd] p.60 or [Kn] p.127). With this product, R becomes a commu-
tative ring, which is isomorphic to a ring of symmetric polynomials via the
Frobenius characteristic, as we will describe now.

Let us denote by &ym or Sym(A) the ring of symmetric polynomials with
coefficients in Z in an infinite set of indeterminates A = {a,|n € N*}, and
let Gym® be its homogeneous component of degree n. We denote by A, (or
A,(A)) the elementary symmetric functions of A, defined by the generating

series

A(4) = JI(1+2a) = D An(4)2"

acA n>0

(where z is an extra indeterminate), and by S, or Sp(A) the complete

symmelric functions, defined by

o.(4) = [J(1—2a)" =) Sa(4)2".
acA n>0

The power-sums ¥y, (k > 1) are defined by ¥r(4) = 3 ,ca a*.
A partition is for us a finite non-decreasing sequence of positive integers,
I=(i1 <ip <...<1;). Weshall also write I = (15452 ...}, am being the
number of parts #; which are equal to m. The weight of I is HIEDIE'Y
and its length is its number of (nonzero) parts £(I) = r.

. For a partition I, we set ¢/ = ¢Ji93? .-, AT = AT*AS?--+, and st =

§%16%2...2 For I € Z7, not necessarily a partition, we define the Schur
1 V2 P

] function

Sr = det (Sik+k—h) 1<h,k<r

where S; = 0 for j < 0. The Schur functions indexed by partitions form
a 7-basis of Sym, and we endow Spm with a scalar product (-,-) for which
this basis is orthonormal. The 4 form an orthogonal Q-basis of Sym, with
(7, ¢7) = 1% !12%2 0!t - - -, so that for a partition I of weight n, nt/(F, ¢1) |
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is the cardinality of the conjugacy class of G,, whose elements have a; cycles
of length & (k =1,...,n). A permutation ¢ of this class will be said of fype
I, and we shall write T'(7) =

The Frobenius characteristic map F : CF(8,) — Gym™ associates to a

central function ¢ the symmetric function

o€

T(e) —
F(¢) = 2 £(o)d Z a(I ( ¢I W)

066 Ij=n

where £(I) is the common value of the (o) for T(a) = I. We can also
consider F as a map from R(S,,) to Sym™ by setting F([p]) = F(x,) (we use
~ the same letter F for the two maps since this will not lead to ambiguities).
-Glueing these maps together, we get a linear map ¥ : R — Gym, which
turns out to be an isomorphism of graded rings, isometric for the two scalar
products previously defined.

We denote by [I] the class of the irreducible representation of &, associated
with the partition I, and by x; its character. We have then F(x1) = Sr
(see e.g. [Mcd] p.62).

The ring Sym has a natural A-ring structure, coming from the interpreta-
tion of symmetric functions as characters of general linear groups. In fact,
this structure is the restriction to Sym(A) C C[4] of the standard A-ring
structure of the polynomial ring C[A] = Clay, as,...], which is defined as
follows (see [LS] for more details and other applications):

for P =3 e Caa®, where cq € C and a® = a7*a3? - - -, we set

A(P) = H(l + za®)% = Z An(P

n>0

and for F = f(A1,Az,...) € Gym, F(P) = f(Al(P)',Ag(P),..- .). For ex-
ample, S,(P) has the generating series [ (1 — zz*)~ %, and ¥,(P) =
3, caa™®. The polynomial F(P) is called the plethysm of P by F (P ® F
in Littlewood’s notation).The restriction to Gym of this kind of plethysm
is called outer plethysm, and corresponds to the composition of representa-
tions of GL(n,C). More precisely, if P(as,...,ay) is the character x(A4) =
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tr(o(A)) of a representation p of GL(n, C) expressed as a symmetric func-
tion of the eigenvalues ay, ..., a, of 4, (Ax(P))(az,...,an) is the character

of the k-th exterior power A*(p) of p.

We can also define a A-ring structure on each homogeneous componént
Sym™ of Gym by transporting through the Z-modules isomorphism F the
canonical A-ring structure of R(o,). The product *, defined by

F([e] ® [n]) = F(xpxn) = F([6]) * F([n])

is called the internal product. The A-ring operators induced by F on Gym®
are written with hats (e.g. Ag, t/jk) to be distinguished from those de-
scribed above. Thus, if P = F([o]), Ax(P) = F([A*(p)]), and if F =
f(A1,Az,...) =3 AT € Sym, then

| F(P) =) er Aiy(P) + Riy(P) +---+ K (P).
I

The symmetric polynomial F‘(P) is called the inner plethysm of P by F

(P © F in Littlewood’s notation).

The individual A-ring structures of the Sym™ can be collected to give a -

| ring structure on the completed ring Sym” of symmetric formal series, if
,’ we make the convention that P+ Q@ = 0 for P € Sym? and Q € Gym? with
f P # q. The unit element is then the infinite series o; = Y on>0Sn (recall
that S, = F(xn), where xy is the trivial character). -
The elements of rank 1 of the A-ring Gym™ are S, and A,, corresponding
to the two one-dimensional representations {n] and [1?]. We clearly have
| Sin (Sn) = S, for all m, and to determine Sy, (An), we can for example make
i use of the identity Sy = A;-, where I” is the conjugate partition of I, and
: Ay =det(A;, 1x_n). Then,

ém(A-n) = Alm(An) = def (*)(dlag(ﬁl (An)! KR Al(Aﬂ)))

(where det*) means that the determinant must be expanded with internal
products), since Ay (Ay) = 0 for k > 1. Thus, S, (Ap) is equal to S, for m

even and to A,, for m odd.
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Also, making use of the general formula |

Sr(A.B) =Y Sk(4)-(Sr + Sk )(B)

valid for A, B in any A-ring with product -, and using the fact that Ay *F =
F~, where F — F" is the linear map defined by (Sr)” = Sr~; we have, for
|I| = m and |J| = n,

51(5) = 81(AnxS1) = 3 Sk (An) = (Sr* Sk(S7))
|Ki=m

and A, being of rank 1, Sk (An) is nonzero only for K = (m), so that

. B Sr(S;) m even
S1(Sr) = { (31(Ss))” m odd

This result is given by King [Kil.

8. Exterior and symmetric powers of the fundamental represen-

tations

Let p : &, — GL(n,C) be the standard representation of G, by per-
mutation matrices (i.e. if (e;)1<i<n 18 the canonical basis of C*, one has
p(o)(e;) = es(iy), and let x, be its character. As is well-known, F(x,) =
5:S,_1. One way to see this is as follows: x,(0) = tr p(o) is just the
number of fixed points of o, so that if T(e) = I = (172272 -- -n*»), then

Xp(0) = 1. Hence,

Foy= Y et e

Xp) = 1 1“1'(11!20‘2&2! e n"‘nan!
a1 +2aztFap=n

_ : ¢§*1—1_¢g= v

= ")L'l Z 1‘11—1-(a1 _ 1)"!2«1;(12! .. |J|2n: ) (,(’b.f ,‘/)J)

= ¢lsn—1 = S515n-1.




THE INNER PLETHYSM OF SYMMETRIC FUNCTIONS 183

Next, we can easily compute the characters of the exterior and symmetric
powers of p, by an elegant method due to Aitken [A1-2]. Indeed, if T(c) =

I = (1%22%2...n*), the characteristic polynomial of the matrix p(e) is

Py(e) = (1 - &)™ (1= &%) o (1= ")

since the characteristic polynomial of a p-cycle is 1 — zP. This can also be

written

P,(z) =¢'(1—=)

and since

P,(z) = det(1 — zp(0)) = Y _(—1)* tr A¥(p)(0)a"

== Z(-—-l)kmk (ﬁk(slsn—l)a ¢I)

k=0
we see that

(A_e(8150-1),%") = 9" (1 - 2)

whence
. $1(1 - 2)9’(4) $1((1 - 2)4)
A‘ﬂ’ 5150 1 mz (¢I ¢I) Z 1/)1' ¢I)
= S, ((1 — =) 4). (3.1)
Similarly,
1

= 3 S (p)(o)e® = det(1 = (o)) = 5

k>0

which yields

ax(slsn_l):sﬂ( 4 ) (3.2)
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From this, we can easily derive Littlewood’s results [Li2] for the symmetric

and exterior powers of p, and for the exterior powers of [1,n — 1]. Indeed,

A_o(S1Sa-1) = Su((1 — z)4) = Sn(A —zd) = zn:Sn_k(A)Sk(—mA)
k=0

o

) (—1)L$LSn—k(A)Ak(A)1
. k=0
so that '
ﬁk(sisn—l). = AgSn—k = Sika-k ¥ Sik=1 n—k+1- (3-3)

Also,

A¥($1S4-1) = A¥(S1n-1+Sn) = Z,‘I\'k(si,nq)j&n_k(sn-)
k=0

= Ak.(sl,n"—l)"l‘ Kk;l(?sl-,ft'—l)
(since [n] is 1-dimensional) and from this we get immediately
l"\k(sl',n-_ﬂ = Sik"n_k. (3.4-)
One can also write, as in [A2] or [CGR],

3_2(S18n_1) = Sn((1—2)4) = 3" 51(1-2)51(4)
[T}=n

(by Cauchy’s formula)
n-=1
=Y (—e)*(1- 2)S1% n-i(A)
k=0

since Sy(1—z) is zero if I is not a hook, and Syx 5—x(1—2) = (—z)*(1—=),
as is easily seen from the determinantal expression-of Schur functions. On

the other hand,

A_2(51Sn-1) = A_z(S1,n-1+ Sn) = 5\-@(51,1;,—1)5\-:5(5?1)'
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= (1= 2)}-o(St o)
so that .
Aa(Simo1) = Y (—2)¥Sin 0y
k=0

The result for symmetric powers is a bit more complicated: denoting by

[z"]F the coefficient of " in the polynomial F, we have

$7(S18n-1) = [27]Su(A(1 + 2 + 2% +---))
=[2"]Sp(A+zA+2°A+ -+ 2"4)

= ["] > Sto(A)Sk, (zA) -+ 5i (2" 4) ?‘f;
kot+ki 4 tkp=n 1

= ), StRha) (3.5)

ko+ki++k,=n
ky42ka4--+rk.=7

| 4. Applications to Poincaré series

Let V be some &,,-module, and for a partition I of n, denote by m(I, V) the ‘
multiplicity of the irreducible representation of type T of &, in V. If V is a
graded module V = @;0V*, the Poincaré series Pr(t; V) of the isotypical
component of type I of V is defined as

Pi(t;V) = Y m(I, VF)tE,
k>0

We shall also need the graded version F'(¢; V) of the Frobenius characteristic
of V, defined by
F(t; V)= Y Pi(t;V)Si(A).
[I|=n
These series can be easily obtained for several interesting modules, by merely -
combining the observations of section 3 with the Littlewood-Stanley expres- |

sions of some specialisations of Schur functions, that is:
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LEMMA 4.1.Let ¢ and z be elements of rank one in some A-Ting R. Then,

where |I|| = (n —1)iy + (n— 2)iz + (n — 3)iz + - - - + 0in (the partition I of
n being written as a non-decreasing vector of N™ ), ci; 1s the content of the
boz (1,7) € I (here we denote the Ferrers diagram of the partion I by the
same letter I) and hij its hook-length (see [Mcd] p. 28, ex. 3 for details).

First of all, consider the natural action of G, on the algebra Py, = K|z1,.- -,
z,] of polynomials over a field K of zero characteristic. Of course, Pn is
isomorphic to the symmetric algebra S(V') of the vector space V spanned
by the variables z1,...,2Zn, which affords the standard permutation repre-
sentation of &,, and whose characteristic is, as we know, the symmetric

function S1Sn—1. Thus, setting for short

pr(t) = Pr(t;Pn) = Zm(I, 'Pﬁ)tk,
>0

we see that

Ft:P) = 3 pr(®)Se(4) = 6:(515n-1)(4)

[I|=n

:sﬂ(%) =) sf(lit)sf(A),’

[I|=n
and using lemma 4.1, we get

THEOREM 4.2.

p;(t):tnIH H (1—th’i")_1. d
(i.5)el

This result is given by Kirillov in [Kr] (Theorem 1).

Next, we can consider, as in [KP] the so-called Weil algebra

E(V) = S(V)® A(V)
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of our n-dimensional vector space V' on which &, acts by permutation of
coordinates. The space E(V) is bigraded by EP¢(V) = SP(V)®A4(V), and

this time the Poincaré series take the form

pi(t,s) = Z m{I, EP9(V))iP s,
P,g20 :

Using as above the results of section 3, we have

> pr(t,—)S1(A) = 6:(S15n-1) * A_(515n-1)

[ Ij=n

_ s, (%) ¥ Su((1 = 5)A)

- S (hvu- oy

]|=n

= n(i___:A) 3 SI(I_t)SI(A)

|Z|=n

(by Cauchy’s formula), whence

1-s 1 — stcid
—s) = — ¢l ” -
pr(t s)_SI(I—-t)_t _ 1 —this’

so that

THEOREM 4.3.

1+ st¢i t + st!
pr(t, s) = thl H 1 ths I 1— ¢hi

(hi)el (i,5)el

Loy

This is Theorem 1 of [KP].

Finally, we can derive in the same way Kirillov’s formula for the Poincaré
series of the space of harmonic polynomials for &, [KM]. This formula is
of particular interest in that it provides a g-analog of the celebrated Hook
Formula (see e.g. [JK]) for the dimensions of the irreducible representations

of G,,.
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So, let V be an n-dimensional complex vector space, and denote its dual
by V*. The symmetric algebra S(V*) can be seen as the algebra of poly-
nomial functions on V, and the elements of S(V) as differential opera-
tors with constant coefficients acting on S(V*). Let S(V)€ denote the

algebra of G—invariant differential operators for some group G of linear

transformations of V, and S(V)§ the ideal of operators witliout constant

term. Then, the polynomials of S(V™) which are annihilated by S (V)i are
called the harmonic polynomials for G [Ko] (see also [He]). The space
of G-harmonic polynomials is denoted by H(G). It has been shown by
Chevalley that when G is a finite Coxeter group, S(V*) is isomorphic to
H(G) ® S(V*)C as a G-module. This is in particular true for G = &, the
case which we will now consider. We can then set V* = Vect(zy,..., ),
S(V*) = Clzy,..., 2] = P, .S'(V*)Gn = Gym,, and H(S,) = Hn. From

the isomorphism of &,-modules
Pn ~H, @ Gym,
we see that their graded characteristics satisfy the identity
F(t;Pn) = F(t; Hy) = F(t; Gymy,)

where

F(t;Smm) = 38 5 mi(I, Gomé)S1(4)

k>0 |I|=n
= Ztkp(k; n)Sn(A)
k>0

(where p(k;n) is the number of partitions of % in at most n parts)

Sn{A)

= (1 — t)-(l — t2_) e .(1 — tn)
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as we already know. Hence,

1 . . . Sn(A)
l%ﬂ St (1 — t) S1(A) = L%ﬂ PI(t,Hn)SI(A)] * -0 (=)
= ﬁ(l — )" Y Pr(tiHa)S1(4)
=1 |I|=n ‘
so that

Pr(t;Hy) = fI(1 —t) Sp (1_:?)

t=1

Using Lemma 4.1, we get Kirillov’s formula:

THEOREM 4.4.

PI(t;Hn):t1'I||ﬁ(1—tk) II a-&4)* O

k=1 (5,7)elI

As one can see for example by locking at [Mecd] p. 130, ex. 2, Pr(¢;Ha,) is
the Kostka-Foulkes polynomial K1~ (1)(t). One can also prove this directly
by writing 4 = (t — 1)B, so that S,(4/(1—t)) = (—1)"A.(B), and using
the fact that (1 —t)(1 —t?)--- (1 — t*)An(B) = Q~)(B) (Hall-Littlewood
function, see [Mcd] p.105-106). Since the Kostka-Foulkes polynomials can
be defined by

Qi(BY =) Kui(t)Su((1~1)B),
H

the conclusion follows. Further connections between Kostka-Foulkes poly-
nomials and harmonic polynomials are described in [La].

Various informations can be easily extracted from the equation

F(t;Hn) = (£;¢)nSn (1—‘%)

To take another example from [KM], let K = (ky,...,kn) be a partition
of n, and suppose that we want the Poincaré series of the graded module
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’H?K of fixed points of the Young subgroup S =6, x B, x -+ x &,

of &, that is, the series

Gr(t) = ttdim(mk)S".
k>0

We have, denoting by | and 1 restriction and induction, &
. NG k&K
dim(#*)°" = dimhomgx (K, | 67, idgx)

where id is the identity representation, and by Frobenius reciprocity, this is

equal to
dimhomsn(’Hﬁ,idGK 1 Gn).

But it is well-known that F(idgx T Ga) = SK =58y, -+ Sk,,, so that
Gk (t) = (F(Ha;t), S¥)
and using the classical identity
S2(AB) = 3 ST (AW (B)
I
where the ¢ are the monomial functions (see [Mcd] p. 33), together with
the facts that (S7, %) = 617 and Sp(1/(1 — 1)) = 1/(¢;t)n, we get

n __ 4k
Gx(t) = (Ht}aS" (1‘%;) - Hf_}} kﬁl’ﬂ(*l (1t—)tf)
i=11lly=1

5. Adams operations and roots of permutations

We denote by 1131 the adjoint of the Adams operator 1/3;; of the A-ring Gym™.
The action of 1,47);'“ on a product of power-sums ¥l is easily described [Ho].
Indeed, recall that for a central function { € CF (8,) and a permutation
o € 8,, one has {(¢) = (.7-'(5),1,[)7'(")). Now, if ¢ is of type I, with I =
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(1921292 [, .n%n), o* will have for each i, a;6; cycles of length i/6;, where
b =iAk=g.cd.(ik). Thus

BT = [T (wirs) ™. | (5.1)

(]

From this equation, it is immediate that t;b\}: (ty7) = 43{(;&1 )@L(d)’. ), t.e.
the 1,13{ are algebra morphisms for the ordinary product. The images of the
ST, and even of the S, can then be computed from those of the S,,, using
the Littlewood-Richardson rule. The following result [Th], which answers
a question raised by P. Hoffman in [Ho] p.71, provides an expression of the

Jz,‘;(Sm) in terms of outer plethysms.

THEOREM 5.1. — Consider, for r > 1, the symmetric function
1 r/d
ET = - d
r %3“( ¥4
T

where p 1s the Mobius function. Then,

S ) =TI Y Smlea)

n>0 d|k m>0

which can also be written more concisely, using the series o1 = 3,50 Sn

1131];(01) =01 (Z fd) .
dlk
Proof. We start from the expression g1 = exp}_;,%;/j. Since the {5;
are algebra morphisms and are continuous for the usual topology on formal
series, we gef.
Phlon) = exp ) <9L(%).

iz17
Now, let p be a prime number. Then, zﬁ;(lﬁj) is equal to 't,b;’ /p when p divides
J and to 9; otherwise, whence :

Tt _ '/}? — ‘:bz'p _’vlfJ_ — —
Pi(o1) = explz " epo 5= a1(fp)oi(fr) = o1(é1 + &)

i>1 p j>1
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(using the fact that ¢p,(1y) = ¥pq)- Next, let m be any positive integer not
divisible by p. Then, we claim that

1])‘;(0'1(%)) = gl(‘em + epm)- (52)
Indeed, -
Hor(ea)) = 0 T 0 %o (1S ws"")
i>1 dlm
. - expz %J,;(Z (d)"l)m/d)
i>1 dim
= exp Y - 3 A F i)™
i>l dlm
_01(2m)exp2 Z (d) [ mp/d ;r;éd]
J>1
= —1/)1 1 mp/d mp/dp
= o1(lm)exp » , - © [——Z( (@7 + u(dp)py )]
j21 J mp dlm

(since p does not divide d)

= 01(fm) ( S w(d) mp/)zal(&num,,).

d|mp

It remains to compute 1,/;;,(01 (£:)) in the case m = pr. In this case, we have

Bt = o0 Y93 (2 S ut@uy)

i>1 dlm
- ([ wen + ¥ wail”|)
i>1 dlm d’|m
pld pld"”
=exp( 1 5 ) e S 3wy
= €Xp u id! P Yidt tp
i>1 d’im izl d"lm ‘

pld' pld"”
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In the second factor we can set d” = dp, with d|r so that the last expression

(T won)

dlm
rld

xS 3 (i - ul ) (5 )

J>1 djr

is

p}'d

and since in the last factor p(dp) is zero when pld, this factor can be grouped

“with the first to yield

Wt = o I%(p(d) + a7 ) (s o udy).

The first factor being equal to 1, we get finally

P (01(tm)) = 01(8mp) (5.3)

in the case where p divides m.
Formulas (5.2) and (5.3) allows us to conclude the proof of theorem 5.1 by
induction on the number of prime factors of k. Indeed, using the fact that

@}m = 1/3}; o ¢} , we have by our induction hypothesis
Bhnton) = (1 (3 0)):
dlm

In th-erca_se:ap J m this is, by (5.2)

o1 (Z£d+£dp) = UI(Z fd)

djm d|mp

and if m = pr we get
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201(25@2)0‘1( Z fd-i-fdp)

dir dim,pfd
ca(Tu+ X oury t)=o(T ) O
dlpm djpm d|pm dlpm
p°|d pld.p®yd rld

Since ¥} (S, ) € Gym®, we can compute it by extracting the terms of weight
n in the series for 1,1;,‘: (01). This can be done efficiently by first expressing
the symmetric function 3y, £a = 3, Sk, as a sum of Schur functions (the
H; are not necessarily distinct). This is possible since £; is the Frobenius

image of a representation of G; (see [Fo]). Then, if we set |H;| = h;,

'H(Sn) = Z H S (SHJ')-

myhy+mahzte-=n

For example,

" 3 _
1,b:‘;(crl) =0 ("/’1 + 4 3 ¢3) = o1(S1 + S12)

so that _
$1(87) = S7 + 51255 + 52(S12) St

= S7 + Si16 + 2525 + S115 + S1114 + S34 + 35124

+S133 + 25223 4+ 251123 + S11113 + S1222-

Since there exist now good algorithms for the expansion of plefhysms of
the form S, (Sg) (see [Cal],[Ca2]), the above procedure gives an efficient
method for the computation of #i(S,). Also, since $1(Sn) is a sum of
products of plethysms of functions which are Frobenius images of characters,
1/3;;(5'“) is itself the Frobenius image of a character of &,. As we shall see,
this character has a simple interpretation.

For a partition I, let Ry (I) be the set of partitions H such that

T(c)= H = T(c*) =L
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Then,
de(¥’) = D> L 9LT)) o = (7, 9)
; ¢ ("pH ¢H) ] HERZ(I) (¥H, "I)H)
so that, using the fact that S, = ¥ . 9% /(% 1,51‘_'),
A - _ 1
Bl ¥ = bW = 09 Y oy
HeRy(I) ’
(1/}1, ¢I) N\ n! 1
=t/ ' |ICH|
n! He%:(f) (", 1/)3) [Cr| He%;;(r) ‘

where |Cy| is the cardinality of the conjugacy class Cy associated to the
partition H. Thus, (${(S,), %) = (4} (c1), %') is equal to the nuber o )(I )
of k-th roots of a permutation of type I, i.e. we have tﬁk(Sn) =F (r,(:")),
and from the above considerations, we get the following result (conjectured
by A.Kerber and first proved by T. Scharf, using a different method, see
[Sc1],[Sc2],[Ke]):

COROLLARY 5.2. — The central function 'r,(cn) is @ proper character of &,,.

()

Many other properties of the the character 7"’ can be easily deduced from

theorem 5.1. For example, considering the case k = 2, we find
it 1/)2) _ H 1 H 1
i>1 1-— a; i<i 1-— a,;aj

which is equal, by a well-known identity of Littlewood ([Lil] p.238, see [LP]
for a simple proof); to ), Sr (sum over all partitions). We thus recover the

’Sba;(al) =0 (%[’1 + ¥i

classical resglat:

COROLLARY 5.3. — The character rgn) 1is equal to the sum of all irreducible
characters of S,,.

Finally, one can, as in [De], rearrange the summation in the formula

qbk(al) = epo >3 SO AR

j>1 d|k ald
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in order to collect the terms involving ,. This yields, denoting by A, the

sum of these terms,

b
u(a ula 1 1P
S SV S R s
aj=p J dik P p abe=k,alp a|c,e|p
dlk,ﬂ.ld ab:d_’a,jzp :
L > %
P

pA(k/b)=1

whence the following formula:

THEOREM 5.4. — The series 11312(01) can be factored as a product of series,

each factor involving only one variable ¢¥,:

. 1 {154
f — — S
¢Pr.(o1) = H exp (p Z 3 )
p>1 blk
pA(k[b)=1
From this last result, we can easily recover the generating series of [BC]
and the explicit expressions of [Sc1] for the values of the character r,(:")
given class. First, we see that this character is ’multiplicative’, in the sense

that

on a

'l",(cn)(lal 90z, nan) — r£a1)(1a1)1_](62az)(2a3) L. T’(:zan)(na,,,).

Indeed,
T_I(En)(la12a2 .. .nan) = (Q/JAL(O']_), H 1/);‘?)
p>1
= (1 @) [T ¥52) = T1 (W) ¥57) = [T (Bhton), ¥57)
p2>1 p21 p21 p>1

= r,(f‘)(l"‘i)r,(fa’) (292} .. -r,(c"a“)(n““).

Thus, it is sufficient to compute the values of r}cn) on rectangular partitions,

that is, of the form (p?). This is easily done:

0= (fl T %} u)

bl
pA(k/b)=1
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_ Z 1 B14Pa+---+Bq 1 (,¢q ¢q)
1ﬁ1ﬁ1!232ﬁ21...qﬂng! prp

H=(151 2ﬁz...qﬁq)|:kq

- Z ¢_H;‘b—H_) pd~4H)
Hi=xq
where H =) ¢ means that H is a partition of ¢, with all the parts h; of H
dividing k and h; A (k/h;) = 1. -
Also, Theorem 5.4 allows the computation of r(p?) by means of linear
recurrence relations, and in some cases leads to a closed form. For example,
with k = 4,

,_1131(.0_1) :H exP{zkl_ 1 (¢2k—-1 n ‘»bz; 1y 2: 1)} ex p(ﬁ?)

E>1

Let

fi(z) = exp (t (z+ -z;- + iﬁ).) > an(t) = nl

n>0

Then, fi(z) = (14 z + z3)fi(z), so that
a, =i [an._-l--{—'. (n~1)an_z +(n~1)(n—2)(n - 3)an_4],

with
2
filz) =1 +1sF + (¢ +t2) r+ (3¢* +t3) + 0(z?)
whence a =101 =t az =t +t? and a3 = 3t2 +#3. For p odd we can

compute recursively
ra(p?) = ($1(o1), 92) = p%a,(1/p)

and for p even, the second factor leads immediately to the explicit expres-
sions r4(p?) =0 for ¢ # 0 [4] and re((2m)*") = 27 m*" (4r)!1 /7.
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6. Final comments

The actual computation of a general inner plethysm of Schur functions is
rather difficult. At present time, the best method seems to make use of the

character table, together with the formula

o

~ ' ~ J
9u(51) = 361,90 i gy

which, thanks to (5.1), gives immediately the expansion in the basis (¥7).
One can then use the Newton formulas to compute recursively the exterior
and symmetric powers in this same basis, and the character table to expand
the result in the Schur basis. For a general plethysm Sz(Sr), one has to
expand first Sy is the basis (¢7) by means of the character table. This
is essentially the method used by Esper [E1-3] who has published tables
(partially reproduced in [JK]) and studied the stability properties of the
expansions.

These stability properties come from the well known fact (see {Ke]) that the
values X(i1,...,i,.,m)(1a1202 ++-n%) of a character are given by a polynomial
Pr(e,..., ) independent of the last part m. These polynomials Pr are
called character polynomials. The Adams operations of the characters rings
CF(S,) induce Adams operations on the ring Q[a;, @, . ..] generated over
Q by the character polynomials, and it is easy to check that () =
Ed| . dag, so that with this structure, Q[ay, az,.. ] is generated as a A-ring
by a1, which is the character polynomial associated to the representation
by permutation matrix. In fact, the ring generated over Z by the character
polynomials is also generated as a A-ring by a3, or, which amounts to the
same, by a; — 1, the character of the fundamental representation [1,n— 1].
This fact is established in [Bo]. One can get a much simpler proof by
observing that in view of the results of section 3, this would be the case if
any Schur function could be expressed by an integral linear combination of
internal products of hook Schur functions, and this is indeed proved in an

elementary way in [Bu].
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Writing
k .
z
o, (1) = exp Z - Zdad,
E>1 0 dk
taking logarithms and rearranging the summation, one gets the elegant
formula

o.(a1) = H(l — 2P}y 7%,

p2l
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