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Bill Sands [9, where the problem is stated without the result (1)] noticed that the number

of di�erent walks of n steps between lattice points, each in a direction N, S, E or W, starting

from the origin and remaining in the upper half-plane, is

w

n

=

�

2n+ 1

n

�

(1)

and asked for a neat proof. What is wanted is a simple \choice" argument: any o�ers? This

is sequence 1144 in [10]: my �rst attempt at any sort of proof was by induction from the

formula

w

n

= 4w

n�1

� c

n

(2)

since a walk of length n is one more step in one of the four directions N, S, E or W, than a

walk of length n � 1, except that a southerly step is not allowed if the walk of length n� 1

terminated on the x-axis, and it's well known that the number of such walks is the n-th

Catalan number.

But it's not well known! It doesn't occur among the 31 manifestations listed by Kuchinski

[6], nor can we immediately see any simple correspondence between the walks and any of the

manifestations. However, �rst let's assume that it's true, and that (1) holds with n � 1 in

place of n. Then

4w

n�1

� c

n

= 4

�

2n� 1

n� 1

�

�

1

n+ 1

�

2n

n

�

=

4(2n� 1)!

n!(n� 1)!

�

(2n)!

n!(n+ 1)!

=

(2n� 1)!

n!(n+ 1)!

f4n(n+ 1)� 2ng

=

(2n)!(2n + 1)

n!(n+ 1)!

=

�

2n+ 1

n

�

What is well known is that the number of walks of 2n steps, each N or E, from (0,0) to

(n; n), which don't cross the diagonal y = x, or the number of walks of 2n + 2 steps from

(0,0) to (n+1; n+1) which stay strictly above the diagonal, is c

n

, the n-th Catalan number.

This is clearly the same as the number of walks of 2n steps on the positive x-axis, starting

and �nishing at the origin.

Let us look at this one-dimensional analog of the Sands problem. We can exhibit the

numbers of walks, w(n; x), of n unit steps, starting at (0,0) and ending at (x; 0), x � 0, in a

\Pascal semi-triangle" (Fig. 1).

Columns x = 0 and x = 1 contain the Catalan numbers, as already earnested; column

x = 3 also occurs in connexion with partitioning a polygon [1]. Columns x = 2, 4, 6, 8, 10, 12
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 k Total

0 1 0 1

1 1 0 1

2 1 1 1 2

3 2 1 1 3

4 2 3 1 2 6

5 5 4 1 2 10

6 5 9 5 1 3 20

7 14 14 6 1 3 35

8 14 28 20 7 1 4 70

9 42 48 27 8 1 4 126

10 42 90 75 35 9 1 5 252

11 132 165 110 44 10 1 5 462

12 132 297 275 154 54 11 1 6 924

13 429 572 429 208 65 12 1 6 1716

14 429 1001 1001 637 273 77 13 1 7 3432

15 1430 2002 1638 910 350 90 14 1 7 6435

16 1430 3432 3640 2548 1260 440 104 15 1 8 12870

Figure 1: Numbers of walks, w(n; x), on the positive x-axis.

are sequences 1130, 1602, 1866, 1981, 2048, 2104 in Sloane [10]: they are Laplace transform

coe�cients: more precisely, w(2n; 2k) is denoted in [7] by C

k

, which is de�ned by:

(2 cos �)

2n

sin � =

n

X

k=0

C

k

sin(2k + 1)� (3)

Presumably there is an analogous formula for w(2n+1; 2k+1); compare equation (11) below.

The �rst table in Cayley's paper [1] is for the number of partitions of an r-gon into k parts

by non-intersecting diagonals. His column k = 1 is our main diagonal, and his column k = 2

is our third diagonal (starting at (n; x) = (4; 0)). More generally, his column k is our diagonal

starting at (2k; 0), except that his entries contain an extra factor (x+k� 2)!=(x+1)!(k� 2)!,

a generalized Catalan number: in fact, for x = k � 2 it is c

k�2

. Cayley attributes his results

to [4] and [11]: the latter paper gives some history, mentioning Terquem, Lam�e, Rodrigues,

Binet & Catalan.

A near miss for column x = 9 is Stirling numbers of the second kind, S

(4)

n

, but the entries

(not shown here) for rows 17, 19 & 21 are de�cient by 1, 18 & 190 respectively.

We omit zero values of w(n; x) from our table: it's fairly obvious that w(n; x) = 0 if n

and x are of opposite parity, or if x > n. It's not too di�cult to �nd formulas for the �rst

few diagonals:

w(n; n) = 1; w(n; n � 2) = n� 1; w(n; n � 4) =

1

2

n(n� 3); w(n; n� 6) =

1

6

n(n� 1)(n� 5)

In fact there is a comparatively simple formula for all the entries in Figure 1:

w(n; x) =

�

n

r

�

�

�

n

r � 1

�

(4)

where r =

1

2

(n � x). Indeed, the formula (4) also works in the apocryphal cases mentioned

above, if we take the reasonable interpretation that

�

n

r

�

= 0 if r < 0, or if n < r, or if r is not
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an integer. We shall do this: note that the usual formulas, such as

�

n

r

�

=

�

n� 1

r

�

+

�

n� 1

r � 1

�

(5)

and (13) still hold in these cases. Formula (4) is easily proved by induction, since

w(n; x) = w(n� 1; x� 1) + w(n� 1; x+ 1)

=

�

n� 1

r

�

�

�

n� 1

r � 1

�

+

�

n� 1

r � 1

�

�

�

n� 1

r � 2

�

=

�

n

r

�

�

�

n

r � 1

�

The well known result that we mentioned is the special case

w(2n; 0) =

�

2n

n

�

�

�

2n

n� 1

�

=

1

n+ 1

�

2n

n

�

= c

n

The total number, w(n), of walks of length n is

w(n; n) + w(n; n� 2) + w(n; n� 4) + : : :

=

��

n

0

�

�

�

n

�1

��

+

��

n

1

�

�

�

n

0

��

+ : : :+

��

n

k

�

�

�

n

k � 1

��

=

�

n

k

�

where n� 2k = 0 or 1 according as n is even or odd: i.e.

�

2k

k

�

or

�

2k + 1

k

�

:

Here it is clear that the number of walks of even length is just twice the number of walks

of (odd) length one less:

2

�

2k + 1

k

�

=

2(k + 1)(2k + 1)!

(k + 1)k!(k + 1)!

=

�

2k + 2

k + 1

�

:

Is there a simple \choice" argument for walks of odd length? If you \know" the Catalan

number result, then we can use a device similar to formula (2):

w(2k + 1) = 2w(2k) � c

k

(6)

= 2

�

2k

k

�

�

1

k + 1

�

2k

k

�

=

2k + 1

k + 1

�

2k

k

�

=

�

2k + 1

k

�

but this has an air of circularity about it, or at best may be using a sledgehammer to crack

a nut.

Return to the original problem: we can solve it if we go into more detail than most people

would deem desirable. The numbers, w

n

(x; y), of walks of n steps from (0,0) to (x; y), which

remain in the half-plane y � 0, may be exhibited in a \Pascal semi-pyramid" whose layers

are shown in Fig. 2.

If we sum the rows in the layers of Fig. 2 we obtain the numbers, w

n

(y), of walks of n

steps which start at (0,0) and end at distance y from the x-axis. These are shown in Fig. 3.

We shall see that a special case is, as we have already earnested,

w

n

(0) = c

n+1

: (7)
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1

n = 0

1

1 1

n = 1

1

2 2

1 3 1

n = 2

1

3 3

3 8 3

1 6 6 1

n = 3

1

4 4

6 15 6

4 20 20 4

1 10 20 10 1

n = 4

1

5 5

10 24 10

10 45 45 10

5 40 75 40 5

1 15 50 50 15 1

n = 5

1

6 6

15 35 15

20 84 84 20

15 105 189 105 15

6 70 210 210 70 6

1 21 105 175 105 21 1

n = 6

1

7 7

21 48 21

35 140 140 35

35 224 392 224 35

21 210 588 588 210 21

7 112 490 784 490 112 7

1 28 196 490 490 196 28 1

n = 7

Figure 2: Layers of a Pascal semi-pyramid: values of w

n

(x; y).

n w

n

w

n

(0) w

n

(1) w

n

(2) w

n

(3) w

n

(4) w

n

(5) w

n

(6) w

n

(7) w

n

(8)w

n

(9)w

n

(10)

0 1 1

1 3 2 1

2 10 5 4 1

3 35 14 14 6 1

4 126 42 48 27 8 1

5 462 132 165 110 44 10 1

6 1716 429 572 429 208 65 12 1

7 6435 1430 2002 1638 910 350 90 14 1

8 24310 4862 7072 6188 3808 1700 544 119 16 1

9 92378 16796 25194 23256 15504 7752 2907 798 152 18 1

10 352712 58786 90440 87210 62016 33915 14364 4655 1120 189 20 1

Figure 3: Sums of rows of Fig. 2: values of w

n

(y).

In turn, the row sums of Fig. 3 are the total numbers, w

n

, of Sands-type walks of length n.

They are listed in column two of Fig. 3, and we will con�rm another of our earlier statements:

w

n

=

�

2n+ 1

n

�

: (8)

At risk of losing some interesting heuristics, we again leap to the conclusion

w

n

(x; y) =

�

n

r

��

n

s

�

�

�

n

r � 1

��

n

s� 1

�

(9)

where r =

1

2

(n+ x� y), s =

1

2

(n� x� y).

The obvious symmetry w

n

(x; y) = w

n

(�x; y) is reected in formula (9), since changing

the sign of x is equivalent to interchanging r and s. It is also clear that

(a) if n+ x+ y is odd, then r, s are not integers, and

(b) if jxj+ y > n, then at least one of r, s is negative,

so that in either of these cases,

w

n

(x; y) = 0:
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We can prove (9) inductively from the recursion (10), which states that the last step was

either N, S, E or W:

w

n

(x; y) = w

n�1

(x; y � 1) + w

n�1

(x; y + 1) + w

n�1

(x� 1; y) + w

n�1

(x+ 1; y) (10)

Notice that the sums of the three arguments in the �ve terms are all of the same parity.

If this is odd, then all the terms are zero. But if (r; s) are integers, then the corresponding

values for the four terms on the right of (10) are

(r; s) (r � 1; s� 1) (r � 1; s) (r; s � 1)

and if we assume that formula (9) holds with n� 1 in place of n, then (10) yields

w

n

(x; y) =

�

n� 1

r

��

n� 1

s

�

�

�

n� 1

r � 1

��

n� 1

s� 1

�

+

�

n� 1

r � 1

��

n� 1

s� 1

�

�

�

n� 1

r � 2

��

n� 1

s� 2

�

+

�

n� 1

r � 1

��

n� 1

s

�

�

�

n� 1

r � 2

��

n� 1

s� 1

�

+

�

n� 1

r

��

n� 1

s� 1

�

�

�

n� 1

r � 1

��

n� 1

s� 2

�

which becomes formula (9) after some more or less tedious manipulation, depending on one's

ingenuity or symbol manipulator.

To �nd w

n

(y), sum (9) over x:

w

n

(y) =

x=n�y

X

x=�n+y

w

n

(x; y) =

2(n�y)

X

r=0

w

n

(x; y)

=

��

n

0

��

n

n� y

�

+

�

n

1

��

n

n� y � 1

�

+ : : : +

�

n

n� y

��

n

0

��

�

��

n

�1

��

n

n� y � 1

�

+

�

n

0

��

n

n� y � 2

�

+ : : :+

�

n

n� y � 2

��

n

0

��

The two brackets are the coe�cients of t

n�y

and of t

n�y�2

in the expansion of (1+ t)

n

(1+

t)

n

, so that

w

n

(y) =

�

2n

n� y

�

�

�

2n

n� y � 2

�

which may be rewritten as

w

n

(y) =

�

2n+ 1

n� y

�

�

�

2n+ 1

n� y � 1

�

: (11)

On comparing this with (4) we see that

w

n

(y) = w(2n+ 1; 2y + 1);

the number of odd length one-dimensional walks which �nish, of course, at an odd distance

from the origin.

In particular, (7) is the same as the number of walks from (0,0) to (n; n+1) which begin

with a northward step and do not cross the line joining start to �nish, w(2n+ 1; 1) =

w

n

(0) =

�

2n+ 1

n

�

�

�

2n+ 1

n� 1

�

=

(2n+ 1)!

n!(n+ 2)!

(n+ 2� n)

=

2(n+ 1)(2n+ 1)!

(n+ 1)!(n+ 2)!

=

1

n+ 2

�

2n+ 2

n+ 1

�

= c

n+1

;
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1

1

1

1

2

2 1

1

3

5 3

5 1

1

4

9 6

16 4

10 9 1

1

5

14 10

35 10

35 35 5

35 14 1

1

6

20 15

64 20

84 90 15

140 64 6

70 84 20 1

1

7

27 21

105 35

168 189 35

378 189 21

294 378 105 7

294 168 27 1

1

8

35 28

160 56

300 350 70

840 448 56

840 1134 350 28

1344 840 160 8

588 840 300 35 1

Figure 4: Layers of a Pascal quarter-pyramid: values of w

0

n

(x; y).

the (n+ 1)th Catalan number.

Finally, summing (11) from y = 0 to y = n, gives (8).

We could ask similar questions concerning walks which do not stray outside the posi-

tive quadrant. The numbers of such walks now form a \Pascal quarter-pyramid", which is

exhibited in Fig. 4.

The entries in Fig. 4 are given, again without motivation, by

w

0

n

(x; y) =

�

n

r

��

n+ 2

s

�

�

�

n+ 2

r + 1

��

n

s� 1

�

(12)

where r =

1

2

(n+ x� y), s =

1

2

(n� x� y) as before. Notice that interchange of x and y keeps

s �xed and replaces r by n� r. So the symmetry

w

0

n

(y; x) = w

0

n

(x; y)

follows from the symmetries

�

n

r

�

=

�

n

n� r

�

and

�

n+ 2

r + 1

�

=

�

n+ 2

n� r + 1

�

: (13)

We may prove (12) as we proved (9), since w

0

n

(x; y) also satis�es the relation (10).

A remarkable coincidence is that

w

0

2k�1

(0; 1) =

1

2

c

k

c

k+1

is the number of inequivalent Hamiltonian rooted maps on 2k vertices (sequence 1647 in

[10]) although Tutte [12] doesn't give the formula in terms of Catalan numbers. Is there yet

another opportunity for a pure combinatorial proof?

Figure 5 is obtained by summing the rows of Fig. 4, and we may �nd w

0

n

(y), the number

of walks in the positive quadrant which �nish at distance y from the x-axis, by summing (12)
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n w

0

n

(0) w

0

n

(1) w

0

n

(2) w

0

n

(3) w

0

n

(4) w

0

n

(5) w

0

n

(6) w

0

n

(7) w

0

n

(8)w

0

n

(9)

0 1

1 1 1

2 3 2 1

3 6 8 3 1

4 20 20 15 4 1

5 50 75 45 24 5 1

6 175 210 189 84 35 6 1

7 490 784 588 392 140 48 7 1

8 1764 2352 2352 1344 720 216 63 8 1

9 5292 8820 7560 5760 2700 1215 315 80 9 1

Figure 5: Sums of rows of Fig. 4: values of w

0

n

(y).

from x = 0 to x = n� y.

w

0

n

(y) =

��

n

n� y

��

n+ 2

0

�

�

�

n+ 2

n� y + 1

��

n

�1

��

+

��

n

n� y � 1

��

n+ 2

1

�

�

�

n+ 2

n� y

��

n

0

��

+ : : : +

��

n

1

2

(n� y)

��

n+ 2

1

2

(n� y)

�

�

�

n+ 2

1

2

(n� y) + 1

��

n

1

2

(n� y)� 1

��

if n� y is even, but with the last term replaced by

��

n

1

2

(n� y + 1)

��

n+ 2

1

2

(n� y � 1)

�

�

�

n+ 2

1

2

(n� y + 3)

��

n

1

2

(n� y � 3)

��

if n� y is odd.

Put n� y = 2k or 2k + 1 and

w

0

n

(y) =

(

�

n+1

k

��

n

k

�

�

�

n+1

k

��

n

k�1

�

if n� y = 2k

�

n+1

k

��

n

k+1

�

�

�

n+1

k+1

��

n

k�1

�

if n� y = 2k + 1

In particular, if y = 0,

w

0

n

(0) =

1

k + 1

�

2k

k

��

2k + 1

k

�

or

1

k + 2

�

2k + 2

k + 1

��

2k + 1

k

�

i.e.

�

2k + 1

k

�

c

k

or

�

2k + 1

k

�

c

k+1

according as n = 2k or n = 2k + 1, where c

k

is the k-th Catalan number.

For walks in the positive quadrant it's more natural and symmetrical to ask for the

numbers of walks which terminate at various distances from the origin, using the \Manhattan

metric", x+ y = n� 2s. Figure 6 shows the sums of the diagonals of Fig. 4.

The entries in Fig. 6 are

w

00

n

(x+ y) = w

00

n

(n� 2s) =

X

x+y=n�2s

w

0

n

(x; y)

=

�

n+ 2

s

���

n

s

�

+

�

n

s+ 1

�

+ : : : +

�

n

n� s

��

�

�

n

s� 1

���

n+ 2

s+ 1

�

+

�

n+ 2

s+ 2

�

+ : : :+

�

n+ 2

n� s+ 1

��
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w

0

n

n 0 1 2 3 4 5 6 7 8 9 10 11

1 0 1

2 1 2

6 2 2 4

18 3 10 8

60 4 10 34 16

200 5 70 98 32

700 6 70 308 258 64

2450 7 588 1092 642 128

8820 8 588 3024 3414 1538 256

31752 9 5544 12276 9834 3586 512

116424 10 5544 31680 43230 26752 8194 1024

426888 11 56628 141570 138424 69784 18434 2048

Figure 6: Sums of diagonals of Fig.4: values of w

00

n

(x+ y).

Except for small values of s, the truncated binomial expansions do not seem to have a

simple closed form:

w

00

n

(n) = 2

n

w

00

n

(n� 2) = (n� 2)2

n

+ 2

w

00

n

(n� 4) =

1

2!

(n

2

� 5n+ 2)2

n

+ n

2

+ 3n� 2

w

00

n

(n� 6) =

1

3!

[n(n

2

� 9n+ 14)2

n

+ n(n

3

+ 4n

2

� n� 28)]

w

00

n

(n� 8) =

1

4!

n(n� 1)(n

2

� 13n+ 34)2

n

+

1

72

n(n� 1)(n

4

+ 4n

3

� n

2

� 64n� 204)

An amusing curiosity is that w

00

n

(n� 2) is twice the genus of the (n+2)-dimensional cube

[8, or see Theorem 14 in 3].

The total number of walks, w

0

n

, the left hand column in Fig. 6, has, on the other hand,

the comparatively simple formula

w

0

n

=

�

n

bn=2c

��

n+ 1

b(n+ 1)=2c

�

(14)

which again seems to beg for a simple proof.

If there is no restriction on the two-dimensional walks, i.e. if they may wander on either

side of the x- and y-axes, then it is fairly easy to see that their number of length n, from (0,0)

to (x; y), is

�

n

r

��

n

s

�

(15)

where r and s are as before, but calculated using the absolute values of x and y.

Of course, the total number of walks of length n is 4

n

.

Although we certainly haven't found the most aesthetic proofs, the comparative simplicity

of the �nal results tempts us to ask what happens in three dimensions. Let W

n

(x; y; z) be

the number of walks of n steps, each in a direction N, S, E, W, up, or down, from (0,0,0)

to (x; y; z), which never go below the (x; y)-plane. We will not attempt to depict the four-

dimensional \Pascal semi-pyramid", but the sums of its layers now give W

n

(z), the number

of walks terminating at height z above the (x; y)-plane, and this satis�es the recurrence

W

n

(z) =W

n�1

(z � 1) + 4W

n�1

(z) +W

n�1

(z + 1) (16)
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which may be used to produce the array of Fig. 7.

Each entry in Fig. 7 is the sum of four times the entry immediately above it and the two

neighbors of that entry, e.g.

W

5

(2) = 4 � 99 + 288 + 16 = 700:

W

n

n 0 1 2 3 4 5 6 7 8 9

1 0 1

5 1 4 1

26 2 17 8 1

139 3 76 50 12 1

758 4 354 288 99 16 1

4194 5 1704 1605 700 164 20 1

23460 6 8421 8824 4569 1376 245 24 1

132339 7 42508 48286 28476 10318 2380 342 28 1

751526 8 218318 264128 172508 72128 20180 3776 455 32 1

4290838 9 1137400 1447338 1026288 481200 156624 35739 5628 584 36 1

Figure 7: Walks in three dimensions: values of W

n

(z).

We again suppress the details of discovery of the general formula, and of its inductive

proof: these details seem to be more complicated than before, and we found no obvious

manifestation of the Catalan numbers. The simplest expression for W

n

(z) that we have so

far found is not in closed form:

W

n

(n� v) = a

n;0

�

n

v

�

+ a

n;1

�

n

v � 1

�

+ : : : + a

n;t

�

n

v � t

�

where t = b(v + 2)=2c and the coe�cients a

n;u

are of shape

a

n;u

=

��

v � u

u

�

� 4

2

�

v � u

u� 2

��

4

v�2u

although there are, of course, closed form expressions for small values of v:

W

n

(n) = 1

W

n

(n� 1) = 4n

W

n

(n� 2) = (n� 1)(8n + 1)

W

n

(n� 3) =

4

3

n(n� 2)(8n � 5)

W

n

(n� 4) =

1

6

n(n� 3)(64n

2

� 144n+ 83)

W

n

(n� 5) =

2

15

n(n� 1)(n� 4)(64n

2

� 240n+ 239)

W

n

(n� 6) =

1

90

n(n� 1)(n� 5)(512n

3

� 3648n

2

+ 8872n � 7233)

W

n

(n� 7) =

2

315

n(n� 1)(n� 2)(n� 6)(512n

3

� 4800n

2

+ 15496n � 17007)

We have not found a closed expression for W

n

, the total number of walks of n steps which

do not go below the (x; y)-plane, nor have we had an opportunity to examine the paper [5]

which may contain such an expression and may overlap the present paper in other ways. The

total number of n-step walks in d dimensions, without restriction, is, of course, (2d)

n

.
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ADDENDUM

As a result of correspondence with Christian Krattenthaler and Bruce Sagan, and receipt

of a referee's report, this paper will not seek formal publication, but will revert to its original

intent | to form the basis of a solution to the problem of Bill Sands [9.]

Christian Krattenthaler writes that \ : : : the classes of lattice paths you have considered

do not seem to have been treated before". On the other hand, both he and the referee point

out that formula (15) appears in Theorem 2 in [D1]. The referee also notes that formula (4)

is in [Fe] and that formulas (9), (11), (12), and that for w

0

n

(y), follow easily from (15) and the

reexion principle. However, the exciting news is that Krattenthaler supplies combinatorial

proofs of almost all of the formulas, of the kind appealed for, and that Bruce Sagan also gives

very similar proofs. The main item that is missing is a combinatorial proof of the formula(s)

for w

0

n

(y).

I paraphrase the proofs below and leave their originators to publish them as they think �t.

I will ask Bill Sands to list Krattenthaler and Sagan among the solvers of Crux Problem 1517

unless they write to one of us requesting that their names do not appear. The list already

contains the names of Harvey Abbott and George Szekeres, incidentally, but they didn't give

\pure" combinatorial proofs.

1. Proof of (15). Set up a correspondence between \NSEW" paths, p, and pairs (p

1

,

p

2

) of \NE" paths: if the m-th step of p is N, S, E, W, then the m-th step of p

1

is respectively

N, E, E, N, and that of p

2

is N, E, N, E. Then the \NSEW" paths of n steps from (0, 0) to

(x, y) are in 1{1 correspondence with pairs (p

1

, p

2

) of \NE" paths, where p

1

runs from (0, 0)

to (r, n� r) and p

2

from (0, 0) to (s, n� s), where r =

1

2

(n+ x� y) and s =

1

2

(n� x� y) as

before.

[Algebraic detail: If the numbers of N, S, E, W steps are respectively a, b, c, d, then

n = a+ b+ c+ d, x = c� d, y = a� b, r = b+ c, n� r = a+ d, s = b+ d, n� s = a+ c and

r, s are as stated.]

But the number of \NE" paths from (0, 0) to (k, l) is

�

k+l

k

�

, so the number of NSEW

paths from (0, 0) to (x, y) is

�

n

r

��

n

s

�

;

i.e., formula (15).

2. Proof of (9). To count NSEW paths of n steps from (0, 0) to (x, y) which don't go

below the x-axis, use the reexion principle. We must subtract o� the number of paths which

cross the x-axis. Each of these has a �rst point, say P , for which y = �1. Relect the initial

portion OP in the line y = �1, giving a 1-1 correspondence between paths which cross the

x-axis and paths from (0, �2) to (x, y). Their number is the same as the total number of

paths already counted, except that y is replaced by y+ 2, i.e., r and s are each decreased by

1. This gives formula (9):

w

n

(x; y) =

�

n

r

��

n

s

�

�

�

n

r � 1

��

n

s� 1

�

:
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3. Proof of (12). Reexion may also be used to count the number of NSEW paths

which stay in the positive quadrant. A second relexion in x = �1 together with the inclusion-

exclusion principle shows that this number is

#fpaths from (0, 0) to (x, y)g - #fpaths from (0, �2) to (x, y)g - #fpaths from (�2, 0)

to (x, y)g + #fpaths from (�2, �2) to (x, y)g

=

�

n

r

��

n

s

�

�

�

n

r � 1

��

n

s� 1

�

�

�

n

r + 1

��

n

s� 1

�

�

�

n

r

��

n

s� 2

�

which easily manipulates into formula (12).

4. Proof of (11). To count the number of Sands-type paths, p, which �nish at height

y, use another correspondence with NE paths, �p, of twice the length. If the m-th step of p

is N, S, E, W, then the (2m � 1)-th and 2m-th steps of �p are respectively NN,EE,NE,EN.

This sets up a bijection between NSEW paths with n steps from (0, 0) to height y which do

not cross the x-axis and NE paths from (0, 0) to (n � y, n + y) which do not cross the line

y = x � 1. To enumerate these, use the reexion principle again. A path which crosses the

line y = x� 1 has a �rst point Q for which y = x� 2. Reect the portion OQ of such a path

in the line y = x � 2. This gives a correspondence with NE paths of 2n steps from (2, �2)

to (n� y, n+ y) whose number is

�

2n

n�y�2

�

. This con�rms the formula displayed just before

formula (11). To see (11) itself, adjoin a single N-step to the beginning of path �p and again

apply the reexion principle.

Note that if we also adjoin a �nal E-step to the path �p we see that the number of Sands-

type paths with n steps from (0, 0) which �nish on the x-axis is the same as the number

of NE walks from (0, �1) to (n + 1, n) which do not cross the line y = x � 1, and this is

well-known to be c

n+1

.

5. Proof of (1). First use the correspondence of 4. to map p (Sands-type, n steps from

(0, 0) to height y, not crossing the x-axis) onto

=

p

(NE path, 2n + 1 steps from (0, �1) to

(n� y, n+ y), not crossing y = x� 1). Consider the last meeting point of

=

p

with y = x� 1.

The next step is an N-step, which we change to an E-step, obtaining a new path from (0, �1)

to (n� y+1, n+ y� 1). Repeat this procedure, this time considering the last meeting point

with the line y = x � 2. Next consider the line y = x � 3, &c. After y changes we arrive

at a path from (0, �1) to (n, n). Since this sets up a bijection between NE paths of 2n+ 1

steps starting from (0, �1) and not crossing the line y = x� 1, and NE paths from (0, �1)

to (n, n) (last meeting points become �rst crossing points!), we obtain the total number of

Sands-type paths of n steps,

�

2n+ 1

n

�

:
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AUGMENTED AND ANNOTATED BIBLIOGRAPHY

[Items referred to by pure numbers pertain to the original article. When a �nal selection

of appropriate references is made, they are easily renumbered by \query replace", starting at

the end (e.g., replace bf Ze by bf 37, say).]

A1. D. Andr�e, Solution directe du probl�eme r�esolu par M. Bertrand, C.R. Acad. Sci.

Paris 105(1887) 436{437; Jbuch 19, 200.

[cf. B1 and Ze.]

A2. George E. Andrews, Catalan numbers, q-Catalan numbers and hypergeometric series,

J. Combin. Theory Ser. A 44(1987) 267{273; MR 88f:05015.

[The Catalan numbers may be de�ned as solutions to (1) C

1

= 1, C

n

=

P

n�1

k=1

C

k

C

n�k

, n >

0. The author introduces a new q-analog of the Cats via C

1

(q) = (1+q)=2, ((1+q

n

)=2)C

n

(q) =

P

n

k=1

C

k

(q)C

n�k

(q)q

k

: : : and the more general numbers C

n

(a; q) := q

2n

(�aq

�1

; q

2

)

n

=(q

2

; q

2

)

n

and gives two proofs of

P

n

j=0

C

j

(a

�1

; q)C

n�j

(a; q)(�aq)

j

= 0, n > 0. He also establishes the

explicit formula C

n

(q) = �2

2n�1

C

n

(�1; q). He notes that his q-Cats are the only known

q-analog of the Cats which have both a simple representation as a �nite product and satisfy

an exact q-analog of (1). He also interprets C

n

(a; q) and C

n

(a

�1

; q) as generating functions of

numbers of certain partitions. Mourad E.H. Ismail]

B1. T. Bertrand, Solution d'un probl�eme, C.R. Acad. Sci. Paris 105(1887) 369.

[cf. A1 and Ze.]

B2. M.T.L. Bizley, Derivation of a new formula for the number of minimal lattice paths

from (0,0) to (km; kn) having just t contacts with the line my = nx and having no points

above this line; and a proof of Grossman's formula for the number of paths which may touch

but do not rise above this line, J. Inst. Actuar., 80(1954) 55{62; MR 15, 846d.

[Write �(k; t) for the lattice paths with t contacts as described in the title and, following

G5, write

F

j

= [j(m+ n)]

�1

�

jm+ jn

jm

�

;

then the author's new formula may be stated as

X

�(k; t)x

k

= [1� exp(�F � 1x� F

2

x

2

� : : : )]

t

:

The corresponding formula for �

k

=

P

�(k; t), namely

X

�(k)x

k

= exp(F

1

x+ F

2

x

2

+ : : : )� 1

is equivalent to Grossman's formula : : : J. Riordan] [presumably �

k

= �(k) and the summa-

tion is over t.]

B3. David Blackwell & J.L. Hodges, Elementary path counts, Amer. Math. Monthly,

74(1967) 801{804; Zbl. 155, 29c.

[Consider a sequence x

0

, : : : , x

n

with entries x

i

= �1, and let s

i

= x

0

+ : : : + x

i

be the

partial sums. The authors furnish an elementary combinatorial proof of two known theorems

concerning the enumeration of such sequences relative to two parameters: the sum s

n

, and

the lead, or number of indices i for which both s

i�1

and s

i

are non-negative. H.H. Crapo]

Ca. L. Carlitz & J. Riordan, Two element lattice permutation numbers and their q-

generalization, Duke Math. J., 31(1964) 371{388; MR 29 #5752.

[A two-element lattice permutation can be described in a two-dimensional lattice as a path

leading from (0,0) to a point (m;n) (where 0 � m � n) with the conditions that the path has

minimum length, viz., m + n, and that it does not contain points (a; b) with a < b. It can

also be described as an election for two candidates A, B with �nal vote (n;m), which is such

that none of the partial results gives a majority for B (in the paper it is less accurately said
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that all partial results correctly predict the winner). The number a

n;m

of such two-element

lattice permutations was determined in 1887 by J. Bertrand [B1, see Ma] as

a

n;m

= (n+ 1�m)(n+ 1)

�1

�

n+m

m

�

:

The authors consider a

n

(x) =

P

n

m=0

a

n;m

x

m

and show that this nth degree polynomial is

characterized by the property that (1�x)

n+1

a

n

(x) has the form 1�xP

n

(x(1�x)), where P

n

is again an nth degree polynomial; in fact, P

n

(u) =

P

n

m=0

a

m;m

u

m

. A number of relations

are derived for the generating function a(x; y) =

P

1

n=0

x

n

a

n

(y).

The authors consider these formulas as the special case (q = 1) of a q-generalization. They

de�ne the nth degree polynomial a

n

(x; q) by the condition that there exist c

0

, : : : , c

n

such

that

(x)

n+1

a

n

(x; q) = 1� x

n

X

m=0

c

m

(qx)

m

(x)

m

;

where (x)

k

denotes (1�x)(1� qx) : : : (1� q

k�1

x). The coe�cients a

n;m

(q) of this polynomial

are studied in several ways.

fThe reviewer remarks that a

n;m

(q) has the following combinatorial interpretation: It is

the sum of all q

k

1

+:::+k

m

, where k

1

, : : : , k

m

are integers subject to the conditions 1 � k

1

�

: : : � k

m

� n, k

1

� 1, : : : , k

m

� m.g N.G. de Bruijn]

1. Arthur Cayley, On the partitions of a polygon, Proc. London Math. Soc. 22(1891)

237{262 = Coll. Math. Papers 13(1897) 93{113.

Ci. J. Cigler, Some remarks on Catalan families, European J. Combin., 8(1987) 261{267;

MR 89a:05010.

[The author �rst gives a simple proof that the r-Catalan number (1=((r� 1)n+1))

�

rn

n

�

is

the number of ways of parenthesizing an r-ary product of (r�1)n+1 factors, or equivalently,

the number of r-ary trees with n points. Next he shows, using a variant of the Dvoretzky-

Motzkin cycle lemma, that the number of r-ary trees with n points and t

i

edges from a

point to its ith subtree, where

P

t

i

= n � 1, is (1=n)

�

n

t

1

��

n

t

2

�

: : :

�

n

t

r

�

. From this formula he

deduces that the number of nonnegative paths from (0,0) to (rn; 0) with k+1 peaks, using the

steps (1,1) and (1; 1� r), is the generalized Runyon number (1=n)

�

(r�1)n

k

��

n

n�1�k

�

. Finally he

discusses the connexion between these results, noncrossing partitions and Sperner's theorem.

Ira Gessel]

C0. E. Cs�aki, On the number of intersections in the one-dimensional random walk,

Magyar Tud. Akad. Mat. Kutat�o Int. K�ozl., 6(1961), 281{286; MR 26 #5642.

[Consider a discrete one-dimensional random walk in which, with the usual notation,

p

i;i+1

= p

i;i�1

=

1

2

, and let �

(k)

j

be the number of passages through the point k in a walk

of j steps. Write �

(0)

j

= �

j

. The following results are proved. (i) P (�

2n�1

= l) = P (�

2n

=

l) = 2

�2n+2

�

2n�1

n+l

�

for l 6= 0, and is 2

�2n+1

�

2n

n

�

if l = 0. (ii) For �xed positive even k,

P (�

(k)

2n�1

= l) = P (�

(k)

2n

= l) = 2

�2n+1

�

2n

n+l+k=2

�

. (iii) For �xed positive odd k, P (�

(k)

2n

= l) =

P (�

(k)

2n+1

= l) = 2

�2n

�

2n+1

n+l+

1

2

(k+1)

�

. The proofs are entirely combinatorial. J. Gillis]

C1. Endre Cs�aki & Sri Gopal Mohanty, Some joint distributions for conditional random

walks, Canad. J. Statist. 14(1986) 19{28; MR 87k:60168.

[Joint distributions of maxima, minima and their indices are determined for certain con-

ditional random walks called Bernoulli excursion and Bernoulli meander. The distribution

of the local time of these processes is treated by a generating function technique. Limiting

distributions are also given, providing some partial results for Brownian excursion and mean-

der. For instance the authors conjecture the joint limit distributions of the local time and the
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maximum for these two processes. Similar investigations are carried out for the unconditional

random walk and for the Bernoulli bridge. G. Louchard (Brussels)]

C2. Endre Cs�aki, Sri Gopal Mohanty & Jagdish Saran, On random walks in a plane, Ars

Combin. 29(1990) 309{318. [Not yet seen]

C3. E. Cs�aki & I. Vincze, On some problems connected with the Galton test, Magyar

Tud. Akad. Mat. Kutat�o Int. K�ozl., 6(1961), 97{109; MR 26 #3138.

[The authors give the probability of the number of waves relative to the horizontal line

in the sequence of the sum S

i

of the �rst i members of a random sequence of n +1's and n

�1's, where i = 1; 2, : : : , 2n, with limiting distribution in n! 1 and the joint probability

distribution for the number of waves mentioned above and the Galton statistic in the sequence

with the limiting distribution. Then they give the joint probability distribution for the number

of waves relative to the height k > 0 from the horizontal line and the length of time spent

above this height expressed by the number of positive members in the well-de�ned sequence

with the limiting distribution. They suggest the statistical tests based on these theorems in

a two-sample problem. C. Hayashi (Tokyo)]

C4. E. Cs�aki & I. Vincze, On some distributions connected with the arc-sine law (Russian

summary), Magyar Tud. Akad. Mat. Kutat�o Int. K�ozl., 8(1963), 281{291; MR 29 #4078.

[Several results extending those of the reviewer and Feller, and generalized by E.S. Ander-

sen, are given. The combinatorial formulae are obtained by one-to-one correspondence, from

which asymptotic ones are computed. For instance, let s

i

, i = 0, 1, 2, : : : , be the successive

sums in the coin-tossing game with stakes �1, s

0

= 0, and let 2

(2k)

2n

denote the number of

indices i (i = 1; : : : ; 2n) for which either s

i

> 2k or s

i

= 2k but s

i�1

= 2k + 1, where k is a

non-negative integer; then

P(

(2k)

2n

= g) =

1

2

2n

�

2g

g

��

2n� 2g

n� g + k

�

; g = 1; 2; : : : ; n� k;

P(

(2k)

2n

= 0) =

1

2

2n

k

X

j=�k

�

2n

n+ j

�

:

K.L. Chung

De. Nachum Dershowitz & Schmuel Zaks, The cycle lemma and some applications,

European J. Combin., 11(1990) 35{40. [not yet seen]

D1. Duane W. DeTemple & Jack M. Robertson, Equally likely �xed length paths in

graphs, Ars Combin. 17(1984) 243{254; MR 86h:60103.

[give equation (15) in the original paper.] [The authors investigate the unique stochastic

process whose realizations are the set of paths of given length joining two given vertices of a

given graph and which has the property that all such paths are equally likely to occur. There

is an application to the design of experiments. G.R. Grimmett (Bristol)]

D2. Duane W. DeTemple, C.H. Jones & Jack M. Robertson, A correction for a lattice

path counting formula, Ars Combin. 25(1988) 167{170; MR 89i:05017.

[gives equation (15) in the original paper.] [In D1, DeT & R gave the formula

a� kb

d

�

d

d�a�b

2

��

d

d�a+b

2

�

for the number of lattice paths in the plane length d, with unit steps in the positive and

negative coordinate directions, starting at the origin and ending at (a; b) which touch the line

x = ky only at the initial point. In the present paper the authors note that this formula is

correct if d = a+ b, a� kb = 1, or k = 1; in other cases it is an upper bound.
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The authors use the method of cyclic permutation or \penetrating analysis" due to Dv.

A method which yields an exact, but complicated, formula for this kind of problem was

described in G1. Ira Gessel]

2. C. Domb, On the theory of cooperative phenomena in crystals, Advances in Physics

9(1960) 149{361.

[didn't �nd this in MR or in Zbl. I think I must have got it from Sloane [10], and I can

no longer �nd a reference to it in the text, so let's forget it?]

Dv. A. Dvoretzky & Th. Motzkin, A problem of arrangements, Duke Math. J., 14(1947)

305{313; MR 9, 75e.

[ : : : In an election, candidates P and Q receive p and q votes, respectively; required the

probability that the ratio of the ballots for P to those for Q will, throughout the counting,

be larger than (larger than or equal to) �.]

E. O. Engleberg, On some problems concerning a restricted random walk, J. Appl. Prob-

ability, 2(1965) 396{404; MR 32 #475.

[The restricted random walk in question is on a line (vertical for convenience) with unit

steps up and down and prescribed numbers of each. In the terminology of Feller [Fe] such a

walk is a polygonal path from (0,0) to (n+m;n�m); it is also in one-to-one correspondence

with a two-candidate election return with �nal vote (n;m). In election return terms, the

author's main results are as follows: If c(x;n;m) is the enumerator of election returns with

�nal vote (n;m), n � m, by number of changes of lead, if t(x;n;m) is the corresponding

enumerator by number of ties, then c(x;n;m) =

P

m

k=0

a

n+k;m�k

x

k

, n > m, c(x;n; n) =

2c(x;n; n� 1), t(x;n;m) =

P

m

k=0

a

n�1;m�k

(2x)

k

, where

a

n;m

=

�

n+m

m

�

�

�

n+m

m� 1

�

=

n+ 1�m

n+ 1

�

n+m

m

�

:

The numbers a

n;m

are the oldest ballot numbers. (For n < m, the enumerators in the two

cases, by symmetry, are those above with n and m interchanged, a result not noticed by the

author.) These results are used with obvious summations to verify the results of Feller [Fd]

for the enumeration of unrestricted random walks by number of axis crossings and by number

of zeros (of their polygonal paths). Also the limiting distribution functions of tie returns

(n = m) are determined. Finally, the application of the results to the comparison of two

empirical distributions is sketched.

fIn equation (11) there are two typographical slips whose corrections will probably be

evident to most readers.g J. Riordan]

Fd. W. Feller, The number of zeros and of changes of sign in a symmetric random walk,

Enseignement Math.(2), 3(1957) 229{235; MR 20 #4329.

[Let S

n

= X

1

+X

2

+ : : : +X

n

where the X

j

are independent and assume the values �1

with probability

1

2

. The author derives for this symmetric random walk explicit formulas for

the probability distribution of the number of returns to the origin, the number of changes of

sign and other related quantities. The derivations are of a very elementary nature and the

paper is self-contained. A more exhaustive treatment appears in Chapter III of the 2nd ed.

of Fe (1957). J.L. Snell]

Fe. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley,

1968, p. 73

[The reference gives equation (4) in the original paper. On p. 82 it is noted that

�

2k

k

��

2n�2k

n�k

�

is the number of paths of length 2n with exactly 2k steps lying above y = x. On p. 96 is

given a bijection between paths from (0,0) to (k; k) and paths of length 2k which do not pass

below y = x.]

Fl. Philippe Flajolet, Combinatorial aspects of continued fractions, Discrete Math.,

32(1980) 125{161; Ann. Discrete Math., 9(1980) 217|222; MR 82f:05002ab.
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[referred to in review of G3.]

Fu. J. F�urlinger & J. Hofbauer, q-Catalan numbers, J. Combin. Theory Ser. A, 40(1985)

248{264; MR 87e:05017.

[The Catalan numbers C

n

are de�ned by C

n

=

1

n+1

�

2n

n

�

and satisfy z =

P

1

n=1

C

n

z

n

=(1 +

z)

2n

and z =

P

1

n=1

C

n

z

n

(1 � z)

n

. This paper surveys several q-analogs of the Catalan

numbers. The authors �rst consider the q-Catalan numbers of Ca. These satisfy

z =

1

X

n=1

q

(

n�1

2

)

C

n

(q)

z

n

(1 + z)(1 + qz) : : : (1 + q

2n�1

z)

and

z =

1

X

n=1

C

n�1

(q)z

n

(1� z)(1� qz) : : : (1� q

n�1

z):

There is no simple explicit formula for C

n

(q), but there is a combinatorial interpretation in

terms of inversions of certain 0-1 sequences.

Next the authors consider the q-Catalan numbers given by

c

n

(�; q) =

n

X

k=0

1

[n]

�

n

k

� �

n

k + 1

�

q

k

2

+�k

;

in which the terms are q-Runyon numbers. Here one de�nes [n] = (q

n

�1)=(q�1) and

�

n

k

�

is

the q-binomial coe�cient. For � = 1 these reduce to c

n

(1; q) = C

n

. These q-Catalan numbers

satisfy

z =

1

X

n=1

c

n

(�; q)z

n

q

(

n

2

)

(�q

�n

z)

n

(�q

�

z)

n

;

where (a)

n

= (1� a)(1� qa) : : : (1� q

n�1

a), and they have a combinatorial interpretation in

terms of major indices and descents of 0-1 sequences.

A generalization which includes both types of q-Catalan numbers is considered next. These

satisfy

z =

1

X

n=1

a

�

(

n

2

)

C

n

(x; a; b)z

n

(1 + a

�1

z) : : : (1 + a

�n

z)(1 + xbz) : : : (1 + xb

n

z)

and are also given a combinatorial interpretation. They also include as a special case the

q-Catalan numbers studied in Po. Ira Gessel]

Fv. Harry Furstenberg, Algebraic functions over �nite �elds, J. Algebra, 7(1967) 271{277;

MR 35 #6655.

[referred to in review of G1.]

G1. Ira M. Gessel, A factorization for formal Laurent series and lattice path enumeration,

J. Combin. Theory Ser. A 28(1980) 321{327; MR 81j:05012.

[A powerful and striking factorization for certain formal Laurent series is proved, namely

that the series is a product of a constant, a series in only negative powers and a series in only

positive powers. Lagrange's formula for series reversion is treated as an application. Other

applicationa are to the problems of enumerating restricted lattice paths (a novel interpretation

of Laurent series in combinatorial theory) and to H. Furstenberg's theorem [Fv] that the

diagonal of a rational power series in two variables is algebraic (giving a new formal method

of showing that certain series are algebraic. D.G. Rogers]

G2. Ira M. Gessel, A probabilistic method for lattice path enumeration, J. Statist. Plann.

Inference 14(1986) 49{58; MR 87h:05017.
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[Some lattice path counting problems may be converted into problems of deriving distri-

butions on random walks which give rise to functional equations. Solutions of these equations

provide a probabilistic approach to the lattice path enumeration problems. The approach is

illustrated by a few examples. Sri Gopal Mohanty]

G3. Ira M. Gessel, A combinatorial proof of the multivariable Lagrange inversion formula,

J. Combin. Theory Ser. A 45(1987) 178{195; MR 88h:05011.

[Using the exponential generating function, the author gives a combinatorial proof of one

form of the multivariable Lagrange inversion formula (MLIF). An outline of the proof is:

(1) interpret the de�ning functional relations as generating functions for colored trees, (2)

interpret the desired coe�cient as the generating function for functions from a set to a larger

set, (3) decompose the functional digraph from (2) into two types of connected components,

whose generating functions give the MLIF. Labelle had given such a proof in one variable [L].

The author also gives a useful survey of forms of the MLIF given by Jacobi, Stieltjes,

Good, Joni, and Abhyankar. He shows that Jacobi's form implies Good's form and gives a

simple form generalizing that of Stieltjes, Joni, and Abhyankar.

The paper includes some historical information on the Jacobi formula for matrices, det

exp A = exp trace A. Dennis Stanton]

Go. Henry W. Gould, Final analysis of Vandermonde's convolution, Amer. Math.

Monthly, 64(1957) 409{415; MR 19, 379c.

[referred to in review of Ra.]

GJ. I.P. Goulden & D.M. Jackson, Path generating functions and continued fractions, J.

Combin. Theory Ser. A, 41(1986) 1{10; MR 87i:05020.

[The authors consider paths along the nonnegative integers in which each step consists

of an increase of altitude of 1 (a rise), 0 (a level), or �1 (a fall). The paths are weighted to

record the number of rises and levels at each altitude. The main result of the paper answers

the following question: What is the sum of the weights of all paths with given initial and

terminal altitudes, and with given bounds on maximum and minimum altitudes? The answer

is expressed in terms of continued fractions and extends P. Flajolet's combinatorial theory

of continued fractions [Fl]. Some classical identities for continued fractions are obtained as

corollaries. Ira Gessel]

G4. Dominique Gouyou-Beauchamps & G. Viennot, Equivalence of the two-dimensional

directed animal problem to a one-dimensional path problem, Adv. in Appl. Math., 9(1988)

334{357; MR 90c:05009.

[A set P of lattice points in the plane is called a directed animal if there is a subset of P ,

whose elements are called root points, such that the root points lie on a line perpendicular to

the line y = x, and every point of P can be reached from a root point by a path in P using

only north and east steps. This paper is concerned with the enumeration of compact-rooted

animals, which are animals in which the root points are consecutive. Animals which di�er

only by translation are considered to be equivalent.

The main result is a bijection between compact-rooted animals of size n + 1 and paths

of length n on the integers, with steps +1, 0 and �1. This bijection implies that there are

3

n

compact-rooted animals of size n+ 1. Moreover the bijection allows the compact-rooted

animals to be counted according to the number of root points. Further consequences are that

the generating function for directed animals with one root point is

1

2

((1+t)=

p

1� 2t� 3t

2

�1)

and that the number of directed animals of size n rooted at the origin and contained in the

�rst octant 0 � x � y is the Motzkin number m

n�1

.

The paper also contains many references to work by physicists on problems of counting

animals, which arise in studying thermodynamic models for critical phenomena and phase

transitions. Ira Gessel]

G5. Howard D. Grossman, Fun with lattice points, Scripta Math., 15(1945) 79{81; MR

18



12, 665d.

[Suppose an election results in km votes for A and kn for B. In how many orders may

votes be cast so that A's vote is always at least m=n times B's? The author gives without

proof the formula

p

k

=

X

F

k

1

1

F

k

2

2

: : : [k

1

!k

2

! : : : ]

�1

with k

1

+ 2k

2

+ : : : = k, F

j

= j

�1

(m+ n)

�1

�

jm+jn

jn

�

and the sum over all partitions of k. He

also gives a short introduction to enumerations in three-dimensional and derives a solution

to a corresponding election problem, noting its agreement with MacMahon's. J. Riordan]

H1. B.R. Handa & Sri Gopal Mohanty, Enumeration of higher-dimensional paths under

restrictions, Discrete Math. 26(1979) 119{128; MR 81b:05012.

[The authors consider the problem of counting lattice paths in k-dimensional space under

restrictions. They obtain k-dimensional analogs of the familiar results in two dimensions.

D.P. Roselle]

H2. B.R. Handa & Sri Gopal Mohanty, On a property of lattice paths, J. Statist. Plann.

Inference 14(1986) 59{62; MR 87i:05023.

[The authors give an algebraic discussion of the implications on lattice paths of the fol-

lowing fact: increasing sequences of integers such that the jth is at least b(j) greater than

the (j � 1)st, and is at most a(j), are in one-to-one correspondence to increasing sequences

such that the jth is at most a(j) minus the sum of the �rst j b(k)'s. D.J. Kleitman]

3. Frank Harary, Topological concepts in graph theory, in Harary & Beineke, A Seminar

on Graph Theory, Holt, Reinhart & Winston, New York & London, 1967, pp.13{17.

[a nonce-reference on p. 10 of the original paper.]

Hi. Terrell L. Hill, Steady-state kinetics of a linear array of interlocking reactions, Statis-

tical Mechanics & Statistical Methods in Theory and Applications (Rochester NY), Plenum,

New York, 1977, pp. 521{577; MR 57 #15112.

[referred to in review of Sh; the MR reference gives no further information.]

J. Andr�e Joyal, Une th�eorie combinatoire des s�eries formelles, Adv. in Math., 42(1981)

1{82; MR 84d:05025.

[\We present a combinatorial theory of formal power series. The combinatorial interpre-

tation of formal power series is based on the concept of species of structures. A categorical

approach is used to fomulate it. A new proof of Cayley's formula for the number of labelled

trees is given as well as a new combinatorial proof (due to G. Labelle) of Lagrange's inversion

formula. P�olya's enumeration theory of isomorphism classes of structures is entirely renewed.

Recursive methods for computing cycle index polynomials are described. A combinatorial

version of the implicit function theorem is stated and proved. The paper ends with general

considerations on the use of coalgebras in combinatorics."]

K. S. Karlin & G. McGregor, Coincidence probabilities, Paci�c J. Math., 9(1959) 1141{

1164; MR 22 #5072.

[among Gessel's references, but may be marginal; cf. immediately preceding paper and

review.]

4. T.P. Kirkman, On the k-partitions of the r-gon and r-ace, Phil. Trans. 147(1857)

225.

[v. p. 3, l. 1 of original paper.]

Kl. Daniel Kleitman, A note on some subset identities, Studies in Appl. Math., 54(1975)

289{292; MR 56 #8386.

[gives combin. proof of

n

X

k=0

�

2k

k

��

2n� 2k

n� k

�

= 4

n

;

19



# 19 of the \Erd}os-P�osa" problems { see Mi.]

5. Christian Krattenthaler, Counting lattice paths with a linear boundary. I.

�

Osterreich.

Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 198(1989) 87{107.

K1. Christian Krattenthaler, Enumeration of lattice paths and generating functions for

skew plane partitions, Manuscripta Math., 63(1989) 129{155..

K2. G. Kreweras & H. Niederhausen, Solution of an enumerative problem connected with

lattice paths, European J. Combin., 2(1981) 55{60; MR 82d:05014.

[The authors consider lattice paths of p horizontal and q vertical steps from (0; q) to (p; 0).

LetW (C) denote the number of paths below C in the dominance partial ordering. Theauthors

prove

X

(W (C))

2

=

(p+ q + 1)!(2p+ 2q + 1)!

(p+ 1)!(2p + 1)!(q + 1)!(2q + 1)!

S.G. Williamson]

6. Mike Kuchinski, Catalan Structures and Correspondences, M.Sc. thesis, West Virginia

University, Morgantown WV 26506, 1977.

L. Gilbert Labelle, Une nouvelle d�emonstration combinatoire des formules d'inversion de

Lagrange, Adv. in Math., 42(1981) 217{247; MR 83e:05016.

[The purpose of this paper is to examine connexions between two classical results | the

Lagrange inversion formula for power series and Cayley's formula for the number of labelled

trees on n vertices | in the light of the combinatorial theory of formal series recently presented

by J and founded on the notion of \species of structures". Some combinatorial operations are

de�ned over species and correspond to analytic operations over their generating functions:

hence, properties of the operations over species yield identities for formal series. The authors

introduce two canonical constructions which associate a new species | \arborescence R-

enrichie" and \endofonction R-enrichie", respectively | to any given species R and proves

some deep isomorphism results. These yield, as simple corollaries, some generalized versions

of Cayley's formula and the Lagrange inversion formula. Andrea Brini]

L1. Jacques Labelle & Yeong-Nan Yeh, Dyck paths of knight moves, Discrete Appl. Math.,

24(1989) 213{221; MR 90g:05017.

[This paper enumerates lattice paths from the origin to a point along the x-axis which do

not go below the x-axis, where the allowable moves are knight moves from left to right. The

resulting generating function satis�es a fourth-degree polynomial equation. This compares

with so-called Dyck paths, where the allowable moves are one-step diagonal moves to the

right. In this classical case the resulting generating function satis�es a quadratic polynomial

equation, whose solution yields the Catalan number generating function.

The authors apply their methods to paths with (r; s) knight moves, and obtain polynomial

equations of higher degree. Dennis White]

L2. Jacques Labelle & Yeong-Nan Yeh, Generalized Dyck paths, Discrete Math., 82(1990)

1{6. [Not yet seen]

L3. Jack Levine, Note on the number of pairs of non-intersecting routes, Scripta Math.

24(1959) 335{338; Zbl. 93 13a.

[Soit 2 permutations X

n

= x

1

x

2

: : : x

n

et Y

n

= y

1

y

2

: : : y

n

de p �el�ements a et q �el�ements b,

p+ q = n. Si le nombre des a est di��erent du nombre des b dans chaque paire de s�equences

partielles correspondantes x

1

x

2

: : : x

k

et y

1

y

2

: : : y

k

pour k = 1, 2, : : : , n � 1, les permuta-

tions sont dites une paire de permutations non intersectantes, pour une raison qui provient

d'une interpr�etation graphique. Les 2 paires (X

n

; Y

n

) et (Y

n

;X

n

) sont �a consid�erer comme

�equivalentes. L'A. obtient le nombre suivant des paires distinctes de telles permutations de

p �el�ements a et q �el�ements b, p + q = n, N

n

(p; q) =

n�1

pq

�

n�2

p�1

��

n�2

q�1

�

, 0 < p < n, 0 < q < n.

S. Bays] [The Strens Collection has a run of Scripta Math. if you'd like me to send a copy of

the paper.]
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Li. N. Linial, A new derivation of the counting formula for Young tableaux, J. Combin.

Theory Ser. A, 33(1982) 340{342; MR 83m:05016.

[The well-known hooklength formula for the number of standard Young tableaux of a

given shape can be written in determinantal form (Frobenius) [see, e.g., D.E. Knuth, The Art

of Computer Programming, Vol. 3, pp. 60{63, Addison-Wesley, 1973]. A short proof of this

result is given by observing that the expansion of the determinant yields an alternating sum

of mutinomial coe�cients which obviously satis�es the di�erence equation for the numbers in

question, together with the initial conditions. Volker Strehl]

Ly. R.C. Lyness, Al Capone and the death ray, Math. Gaz., 25(1941) 283{287.

[neither this nor Pe appears to have made it into MR or Zbl. I enclose photocopies of

each of these, as they predate many other papers on the subject. I don't have immediate

access to Math. Gaz., 18(1934) 124 or to Chess Amateur, mentioned by Pe, but they may

also be of some historical interest.]

Ma. Major P.A. MacMahon, Combinatory Analysis, Vol. I, Section III, Chapter V,

Cambridge Univ. Press, Cambridge, 1915.

[referred to in review of Ze and perhaps G5.]

Mi. E.C. Milner, Louis P�osa | a mathematical prodigy, Nabla, Bull. Malayan Math.

Soc., 7(1960) 61{64; Solutions to the Erd}os-P�osa problems I, II, ibid., 107{112, 154{159.

[Problem 19 was to prove the identity mentioned under Kl.]

M1. Sri Gopal Mohanty, Lattice Path Counting and Applications. Probability and

Mathematical Statistics. Academic Press, 1979, xi+185 pp.

[p. 2 gives the reexion principle, whereby equations (9), (11), (12) and the formula at

the foot of p. 8 of the original paper all follow from equation (15). I haven't had access to

Mohanty's book | there may be several other relevant references therein.]

M2. Sri Gopal Mohanty, On some generalization of a restricted random walk, Studia Sci.

Math. Hungar., 3(1968) 225{241; MR 39 #1022.

[The author considers the paths of a restricted random walk starting from the origin,

which at each step moves either one unit to the right or � (positive integer) units to the left,

and reaches the point m � �n in m + n steps. Random walks are considered schematically

by representing each movement of the particle to the right or to the left by a horizontal or

a vertical unit so that the restricted random walk corresponds to the minimal lattice paths

the particle describes from the origin to (m;n). Expressions are obtained for total numbers

of distinct paths under certain further conditions as follows. For a given path, say C, of such

a random walk the total number of paths is found which, after each step, do not lie to the

left of the corresponding point of C, and which touch C in a prescribed way in exactly r of

the last s left steps. Expressions are obtained also for the number of paths crossing r times

(but not necessarily reaching) a point � � 0, for the number of paths reaching �, r times,

and concerning the joint distribution of the numbers of times and steps in the region to the

right of �. The last is shown to lead to a result connected with a ballot theorem of L. Tak�acs

[T]. The author mentions also related results due to E. Cs�aki [C0], E. Cs�aki & I. Vincze [C3,

C4], K. Sen [Se] and O. Engleberg [E]. C.J. Ridler-Rowe]

7. Athanasios Papoulis, A new method of inversion of the Laplace transform, Q. App.

Math. 14(1957) 405{414; MR 18, 602e.

[�nds Legendre coe�cients; done before by Widder, Duke Math. J., 1(1935) 126{136; and

by Shohat ibid., 6(1940) 615{626; MR 2, 98.]

P. J. Peacock, On \Al Capone and the Death Ray", Note 1633 Math. Gaz., 26(1942)

218{219.

[see note under Ly.]

Po. G. P�olya, On the number of certain lattice polygons, J. Combin. Theory 6(1969)

102{105; MR 38 #4329.
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[A closed polygon without double points that consists of segments of length one joining

neighboring lattice points is called a lattice polygon. Two lattice polygons are considered as

not di�erent if and only if there exists a parallel translation superposing one to the other.

The number of \di�erent lattice polygons" is indicated by dlp. A closed plane curve without

double points is termed convex with respect to the direction d if for the intersection of the

closed domain surrounded by the curve with any straight line of direction d, only three cases

are possible: The intersection is either the empty set, or consists of just one point or of just

one segment. A curve is convex in the usual sense if and only if it is convex with respect to

all directions [a square is not convex under this strict de�nition | RKG].

Let a

m

denote the number of dlp convex with respect to the vertical direction with area

m, b

n

the number of dlp convex with respect to the �45

�

direction with perimeter 2n, and

c

mn

the number of dlp convex with respect to the �45

�

direction with area m and perimeter

2n; evidently

P

m

c

mn

= b

n

. In this paper explicit expressions are given for the numbers a

m

,

b

n

and c

mn

. For example,

P

1

1

a

m

x

m

= x+ 2x

2

+ 6x

3

+ 19x

4

+ 61x

5

+ : : : = x(1 � x)

3

=(1 �

5x+ 7x

2

� 4x

3

), b

n

= (1=(4n � 2))

�

2n

n

�

. The proofs of the results stated will be presented in

a subsequent paper. A.L. Whiteman]

Ra. George N. Raney, Functional composition patterns and power series reversion. Trans.

Amer. Math. Soc., 94(1960) 441{451; MR 22 #5584.

[Let a

1

, a

2

, : : : be an in�nite sequence of natural numbers 0, 1, 2, : : : , such that

P

a

i

is

�nite. The author de�nes the numbers L = L(n; a

1

; a

2

; : : : ) combinatorially and shows that

L(n; a

1

; a

2

; : : : ) =

(

P

1

i=0

a

i

)!n

Q

1

i=0

(a

i

!)m

where m = n+

P

1

i=1

ia

i

, a

0

= n+

P

1

i=1

(i � 1)a

i

, and L = 1 if m = n = 0. He then derives

some identities involving the numbers L, and uses them to prove a Lagrange inversion formula

on formal power series and a convolution formula given by Go. Rimhak Ree]

8. Gerhard Ringel, F�arbungsprobleme auf Fl�achen und Graphen, VEB Deutscher Verlag

der Wissenschaften, Berlin, 1959.

R1. Don Rawlings, The Euler-Catalan identity, European J. Combin., 9(1988) 53{60;

MR 89g:05017.

[This paper is an attempt to unify the various generalizations of Catalan and Eulerian

numbers by using q-theory. The author denotes the generating function for permutations by

descents, major index, inversions and patterns by

(�) A(n; t; q; p; u; v) =

X

�2s

t

d(�)

q

m(�)

p

i(�)

u

a(�)

v

b(�)

:

Denoting A

n

(t) = A(n; t; q; p; u; v), the author shows that the recurrence

(��) A

n+1

(t) = A

n

(tq) + t

n

X

k=1

q

k

p

k

u

k(n�k)

�

n

k

�

A

k

(t)A

n�k

(tq

k+1

)

holds. De�ning C(n; t; q; p) = A(n; t; q; p; 0; 1) and K(n; t; q; p) = A(n; t; q; p; 1; 0), the author

deduces recurrences for C and K from which two classic q-Catalan numbers de�ned by Ca

follow by taking t = q = 1. Taking u = 1, v = 1 in (��) leads to a new recurrence involving

E(n; t; q; p) = A(n; t; q; p; 1; 1) which de�nes generalized Eulerian numbers. A conjecture

involving the q-Catalan numbers is posed at the end of Section 5. R.N. Kalia]

R2. John Riordan, Combinatorial Identities,

9. Bill Sands, Problem 1517*, Crux Mathematicorum 16#2(Feb. 1990) 44.

Se. Kanwar Sen, On some combinatorial relations concerning the symmetric random

walk, Magyar Tud. Akad. Mat. Kutat�o Int. K�ozl., 9(1964), 335{357; MR 33 #6715.
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[The author considers sequences (#

1

; #

2

; : : : #

2n

) of n+k 1's and n�k �1's, in other words

the polygonal paths from (0,0) to (2n; 2k) through the points (i; s

i

) with s

i

= #

1

+#

2

+ : : :+#

i

in a rectangular coordinate-system, where each possible array (path) has the same probability.

In connexion with this restricted random walk, there are joint distribution laws and joint

limiting distribution laws determined ofr the number of intersections (number of changes of

sign of the s

i

) and the number of positive steps, as well as for the number of intersections

at the height r (the number of changes of sign of s

i

� r) and the number of steps above

the height r. Applying the results obtained, the author proves some known relations for the

unrestricted case also. The proofs of the theorems are of a combinatorial character, some of

them involving one-to-one correspondences of paths. The paper has some points in common

with E. I. Vincze]

Sh. Louis W. Shapiro, A lattice path lemma and an application in enzyme kinetics, J.

Statist. Plann. Inference 14(1986) 115{122; MR 87j:05021.

[Consider the rectangular lattice from (0,0) to (a; b). Choose z integers 1 � a

1

< a

2

<

: : : < a

z

� a and z integers 1 � b

1

< b

2

< : : : < b

z

� b, and place stones on the squares

(a

1

; b

1

), : : : , (a

z

; b

z

). The author �rst shows that if the integers are chosen randomly, and a

random path from (0,0) to (a; b) with unit steps east and north is chosen, then the probability

that the path passes beneath all the stones is 1=(z + 1).

The author next considers a model for enzyme kinetics closely related to that studied

by Hi and by SZ. In these models the states are all 0-1 sequences of length M . Each 0

or 1 represents an enzyme, which is either reduced (1) or oxidized (0). The transition rules

essentially allow a 01 subsequence to become 10. Using the result of the �rst part of the

paper, the author computes the steady-state distribution under transition probabilities which

are di�erent from those used in the earlier papers. Ira Gessel]

SZ. Louis W. Shapiro & Doron Zeilberger, J. Math. Biol., 15(1982) 351{357; MR

84f:92011.

[The authors investigate a continuous time Markov chain modelling the di�usion of a

ligand across a membrane. The states of the chain are strings of 0's and 1's of length M

and the transitions are 0�! 1�, �10� ! �01�, �1! �0, where all the transition rates are

equal. The authors give a formula for the steady state probabilities that the rth component

of the string is zero. Petr K�urka]

10. Neil J.A. Sloane, A Handbook of Integer Sequences, Academic Press, New York &

London, 1973.

Su. Robert A. Sulanke, A recurrence restricted by a diagonal condition: generalized

Catalan numbers, Fibonacci Quart., 27(1989) 33{46; MR 90c:05012.

[This paper contains a proof via lattice paths of the Lagrange inversion theorem for ordi-

nary generating functions. It also includes many examples of the Catalan-Motzkin-Schr�oder

sequence variety. A translation from lattice paths to planar trees is given along with several

planar tree examples.

Basically this paper considers paths where each step is of the form (x; y)! (x+ j; y+1),

j 2 f0; 1; 2; : : : g. Such a path from (0,0) to (k; l) is good if after leaving (0,0) all points on

the path must lie above the line y = �x, � 2 ZZ.

The number of good paths from (0,0) to (k� + d) [sic!] is shown to be d=(1 + k�) of all

paths between the same points. These paths are then weighted and generating functions are

introduced, leading, eventually, to a combinatorial proof of the Lagrange inversion theorem.

Other combinatorial proofs include those of Ra (ordinary generating functions), L (expo-

nential generating functions) and G. Louis Shapiro]

Sv. Marta Sved, Math. Intelligencer

[cf. Kl, Mi and see Gessel correspondence.]
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T1. Lajos Tak�acs, Ballot problems, Z. Wahrscheinlichkeitstheorie und verw. Gebiete,

1(1962) 154{158; MR 26 #3131.

[The author proves a discrete variant of Spitzer's lemma, to the e�ect that Pf�

n

=

jj�

1

+ : : : + �

n

= 1g = 1=n, where �

n

is the number of positive partial sums �

1

+ : : : + �

m

,

(m � n) and the �

i

are integer-valued with permutation-symmetric distribution. He uses this

to prove that, if all possible voting sequences are equally likely and the two candidates get

a and b votes with (a; b) = 1, and if �

�

a;b

denotes the number of the a + b vote-count times

when the ratio of votes is � a=b, then Pf�

�

a;b

= jg = 1=(a + b). The probability that the

amount by which the �rst candidate is ahead stays strictly between c� d and c, where c and

d are positive integers, c < d, and c� d < b� a < c, is shown to be

�

a+ b

a

�

�1

X

k

��

a+ b

a� kd

�

�

�

a+ b

a+ c+ kd

��

:

The results extend those of many authors, some of the more recent being Chung, Feller,

Hodges, Gnedenko, Rva�ceva. J. Kiefer]

T2. Lajos Tak�acs, The distribution of majority times in a ballot, Z. Wahrscheinlichkeit-

stheorie und verw. Gebiete, 2(1963) 118{121; MR 28 #3490.

[In this sequel to a previous paper [T1] further probabilities are calculated concerning the

number of times one candidate leads over another during the successive stages of a ballot.

The combinatorial proofs are based on lemmas which are relevant also to uctuation theory,

order statistics and the theory of queues. The author also gives a generalization to processes

with independent increments. F.L. Spitzer]

Ta. Lajos Tak�acs, Some asymptotic formulas for lattice paths, J. Statist. Plann. Inference

14(1986) 123{142; MR 87k:60082.

[The author proves asymptotic formulas for the area under lattice paths starting at (0,0)

with unit steps in the positive x- and y-directions. Two of the simpler formulas are as follows.

Let �(n) be the area under a random path of length n. Then

lim

n!1

"

n

3=2

p

48

Pf�(n) = jg � �

 

p

48(j �

1

8

n

2

)

n

3=2

!#

= 0

uniformly in j for j = 0, 1, : : : , b

1

2

n

2

c, where �(x) = e

�x

2

=2

=

p

2�.

Let �(a; b) be the area under a random path from (0,0) to (a; b). Then

lim

a!1

b!1

"

�

a;b

Pf�(a; b) = jg � �

 

j �

1

2

ab

�

ab

!#

= 0

uniformly in j for jj �

1

2

abj � �

a;b

�, where � is a positive real number and �

a;b

=

p

ab(a+ b+ 1)=12.

Let w(n; j) be the number of lattice paths from (0,0) to (n; n) with area j which stay

below the line y = x for 0 < x < n. Let C

n

be the Catalan number (1=(n + 1))

�

2n

n

�

, and let

�

n

be the discrete random variable whose probability distribution is given by Pf�

n

= jg =

w(n;

�

n

2

�

� j)=C

n�1

. The author gives empirical evidence that suggests

P

8

<

:

a�

n

�

4

n

8C

n�1

�

n

2

�

� x

9

=

;

�

1

�(a)

Z

x

0

e

�u

u

a�1

du;

where a = 3�=(10 � 3�). Ira Gessel]
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[I'm sure there are misprints in MR | check against original paper | RKG.]

11. H.M. Taylor & R.C. Rowe, Note on a geometrical theorem, Proc. London Math. Soc.

13(1882) 102{106.

12. W.T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14(1962) 402{417;

MR 25 #1108.

[number of inequivalent rooted maps of 2n vertives is

2

n+1

(3n)!

n!(2n+ 2)!

and number of inequivalent Hamiltonian rooted maps of 2n vertices is

(2n)!(2n + 2)!

2n!((n+ 1)!)

2

(n+ 2)!

:]

W1. Toshihiro Watanabe & Sri Gopal Mohanty, On an inclusion-exclusion formula based

on the reection principle, Discrete Math. 64(1987) 281{288; MR 88d:05012.

[A1 �rst used the refexion principle to count paths in the plane, with unit steps in the

positive horizontal and vertical directions, that never touch the line x = y. Suppose that

lattice points p and q lie on the same side of this line. The number of \good paths" from p

to q is the total number of paths from p to q minus the number of \bad paths" from p to q

(those which touch the line). By reecting in the line x = y the segment of a bad path from

its starting point to its �rst meeting with this line, we �nd that the number of bad paths

from p to q is equal to the total number of paths from p

0

to q, where p

0

is the reexion of p

in x = y.

The authors show here how Andr�e's reexion principle can be used to solve the multi-

dimensional generalization of the ballot problem, which is equivalent to counting paths not

touching the hyperplanes x

i

= x

j

, i, j = 1, : : : , n. Here all reexions in the hyperplanes

x

i

= x

j

are used and there are n! terms in the resulting formula, with alternating signs,

corresponding to the n! permutations of the coordinates generated by the reexions in the

hyperplanes. A similar proof was given by Ze; the authors' proof describes in more detail the

successive reexions applied to a path. Ira Gessel]

W2. Toshihiro Watanabe, On a determinant sequence in the lattice path counting, J.

Math. Anal. Appl. 123(1987) 401{414; MR 88g:05015.

[The number of lattice paths connecting two given lattice points and staying between upper

and lower boundaries can be expressed by a determinant involving binomial coe�cients, due

to G. Kreweras. The recursive nature of this problem leads to a system of di�erence equations,

and the same type of solution (determinants involving polynomials of binomial type) applies

to a much larger class of operator equations. The author makes a new approach by associating

such determinants with random tableaux. He obtains determinant sequences which satisfy

a convolution identity similar to sequences of binomial type. The theory is then applied to

Hill's enzyme model, reproducing a result of Shapiro and Zeilberger. Heinrich Niederhausen]

[cf. K2, Hi, SZ]

W3. Toshihiro Watanabe, On a generalization of polynomials in the ballot problem, J.

Statist. Plann. Inference 14(1986) 143{152; MR 87j:05024.

[The ballot-polynomials p

m

(x) = ((x��m)=(x+m))

�

x+m

m

�

are She�er polynomials for the

backwards di�erence operator r. They are the solutions of the system of operator equations

rp

m

(x) = p

m�1

(x), uniquely determined by the initial conditions p

0

(x) = 1 for all x, and

p

m

(�m) = 0 for all m � 1. Using his earlier results on multivariate umbral calculus, the

author shows how to solve the n-dimensional system P

i

(�)s

m

(x) = s

m�e

i

(x) for all i = 1,

: : : , n, where fP

1

(�); : : : ; P

n

(�)g is a delta set and e

i

stands for the ith unit vector. The
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general solution for such a system is then specialized to give an n-dimensional version of the

ballot polynomials.

A generalized version of the classical ballot problem, attributed to Tak�acs, is solved by

the polynomials

x

x+

P

r

k=1

(�

k

+ 1)n

k

�

x+

P

r

k=1

(�

k

+ 1)n

k

n

1

; : : : ; n

r

�

:

The n-dimensional analog is obtained from a very general setting, leading to a so-called

\multinomial basic polynomial sequence". Heinrich Niederhausen]

W4. Toshihiro Watanabe, On the Littlewood-Richardson rule in terms of lattice path

combinatorics, Proc. First Japan Conf. Graph Theory & Appl., Discrete Math. 72(1988)

385{390; MR 90b:05010.

[This paper gives a proof of the Littlewood-Richardson rule for multiplying Schur functions

by using the characterization of Schur functions as collections of nonintersecting lattice paths.

The proof is based on Robinson's recomposition rule for transforming non-lattice paths into

lattice paths. Dennis White]

Ze. Doron Zeilberger, Andr�e's reection proof generalized to the many-candidate ballot

problem, Discrete Math. 44(1983) 325{326; MR 84g:05016.

[The n-candidate ballot problem is the problem of counting those lattice walks from the

origin to the point (m

1

; : : : ;m

n

), m

1

� m

2

� : : : � m

n

� 0, which never touch any of the

hyperplanes x

i

� x

i+1

= �1. The problem is equivalent to that of counting Young tableaux

of a given shape. D. Andr�e [A1] showed that for n = 2 the answer is

�

m

1

+m

2

m

1

�

�

�

m

1

+m

2

m

1

+1

�

as

follows:

�

m

1

+m

2

m

1

�

counts all paths from (0,0) to (m

1

;m

2

). If a path touches x

1

� x

2

= �1,

reect the initial segment up to the �rst such touch in this line to get a path from (�1; 1) to

(m

1

;m

2

). This gives a bijection between \bad" paths from (0,0) to (m

1

;m

2

) and all paths

from (�1; 1) to (m

1

;m

2

) which proves the formula.

The author generalizes this argument to obtain the determinant formula (due to Frobenius

and MacMahon) (m

1

+ : : : + m

n

)! det(1=(m

i

� i + j)!). Here a term corresponding to a

permutation � counts paths from (1��(1); : : : ; n��(n)) to (m

1

; : : : ;m

n

). The \bad" paths

are cancelled in pairs by reexion in the hyperplanes x

i

� x

i+1

= �1. A related approach,

using recurrences instead of reexion, was recently given by N. Linial [Li]. Ira Gessel]
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