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ABSTRACT: The group of upper triangular # +1x n+1 matrices over
Z | pZ. with 1's on the diagonal, endowed with a natural set of r generators,
has diameter bounded above and below by constant multipies of

np+nlogp .
INTRODUCTION

In combmatorial group theory it is common to encounter problems of the following
sort: given a group G and a symmetric set F of generators, determine the diameter of G in
E, where the dia}neter is defined to be the smallest & such that any element of G can be
written as a prodixct of sérne sequence of k or fewer elements of E,

Let U ( p) be the group of upper triangular matrices over the field of p elements
with 1's along the diagonals. We define ¢, ; to be the element of U, (p) which has 1's
along the diagonal and at coordinate (7,) and zeroes elsewhere. Then the set {e;, ! Ly Vid,

A

as i ranges from 1 to #, is a generating set for U (p) with cardinality 2a-+1.
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Fig. 1. The generating set for U,(p).



Let d(n, p) be the diameter of U () in the generators described above. The main

result of this paper is the following:

MAIN THEOREM. Let f(n,p) = np+ 1’ log p; then there exist constants Gy
¢, such that

c.f(np) <dinp) <c,f(np).

In the body of the paper, we show that ¢, =1/8, and ¢, = 216 suffice if #n > 100 or
p > 10,000,

One standard apprbach to general diameter problems involves bounding the second-
largest eigenvalue of the adjacency matrix A of the Cayley graph. (The Cayley graph has
vertices corresponding to the elements of G, with two vertices x and y adjacent if
xy' €E.) The (1,) entry in A’” counts the number of ways to express g as a product of
m clements of E. Thus, the diameter of the group is the smallest s for which A™ has no
zero entries. Chung has shown, using the spectral decomposition of A, that the diameter of
a k-regular graph is at most log ({GG]— 1)/ log(k / A ) [Ch], where |G| is the number of
vertices (for our purposes, the order of the group), & is the largest eigenvalue and the
degree of each vertex (respectively, the number of generators), and 2 is the second-largest
eigenvalue of A. Neither this method nor any of its refinements, however, do a very good
job of bounding d(n, p), since the adjacency matrix of the Cayley graph of U (p) has
eigenvalues which are very close to .

ikl p

Specifically, let v:U (py — C map an element u of U,(p) to e™ ", where & is the
entry in the (1,2)-coordinate of u. It is straightforward that this is a homomorphism; it can

also be viewed as a vector in CI=?). Now left muitiplication by the adjacency matrix of

the Cayley graph of U, (p) takes v(u) to
Ve, 1) + Ve i)+t v(e, , 1) + We, )

= V(e )V(1) + V(€ VU)o 4 V(0,0 W) + V(€ V()



=[n-2 +2cos(w/ p)Iw(u).
Therefore, v is an eigenvector for U, ( p) with eigenvalue n -2 + 2cos(nfp). So
A>n-2+2cos(nfp)>n-clp°.

This bound is due to Stong [St]. Substituting this value of A into Chung's
formula yields an upper bound of order at least #°p” log p for the diameter.

(A forthcoming paper by Chung et. al. [Ch¥M] improves the bound in [Ch] to
cosh™'(|G|-1)fcosh™ (kf2) . However, this result still vields an upper bound for the
diameter of order at least n™"* plog p.)

One application of the main theorem occurs in the study of random walks. A
random waik on a group endowed with a set of generators is defined as the random walk
on the corresponding Cayley graph. Diaconis and Saloff-Coste have shown that the length
of time necessary for a random group walk to converge to a nearly uniform distribution,
given a bounded number of generators and a bounded nilpotency class, is proportional to
the square of the diameter [DS-C]. We have shown in the current paper that (7, p)
grows with order p as p grows large and # is held constant; combined with the results of
Diaconis and Saloff-Coste, this implies that the number of steps necessary for convergence
grows with mc:ier at most p°. This bound is an improvement over Stong’s result [St1,
which tells us only that order p”log p steps will do. In fact, since the time for a random

walk on Z/pZ to converge grows with order p’, this is a lower bound as well as an upper

bound.

We will make great use of the following easily verified identity:

id j*k

le, e 1= { ¢, j-k

. . -1.,~1
where [1, v] signifies the commutator uvu v .



The paper is structured as follows. In section 1, we prove two lower bounds for

d{n, p), and show that their maximum is greater than a constant muitiple of f(n,p). The
first of these bounds comes from a straightforward counting argument. The second relies
on the commutativity relations between the generators, and generalizes to a possibly novel

lower bound on the diameter of Cayley graphs in general, In section 2, we provide an

upper bound by presenting an explicit procedure for producing any element of U, (p) using
a word of length ¢, f(n, p) or smaller. In the Addendum, we present a sharper bound for

the case n=2 (the Heisenberg group) and propose some questions for further research.
/

1. THE LOWER BOUND FOR d(n,p)

In this section we will demonstrate that d(n, p) is greater than or equal to

Linp + n’ log p) whenever n > 100 or p > 10,000, We start with the following result;

Theorem 1.1, d(n, p)= sn(p-1).

Proof. The map h:U (p) — Z{ pZ. taking a matrix u to the entry in coordinate
(i,i + 1) of u is a homomorphism; this fact is immediate from the multiplication. Note that
h, maps e:ilﬂ to 1, and all other generators to 0. Thus, a word which evaluates to a
matrix with some coefficient rin the (i,i + 1) coordinate must contain » {mod p) occurences
of the generator ¢, ,,,. A matrix with >(p~1) (or 1, if p =2) in each coordinate just above

the diagonal is therefore inexpressible by any word of length less than n(p—1). (.. 1.1)

1 1 n+2
Th 1.2. d(n,p)2n’lo - - :
eorem 7, p) gp(ﬁlogZ 6nlog2 3n° long

Proof. The proof will rest on a novel application of a result of Cartier and Foata

from [CF]. We will start by raising a general combinatorial question. Let § be some set



of £ letters. Let W be the set of ali formal words generated by the lettersin S, Let T'be
some set of pairs of letters from S. We'll say that 5,,5;, € § commute if {5, ,5,} isin T.

We define an equivalence relation ~, on W by w, ~, w, if and only if there is
some sequence of transpositions of adjacent commuting letters which carries w, into w,.
Let E be the set of equivalence classes of W under ~,.. For simplicity's sake, we will
hereafter refer to ~, simply as ~. Since any two equivalent words have the same number
of occurences of each letter in §, we can define w,.(m,, 7, ,..., m, ) to be the number of
equivalence classes of words from § containing exactly m, occurences of each s;. Sucha
word will be called an m-word, where m is the vector (m,, m,,...,7,) .

Example. Suppose § ={s,,5,,5} and 7 consists of the two pairs {{s,,s,},{s, 5,3}
Then w, (L 1,1)= 2, the relevant equivalence classes being 5,85, ~ 58,8, ~ 5,55, and
528538, ~ 835,85, ~ 838,85 .

In order to study the behavior of w,, we define the generating function

=

W (X)X geeey Xp ) = ZWT(ml,mz,...,mk)quix

My ;. it =0

s Fiy

ST

-1
Lemma 1.2.1. W.(x,x,..,x)= [ E (- 1)'R'H xij , Where the outer sum is

ReEM 5, ER

taken over the collection M of subsets of S whose elements commuite pairwise.

Proof. This is the result shown by Cartier and Foata in [CF].

Let w,.(m) be the number of non-equivalent words of length m. The generating

function W, (x) = E w,(m)x™ can be calculated by substituting x for each x; in the

=

generating function of Lemma 1.2.1, yielding



o -1
Corollary 1.2.2. WT(x)=[Z(—1)"kix"J where k. is the number of pairwise
=0

commutative subsets of S with cardinality i.

We wish to know the number of m-letter words in the » generators of U, (p).

These generators are very nearly mutually commutative; e, ,,, and e, .., commute unless

it
i -j|=1. Letw, () be the number of distinct m-letter words in these letters (where we
consider two words equivalent only if we can get from one to the other through the

commutativity relations; thus, w,_(m) may be greater than the actual number of distinct

elements of U ( p) representable by m-letter words.) Let W, (x) = z w, (m)x” . ‘By

m=0

CoroHary 1.2.2,

3 fmien) |
W, () = zb(—-n"(” 7 1}6 .

= l

Let p,(x) = [Wn (x)]_1 . We will show that the roots of ﬁ(x) have magnitude

greater than 7.

Applying Pascal's identity allows us to write the following recurrence for p,(x):

Po(x) =15
py=1-x
P.(xX)=p (X)=xp,(x) (n22)

The solution to this type of recurrence is of the form Ar{ + Br;, where 7, and r,

are the roots of the characteristic equation z° —z + x. Solving, we find

Pn(x)=%{(1 12 }(“—M)n _{] 1-2x ](1#‘!@}"}

+ —_
J1-4x ) 2 J1-4x 2



Substituting y = /1 —4x gives

%-M“ml”’z](l”’ (
2y 2

nE

] J

The roots of this polynomial in y are itan[&n / (n+ 2)], 0 <k <n+ 2. So the roots
of p,(x) are the finite values greater than & taken on by fsec’[kn/(n +2)] as k ranges
over the integers.

Since all the poles of W, (x) are greater than , the power series centered at 0 is
convergent at 7, and so 4~ "w, (m) is bounded above by some constant ¢,. Tobound ¢

7

we need only note that

¢, = max[ 47" w(m)]<z4 "W, (m)y= W,(%).

m= ()

From the recurrence for p, (x}, we find that W (3)=2""f(n +2).
We now have an upper bound for w,_(m), which is in turn an upper bound for the

number of distinct elements of IJ ( p) expressible as an m-letter word from { € 1y } The

mverses of these elements and the identity are also included in our set of generators. To
account for the inverses, we need only allow signs on the letters, multiplying the number of
distinct words by 2™. Accounting for the identity just means counting all words of m
letters or fewer-- since the ratio between consecutive terms is always at least 2 (once we've

accounted for inverses), the number of words of m letters or fewer is no more than twice

the number of words of exactly m letters. Thus, the number of elements of U, ( p)

expressible with m letters from {¢,;} U id is at most (n +2) ' 2""*8".

Therefore, we have



(n+2)7 27878 > pLZJ

Dropping the factor of (n+2) " and taking a logarithm, we have

. 1 n n+ 2
dn, pyz —— " logp -
7, p) 310g2[2J 08P T3

1 1 n+2
=n210gp[ n J

6log2 6nlog2 3 logp
- (1.2)

Now we are ready to demonstrate the promised lower bound for d(n, p). Itis clear

from Theorem 1.1 that d(n, p) 2 +np. If n > 100, the lower bound of Theorem 1.2 is at

least Ln’logp. If n < 100 and p > 10,000, then 2np > tn°logp. Therefore, if (n,p) lies

outside the finite rectangle bounded by 7 = 100 and p = 10,000, we have

d(n, p)z max(3np,sn’log p) > £ (np +n’ log p).

The technique used to prove Theorem 1.2 is applicable to groups in general; of

course, it will be useful primarily when the chosen set of generators is highly commutative.

We state the following general resuit:

Theorem 1.3. Let G be a group and E a set of generators for G. Let k, be the

number of mutually commuting subsels of E with cardinality i. If ¢ is a positive real
nusnber smaller than the magninude of any root of the polynomial P(x) = ¥ (-1Ykx',
i=0

loglG|+ log P(c)
loge |

diam(G,E)2 -

Proof. The argument follows the course of Theorem 1.2 exactly.



Example. Consider thé symmetric group on n elements, with the transpositions
(12),(23),...,(n—-1 n) as generators. By Stirling's formula, log|G] 1s of order nlogn. If we
considered the set of all possible formal words without utilizing the commutativity
relations, we could conclude only that the diameter of the group was of order at least n. In

fact, the commutativity structure of these generators is exactly the same as the one we've

discussed for U, (p). So we can substitute ¢ =1 into Theorem 1.3, showing that the

diameter is of order at least ntogn. (The actual diameter of S, in these generators is of

order n*.)

2. THE UPPER BOUND YOR d(n,p)

In this section, we present an explicit algorithm for generating any element of
U (p) as a product of at most 216(np+ n” log p) generators.

Note that the set of matrices with 1's along the main diagonal, entries in Z/pZ,
elsewhere in the top row, and zeroes otherwise is an abelian subgroup of U, (p)
isomorphic to (Z/pZ)’. Multiplication within this group corresponds to addition in
(Z/pZ)". Call this group R (p) and let #(#. p) be its diameter in the generators
fe'’}Uid . (This constitutes a slight abuse of the diameter definition, since {e;.,} U id

are generators of U, (p), not R (p). Tobe precise: 7(n, p) is the smallest k£ such that every

element of R (p) can be expressed as a product of £ or fewer members of {efl.lﬂ} Uid .)

Fig. 2. An eciement of R (p) (z, € Z{pZ)



The subgroup V (p) of U (p) generated by {ez.,m:z' > 2} is isomorphic to U _,(p).

Any element # of U, (p) can be expressed as vr, with vin V (p) and rin R (p). We

conclude that
dn,py<d(n-1,p)+ rin,p)

and thus that

dm,p)< Y r(i,p).
i1

10



Theorem 2.1,

i 8 8
L) P Jplog’ p+-——plogp+ —

nlogp +8.

Proof. The proof will be split into two cases, p > Z andp=2. |

Casei) p>2. letk=|log, p|. We will consider R, (p) as the additive group of
vectors in (Z/p7.}". Then we can write R (p) = R ® R, ® R, where R is the subgroup
supported on the first coordinate, R, is the subgroup supported on coordinates 2 through
k,and R, is the subgroup supported on the remaining coordinates. (If » is smail compared
to p, R, may be trivial.) So r(n, p) is bounded above by the sum of the diameters of these
three subgroups. The diameter of R, isjust 5(p-1).

Define a function (ot a homomorphism) g: Z/ p2yY" — U (p), where

G(@,ay,...,aq,) = €, 580 e, e ek e .
Tt is straightforward that ¢(a,,4, ,...,a,) is the element of R, (p) whose top row is
[ a aa .. [[al.
Notice that the definition of ¢ gives us an expression for ¢(a,,4,,...,a,) asa

word of length 2 i |aa. ] - |al |
i=1

Lemma 2.1.1. The diameter of R, is at most

3 , 8
—Jplo + log p.
10g22‘/5 g’ p l@gzﬁ g p

Proof. We start by claiming that an element of the form ¢, ., can be expressed by

a word of fewer than 4m letters. For

e = 41,1...,1,0,...,0)g(-1,1,...,1,0,...,0),
the right-hand expression being a word of length 2m - 1) + 2m - 3) =4m - 4.
Any element of R, can be written as €,5€,...6%.., with 0 < 5, < p. We will show

that an element of the form €',  can be expressed as a word of fewer than 16m-/s letters

1,itm

whenever m>2. Lett = |_JE _l Then

11



5 1t =1t _ H 52
el,m+1 - el ,mw‘lei,i?ﬁl - [el,m?em,m +1 ][Ql,m?em,mfl.}°

Since 1 <+fs and s -7 <[(z +1)° - 11— < 2t 25, the product of commutators
on the right has length at most 2(4m — 4)~fs + 2+fs + 2(4m — 4) + 2(2f5) < 16mifs . Since
s < p, the diameter of R, is at most

k
Y 16myfp <8G7 +k)fp < 8
m=2

log®2

8 .
Jplog p+ @ﬁiog p. (210,

Temma 2.1.2. The diamcier o is at most nlog p+ 8.
log2 O °

Proof. 1etrbean elemeﬁt of R. Let r(m),m > k, be the mth coordinate of .
(Throughout this proof we will treat R, as a subgroup of (7{pZ.)", with addition of vectors
as the group law.) Consider r(m)f2 € Z{pZ. as an inieger; it has a binary expansion of the
form 2% +2%+..+2%  with d. < log, p. (The division by 2 in this step is the reason we
need to consider the case p = 2 separately.) Let r(mm;i) be 27! if 2" appears in the binary
expansion of r(m)f2, 0 otherwise. Finally, let r; be the element of R, whose mth

k

coordinate is r(m;i). Clearly, 2 r, = r. Since addition in R, is equivalent to
i=0

multiplication in U, ( p), the length of the shortest word in {e, } U id representing ris at
most the sum of the lengths of the shortest words representing the r,.

Each r, is an element of R, whose entries are all either 0 or 2™, We will show that
such an element can be represented by a word of 8# letters or fewer.

Consider some r, of the form described above. Let I(m) be the function which is
1 when the mth coordinate of r, is 0, and -1 otherwise. Now define two a-tuples of
integers as follows:

a, =b,=2 (1sm<i);
a, =1 (mz1i;
b, =ImIm-1) (m2i);
Now ¢(a) is a vector whose enfries increase by factors of 2 until reaching 2, and

remain constant thereafter. Evidently, ¢(b) agrees with the above vector for all coordinates

12



up to and including place &; thereafter, its entries are 2° wherever the corresponding entry
in r, is 0, and —2' otherwise. Thus, the difference of the two vectors is r,. Since

|am[, ]bml < 2 for all m, each of the two vectors can be produced by a word of length 4 or

less. Thus, we can write r; as a word of 8r leiters.
k
Since 2 r, = r, we can express ras a word with 8n(k + 1) < i—%nk}g p+ 8 letters
— og

S

or fewer, as claimed. .-.(2.1.2)

Thus,
r(n,p) < diam (K ) + diam(R,) + diam (&, )

i 8 2
<—p+ log" p+
5P logzzﬁegp

8
1 +8.
log2 WOEP

This concludes case 1).

Case i) p=2. We define a new map q":(Z/p£)" = U, (p) by

g'@)= €565 e e el e

where ¢ is the element of R ( p) with 1's along the top row. The range of ¢’ lies
within R (p). If g/(a) is the (1,i + 1) entry of ¢’(a), then we have ¢/,(a) =a,, g/(a) + 1.

‘Which elements of R (p) lic in the range of g’? Note that if some coordinate g.(a)
of g'(a) is 0, the following coordmate is 0-a,,, +1=1. However, if ¢;(a)=1, the
following coordinate is just @, + 1, which can be either U or 1 depending on our choice of
a,,,. Therefore, every element of R,(p) which does not contain two successive U's can be
expressed as ¢'(a) for some a €(Zf27)". Since r = ¢(1,1,...,1) can be expressed as a
word of length 2n - 1, every ¢'(a) can be expressed as a word with fewer than 4n letters.

We claim that every element of ( Z{27)" canbe expressed as the sum of two other
elements of (Z{27)", neither of which contain two successive 0's. Let rbe an arbitrary
element of (Z/ 27)"; then we can separate it into contiguous blocks of O's and 1's. We

define r, to be the result of replacing each block of 0's in r by a block of 1's, and each

block of 1's by a block of alternating 1's and ('s, starting with 1. We define r, similarly,

13



except that the blocks of aiternating 1's and U's start with 0. Then r, and r, sum to 7, and
neither r, nor r, contains two successive U's.

We conclude that we can express any element of K (p) as a product

g'(a)g (b}, so r{(m,2) < 8n é»i—% nlogp. Thus, Theorem 2.1 holdsforp=2. . (2.1
0g

As shown above, d(n, p) < E r(i,p). So we have
i=1

5 4
dn, p)<—rzp+1 o n‘/_log p+ ———n‘/f ogpt gznglogp+l—0g—2nlogp+8n.

it's clear that the second, third, fifth and sixth summands on the right side are

asymptotically smalil compared to the others. Let us formalize this notion. Suppose that
1
gither n > 100 or p > 10,000. Let g(n,p) = Enp +

2
mlogp.
fog2 &P

Znﬁlogzp. If n> 100 and p < 10,000, then the ratio

Consider the term 1 82
0

2Jplogp < 8001log 10
nlog2 = 100log2
_ , _ 16log’ p
p > 10,000, the ratio between this term and the first summand is —==+—
Jplog®2
1610g” 10,000
100log” 2

<27, If

between this term and the second summand in g(n, p) is
it is easy to

verify that this function is decreasing for p > 10,000, so it is at most <29.

So in any case, this term is at most 29 g(n, p) . Similarly, the third term is at most

4g(n, p).

4
The fifth and sixth terms are less troublesome. The fifth term, 1—;‘2“” iog p, is
0

8
evidently less than g(n, p), and the sixth, 8r, 15 less than nnzlog p<2g(n,p). We
0g

conclude that d(n, p) < 36g(n, p). Ttisclear that g(n, p) <6(np+ n’log p). Therefore,
setting ¢, = 216, the main result is true as claimed. Combining the results of sections 1

and 2, we have proven that d(n, p) is asymptotically of order np + 1’ log p.

14



ADDENDUM

A. The casen = 2
T'he group U,( p) is called the Heisenberg group over the field of p elements. On

this small case, we can sharpen the bounds presented in the paper considerably.

Specifically, we have

Theorem A.l. p-12d(2,p)< p+2.

Proof. 'The lower bound follows directly from Theorem 1.1.

Leta=¢ ,and b=e,,. Note that U, ( p) is nilpotent of class 2; therefore, the
commutator [@, d] (= ¢, ;) is in the center of the group, and [¢™,6"}=]a,b]™".

For x in (Z/pZ), let |x| be the distance between x and O when (Z/pZ) is

considered as a cycle. Let u be an element of U, (p) of the form

o —
|:) ik ?‘1
= el
L

with x and y nonzero.

Now a word of the form »” *a’b*a™ is equal to u if jk = z. The length of this
word is [y — &j+ k| +]x — ]+ [/l. Suppose without loss of generality that [y| > [x]. Itis
straightforward that [y — k|+ [t]< p —[y]. We can clearly choose j with |j] = 1and
b = jl = Ix = 1]; just pick j on the short arc joining 0 and x in (Z/pZ). Now let k=z/j.
Then we have a word equal to u whose total length is at most p — [vj+ [x] < p.

Tn case one or both of x and v is 0, we can append an g on the right side of # and/or
a b on the left, and thus make both entries nonzero. So any element of U, ( p) can be

expressed as the product of p + 2 or fewer letters. (.. A.1)

15



B. Questions for Further Kesearch

The resuits of this paper suggest many natural questions. I'li mention several:

*Which of the resuits here still hold if the prime parameter p 1s replaced by an
arbiirary inieger? The iower bounds of Chapter 1 are not aifected. Lemma 2.1.2,
however, will not work if p is replaced by an even integer.

= Is the equivalence relation ~,. the same as the equivalence relation ~ ., defined by
W, ~¢ W, 1f the two words, considered as elements of the free group on 8, are in the same
coset of the normai subgroup K generated by the commutators of the pairs in 777 ii so,
Lemma 1.2.1.1 would become trivial. Moreover, Coroliary 1.2.2 would 1mply that the
group G/K has rational growth in the sense of Benson [ Bel. Benson discusses only
groups with nilpotent subgroups of finite index; the groups GfK will, in general, not be of
this type.

*What if we consider subgroups of U,(p) gencrated by sets of elements ¢ ;, where
J — 1 was not necessartiy equai 10 17 {These are the closed subgroups as discussed by
G.D. James [Ja].)

*What 18 the actual time necessary for a random walk on U, ( p) to converge?

*How does the diameter change if we do not include the inverses of the ¢, ,,, in our
generating set?

*To what extent can the techriques of Theorem 1.Z be applied to other diameter

probiems?
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