CHAPTER 2

Square-Free Words and
Idempotent Semigroups

2.0. Introduction

The investigation of words includes a series of combinatorial studies with
rather surpsising conclusions that can be summarized roughly by the
following statement: Each sufficiently long word over a finite alphabe
behaves locally in a regular fashion. That is to say, an arbitrary word,
subject only to the constraint that it be sufficiently long, possesses some
regularity. This claim becomes meaningful only if one specifies the kind of
regularities that are intended, of course. The discovery and the analysis of
these urnavoidable reguluriries constitute a major topic in the combinatorics
of words. A typical example is furnished by van der Waerden’s theorem.

It should not be concluded that any sufficiently long word is globally
regular. On the contrary, the existence of unavoidable regularities leads to
the dual question of avoidable regularities: propesties not automatically
shared by all sufficiently long words. For such a property there exist
infinitely many words (finiteness of the alphabet is supposed) that do not
satisfy it. The present chapter is devoted mainly to the study of one such
property.

A square is a word of the form uu, with ¥ a nonempty word. A word
contains a squarse if one of its factors is a square; otherwise, the word is
called square-free. For instance, abcacbache contains the square acbach, and
abcacbabeb is square-free. The answer to the question of whether every
sufficiently long word contains a square is no, provided the alphabet has at
least three letters. As will be shown, the existence of infinitely many
square-free words is equivalent to the existence of a square-free word that is
infinite (on the right). The formalism of infinite words has the advantage of
allowing concise descriptions. Fusthermore, infinite iteration of a morphism
is a natural and simple way to construct infinite words, and this method
applies especially to the construction of infinite square-free words.

We start with the investigation of a famous infinite word, called after its
discoverers the word of Thue-Morse. This word contains squares, but it is
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cube-free and even has stronger properties. Then we turn to the study of
infinite square—free words. A simple coding of the Thue—Morse infinite
word gives an example of an infinite square-free word. We then establish a
eneral result of Thue that gives other infinite square-free words.

A more algebraic framework can be used for the theory of square-free
words. Consider the monoid M = A* U0 obtained by adjoining a zero to the
free monoid A*. Next consider the congruence over M generated by the

relations
uu~0 (u€Adt).

The fact that there exist infinitely many square-free words can be
rephrased: The quotient monoid M/~ is infinite, provided A has at least
three letters. A natural analogue is to consider the free idempotent monoid,
that is, the quotient of A* by the congruence generated by

uu~u (uedt).

We will show, in contrast to the previous result, that for each finite alphabet
A, the quotient monoid A* /~ is finite.

Many results, extensions, and generalizations concerning the problems
just sketched are not included in the text. They are stated as exercises or
briefly mentioned in the Notes, which also contain some bibliographic
remarks.

2.1. Preliminaries

Before defining infinite words, let us fix some notations concerning
distinct occurrences of a word as a factor in a given word. Let A be an
alphabet, w€ A™*. Let u be a nonempty word having two distinct occur-
rences as a factor in w. Then there are words x, y, x', y'€ A* such that

w=xuy=x'wy’, x#x'.

These two occurrences of u either overlap or are consecutive or are disjoint.
More precisely, we may suppose |x| <|x’|. Then three possibilities arise
(see Figure 2.1).

(i) |x’| > |xu|. In this case, x’= xuz for some zEA™, and w= xuzuy’.
The occurrences of u are disjoint.
@ |x'| = |xu|- This implies that x’'=xu, and consequently w= xuuy’
contains a square. The occurrences of u are adjacent.
(iii) |x’| <|xu|. The two occurrences of u are said to overlap. The
following lemma gives a more precise description of this case.
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Figure 2.1. Two occurrences of u in w: (i) disjoint occurrences, (i) adjacent occursences,
(1) overlapping occurrences

LeMMA 2.1.1. Let w be a word;, then w contains two overlapping occurrences

of a word u 1 iff w contains a factor of the form avava, with a a letter and v
a word.

Proof. Assume first w = xuy = x'uy’, where the occurrences of u overlap,
Then | x| <{|x’| <|xu|<|x'u|. Consequently

x'=xs, xu=x'z, x'u= xut
for some nonempty words s, z, t, whence
u=sz=7t. (2.1.1)

Let a be the first letter of s, and therefore also of z by Eq. (2.1.1). Set
s=av, z=az', Then by (2.1.1) u = avaz’ and

w = xsuy’ = xavavaz’'y’.

Conversely, if avava is a factor of w, then u=ava clearly has two
overlapping occurrences in w. [ |

A word of the form avava, with a a letter, is said to overlap. Thus, according
to the lemma, a word has two overlapping occurrences of a word iff it
contains an overlapping factor.

We now turn to the definition of infinite words. Let A be an alphabet. An
infinite word on A is a function

a:N- 4.
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we use the following notation

a=a(0)a(l)---a(n)---,

and alsO
a:aoal.. .a".. *y

where a, =a(n) is a letter. The left factor of length k=0ofais
a*'=g a,---a,_,.

For u€ A*, we write u<a whenever #=al*! for k =|u|. Then clearly
a = ub where b(m) = a(m + k) for all m=>0. A factor OLlf is any word in 4*
that occurs in a. In the sequel, by a word we always mean a finite word.

Infinite words are useful when one deals with properties P of (finite)
words having a special feature, namely that P(xuy) implies P(u) for all
words x, #, y. In other terms, if Lp is thc set of words for which P holds,
then L, contains the factors of its elements. Note that this holds for the set
of square-free words. When P satisfies this condition we say that P is stable
for factors. Given an infinite word a, we say that a has the property P if each
factor of a satisfies P. Thus it is meaningful to speak about infinite
square-free words.

LemMa 2.1.2. Let A be a finite alphabet and let P be a property of elemenis
of Athat is stable for factors. Then the two following conditions are equivalent:

(i) The set Lp of words w in A such that P(w) is infinite.
(i) There exists an infinite word on A with property P,

A particular case is the assertion mentioned in the introduction, namely
that the existence of infinitely many square-free words is equivalent to the
existence of an infinite square-free word.

Proof. Clearly (ii) implies (i). Conversely, if L = L, is infinite, the finite-
ness of A implies that infinitely many words in L start with a same letter,
say ap. Set Ly =LNayA*. Assume by induction that there are letters
4y, 0y,...,0, such that L, = LNa,a,---a,A* is infinite. Then among the
sets (LNagya,;- - a,bA*), , at least one is infinite. Choose one letter a,,, |
such that LNaya,---a,a,. ,A* is infinite,

Thus there exists a sequence ag, 4,,...,a,,... of letters in 4 such that
LNaya,-- - a,A* is infinite for each n =0, Define a: N— 4 by a(n)=a,.
Then each factor of a is a factor of a word in L, thus is itself in L. [ ]

Sometimes a simpler method can be applied to construct infinite words
from finite ones. (Note that the proof of the previous lemma gives such a
construction.)
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Let wy,wy,...,W,,... be a sequence of words in A* of unbounded lengy,
such that each w, _, is a left factor of w,. Then define an infinite word a o
A by

alll=w .,  k=|w]|, n=0.
The definition is consistent because a'*!is a left factor of all w,,, m = n. The
infinite word defined in this way is called the limit of (w,),., and i
denoted by
a=limw,.
Consider the following important special case. Let
a: A* - A*

be a morphism verifying

(i) a(a)#*1 for a€ A, (2.1.2)
(ii) there exists a letter a, such that

a(ay)=aou forsome u€A™, (2.1.3)

Then for each n =0,

" (ay) =« (aou) :a"(ao)a"(u).

Thus each a”(a,) is a proper left factor of a""'(a,), and therefore the limit
of the sequence (a"(ay)), o exists. We denote this limit by a“(a,):

a“’(ao) = lima"(ao),

and we say that it is obtained by iterating « on a,,.
With these notations a can be extended to infinite words by setting, for
b=byb, b,

a(b) = a(by)a(b,) - - a(b,)- - - .
Condition (i) ensures that a(b) is indeed an infinite word. Observe that
a(a)=a for a=a“(a,). (2.1.4)

In other terms, a is a fixed point for a. Indeed set b= a(a). For each left
factor u of a, the word a(u) is a left factor of a(a). Thus each a"(a,), n>1,
is a left factor of b, and b starts with a, by (ii). Consequently b= lim a*(ay)
= a; this proves Eq. (2.1.4).
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7.2. The Infinite Words of Thue-Morse

In this section a special infinite word is defined and its properties are
studied. The main result is that this infinite word has no overlapping factor.
In this section 4 denotes the fixed two-letter alphabet 4 = {a, b}. Define

a morphism
B A* > A
by
p(a)=ab,  p(b)=ba.

Then g satisfies conditions (2.1.2), (2.1.3) for a,=a and also for a,=b.
Consequently, iteration of p on a and on b yields two infinite words

t=p*(a), t=p*(d).

By definition, t is the infinite word of Thue—~Morse. Computation gives

p(a)=ab p(b)=ba
p*(a) = abba #*(b) = baab
p’(a) = abbabaab ¢>(b) = baababba

t = abbabaabbaababbabaababbaabbabaab - - -
t = baababbaabbabaababbabaabbaababba - - -

There are several properties relating the words p”(a), g"(b), n= 0. Consider
the morphism

Wi W

defined by
a=b, b=a
Thus w is obtained from w by replacing each a by b and conversely. Of
cCourse w =w.
PROPOSITION 2.2.1. Define uy=a, v, =b and forn=0

Upp = U0, Opg1 = Ol

Then for alln=0

@) u,=pa), 0, =W(b).
(i) v,=u,, u,=0,
(ili) u,,, v,, are palindromes and iy, ) = Uy,
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Proof The proofs are by induction, The initial step is always clear,
Formula (i) follows from

un+l = un U :p'"(a)p'"(b) :p'"+l(a)’
1)n+l = Dnun :p'n(b)p’"(a) :p'"+l(b);

next (ii) follows from

Un+1 = Dnun = unvn :unvn: un+l’ On+1 = un+l = un+l;

finally for (iii), observe that for k>0

= (Upm 0—y) = Ope e~y
If £ is odd (resp. even) this implies
= O gy = Op (TESP. B = Uy O = ). u
There exists an interesting definition of
t=tot, -t -

that is independent of the morphism y. First let, for n=> 0, d,(n) be the
number of 1’s in the binary expansion of n. Then we have the following
proposition.

PROPOSITION 2.2.2. For each n=0,

":{a ifdy(n)=0 mod2 (22.1)

b ifdy(n)=1 mod2

Proof. Note that by (2.1.4) we have
t=p(t) =p(to)n(t,) - p(t,) - ‘
and therefore p(t,) = t,,t5,; for n=0. By the definition of g, this implies
b=ty =t (n=0). (22.2)

Formula (2.2.1) holds for n=0. Thus let n>0. If n=2m, then t,=1t,, by
(22.2), and d,(n)=d(m). Thus (2.2.1) holds in this case. If n=2m +1,
then ¢, =1t, and d,(n)=1+d,(m)mod2. Therefore (2.2.1) holds in this
case t00. u
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The inspection of t shows that t is not square-free. However, we will
prove the following:

THEOREM 2.2.3. The infinite word t has no overlapping factor.
COROLLARY 2.2.4. The infinite word t is cube-free.

The proof of the theorem uses two lemmas.

LEMMA 2.2.5. Let X= {ab, ba}; if x € X*, then axa & X* and bxb & X*.

Proof. By induction on |x|. If |x|=0, then indeed aa,bb & X*. Let
xE X*, x5 and suppose ¥ = axa€ X* (the case bxb & X* is similar). Then

u=xx, " x,, with x,,...,x,E X; consequently x, = ab and x, = ba. Thus
u=abyba with y = x,- - - x,_,E X*, But now by induction x = byb is not in
X*, contrary to the assumption. ) [ |

LEMMA 2.2.6. Let wE A™. If w has no overlapping factor, then p(w) has no
overlapping factor.

Proof. Assume that g(w) has an overlapping factor for some w& A*. We
show that w also has an overlapping factor.
By asumption, there are x, v, yE A*, cE 4 with

p(w) = xcocoey

Note that |cvcve| is odd, but p(w)E X* with X = (ab, ba}: therefore |u(w)|
is even and |xy| is odd. Thus

* Either: | x| is even, and x, cocv, cy € X*,
* Or: |x] is odd, and xc, vcve, y € X*,

This implies that |v| is odd, since otherwise we get from coco € X* (resp.
veoe € X*) that both o, coc are in X*, which contradicts Lemma 2.2.5.

In the case |x| is even, it follows that cv is in X* and w=rsst with
w(r)=x,p(s)=cv, p(t) = cy. But then s and ¢ start with the same letter ¢
and ssc is an overlapping factor in w.

In the case |x| is odd, similarly vc € X*, and w = rsst with p(r) = xc, p(s)
=uvc, p(t) = y. Here r and s end with ¢ and css is an overlapping factor in w.

[ ]

Proof of Theorem 2.2.3. Assume that t has an occurrence of an overlap-
ping factor. Then it occurs in a left factor u*(a) for some k>0. On the
other hand, since a has no overlapping factor, by iterated application of
Lemma 2.2.6 no p"(a)(n = 0) has an overlapping factor. Contradiction. W
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2.3. Infinite Square-Free Words

The infinite word of Thue-Morse has square factors. In fact, the only
square-free words over two letters a and b are

a,b,ab, ba,aba, bab.

On the contrary, there exist infinite square-free words over three letters,
This will now be demonstrated.

As before let A={a, b}, and let B ={a, b, ¢}. Define a morphism
8: B* - 4*
by setting
5(¢) = a, 8(b) = ab, da) = abb

For any infinite word b on B,
3(b) =8(by)8(b,)---8(,)- -

is a well-defined infinite word on 4 starting with the letter a. Conversely,
consider an infinite word a on 4 without overlapping factors and starting
with a. Then a can be factored as

A= Yoy, Yy (2.3.1)

with each y, € {a, ab, abb} = 8(B). Indced, each a in a is followed by at
most two b since bbb is overlapping, and then followed by a new a.
Moreover, the factorization (2.3.1) is unique. Thus there exists a unique
infinite word b on B such that 8(b) =a.

THEOREM 2.3.1. Let a be an infinite word on A starting with a, and without
overlapping factor, and let b be the infinite word over B such that 8(b) = a;
then b is square-free.

Proof. Assume the contrary. Then b contains a square, say uu. Let d be
the letter following uu in one of its occurrences in b. Then 8(uud) is a factor
of a. Since 8(u) = av for some vE A* and §(d ) starts with a, a contains the
factor avava. Contradiction. ]

By applying the theorem to the Thue-Morse word t, we obtain an infinite
square-free word m over the three letter alphabet B such that §(m) = t. This
infinite word is

m = abcacbabcbacabcacbacabebabecacbabcebacabcbabe- - -



2.3 Infinite Square-Free Words 27

Note that the converse of Theorem 2.3.1 is false: There are square-free
infinite words b over B such that 8(b) has overlapping factors (see Problem
2.3.7). There are several alternative ways to obtain the word m. We quote

just one.

PROPOSITION 2.3.2, Define a morphism ¢. B* — B* (with B={(a, b, c}) by
p(a)=abe, p(b)=ac, p(c)=b. Then m — ¢“(a).

The proof is left as an exercise.

There exist other constructions that allow one to obtain more systemati-
cally infinite square-free words. We now present one of them. In the sequel
of this paragraph, 4, B-- - are again arbitrary alphabets.

First we introduce a new notion. A morphism a: A*— B* is square-free if
a(A4)= {1} and if a(w) is a square-free word for each square-free word w.
Thus a square-free morphism preserves square-free words. The first condi-
tion is present simply to avoid uninteresting discussions on the square-free-
ness of the empty word. A square-free morphism « from 4* into itself
produces by iteration only square-free words, when one starts with a
square-free word, or simply with a letter. Thus a square-free morphism
usually gives an infinite set of square-free words. Note that the morphism ¢
of Proposition 2.3.2 is not square-free since

¢(aba) = abcacabc

contains a square. The following theorem gives sufficient conditions for a
morphism to be square-free.

THEOREM 2.3.3. Let a: A*— B* be a morphism with a( A) # {1} such that

(1) a(u) is square-free for each square-free word of length <3,
(i1) No a(a) is a proper factor of an a(b) (a, b in A).

Then « is a square-free morphism.

Proof. First we note that a(a) # 1 for each a € 4; otherwise if a(a) =1 let
b€ A bea letter with x = a(b) # 1. Then bab is squarc-free, but a(bab) = xx
violates condition (i). Next a is injective on A: if a(a) = a(b), then a(ab) is
a square, consequently a =5 by (i). Furthermore, X = a(4) is a biprefix
code by (ii). Now we prove the following claim.

Claim: If (¢ ay:+ - a,)=xa(a)y for a,a,€ 4, x, yE B*, then a=a; for
some j,x=a(a, *-a;_y), y=a(a;, - a,).
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The claim is clear for n =1 by (ii). Arguing by induction on n, assume
n>1If

‘xa(a)| = |a(ala2' )|
or
la(a)y|<|ala, -~ a,)l,

the claim follows by the induction hypothesis. Thus, we may assume that
both

|xa(a)l > |a(a1a2' "t an—-l)l
and
|a(@)y| > la(ay - a,)].

Consequently, y is a proper right factor of a(a,), and x is a proper left
factor of a(a,):

a(a,) = xu, a(a,)=vy
for some u,vin B, and

a(a)=ua(ay) - ala,_,)v.

By (i), this implies n =2 and a(a) = uv.
The words a(a,a) = xuuv and a(aa,) = uvvy are not square-free. Accord-
ing to (i), a, =a = a,, whence

XU = uv=vy.

The first equation shows that |x| =]v|. In view of xu = vy, it follows that
x = v. Consequently vu = uv. By a result of Chapter 1, a(a)=wuv is not a
primitive word and thus is not square-free. This contradicts condition (i)
and proves the claim.

Now we prove the theorem. Assume the conclusion is false. Then there is
a shortest square-free word w& 4 such that a(w) contains a square, say

a(w)=yuuz  withu=1.
Set w=a,a, - a,, v;= a(a,) (a; € A). By condition (i), one has n = 4. Next

y 1s a proper left factor of v, and z is a proper right factor of v, since w was
chosen shortest. Also yu is not a left factor of v, since otherwise v,v, is a
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factor of u, hence of v;, violating condition (ii). For the same reason, uz is
pot a right factor of v,. Thus there is an index j (1<j<n) and a
factorization

Dj:St

such that (see Figure 2.2(1))

YU=0p 0y, UZ T 0,

We may assume s 71, since otherwise j—1%1 and we can replace v; by
01 Next, define y” and 2z’ by
v, =y, u,=772
As mentioned before, y” and z’ are nonempty. Further (see Figure 2.2(ii))
u=y'v,- S0,

U=t0,, 0,2, (2.3.2)

Now, we derive a contradiction by showing that w contains a square.
Consider first the case where yt =1. In this case, v, = )/, v; =5, whence by

Egs. (2.3.2)

U= 0,0y 00, = V" 0, 2.
J J J

a(w) /‘11\/\ /\/‘1’\/\ /\/“’n\

(ii)

Figure 2.2. Occurrence of uu in a(w): (i) localization of uy, (ii) double factorization of u,
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Since a( A) is a prefix code, this implies v; = ;4 p,- - 30| = Uy, U, =2,
and since v, = z' < v,, we have v, =v;. Thus w =(a," - - a,)* is a square.
Next consider the case yt # 1. Multiplying (2.3.2) by s and z, and by y and

t, gives

suz=(sy ) vy - 0, (52) = 004, 0,10, (2.3.3)

yut =00, 0,0, = (yt)o,4p v, ((21) (2.3.4)

Consider Eq. (2.3.3) first. Then the claim can be applied to each of the
0,---,0;_;. Consequently a,"-- a,_, is a factor of a;a;,,---a,_,a,. Since
s#1,a,---a,, is neither a left nor a right factor of a;,...,a,; thus
a, --a;_isafactorofa;,, --a, ., and

pay -4, 4 =85, """ Ap—y (2.3.5)
for some p, g€ A*. Now consider Eq. (2.3.4). As before, a;,,- - a,.,is a

factor of @, - - a;, and since neither yz nor 2z’ is the empty word, a;..,--- a
is a factor of a,- - - a;_,. Thus

n—1

Py @, §=ay - a; (2.3.6)

for some p, g€ A*. By (2.3.5) and (2.3.6),

PPay - @; \qq=pa;, " @y d=ay " a;,

showing that p = 7 = ¢ = g =1. Thus setting

x:a2"'a'—l_aj+l"'a

J n—l

we have
w=a,xaxa, (2.3.7)
whence by (2.3.3) and (2.3.4)
st=vj=sy', z'z=vp,=s2z, w=v,=yt

Thus the word
(a,a;a,) =v,00,= ytstsz

is not square-free. By condition (i), a,a;a, is not square-free. Therefore
a,=a; or a;=a,. In view of (2.3.7), w contains a square. This yields the
contradiction. ]
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Example. A tedious but finite computation shows that the morphism a:
A* — A* with A= (a, b, c} defined by

a(a)=abcab,  a(b)=acabch,  «(c)= acbcach

fulfills the two conditions of Theorem 2.3.3 and therefore is a square-free
morphism.

24. Idempotent Semigroups

Let A be an alphabet having at least three letters. Then there are infinitely
many square-free words in 4*. As already mentioned in the introduction,
this fact can be rephrased as follows. Let 4* U0 be the monoid obtained by
adjoining a zero to A, and consider the congruence ~ generated by

uu~0, ucd"r.

Each square-free word constitutes an equivalence class modulo this con-
gruence. Consequently the quotient monoid A* U0/ ~ is infinite.

There is another situation where square-free words can be used. Let
m, n=>2 be fixed integers and consider the congruence = over A* generated
by

um=u", uE A4*. (24.1)
Once more, each square-free word defines an equivalence class, and thus the
monoid 4% /= is infinite. In fact, this result also holds for a two-letter
alphabet (Brzozowski, Culik II, and Gabrielian 1971).

These considerations can be placed in the framework of the classical
Burnside problem (originally, the Burnside problem was formulated for
groups only, but it is easy to state for semigroups also): Is every finitely
generated torsion semigroup finite? (A torsion semigroup is a semigroup such
that each element generates a finite subsemigroup.) We have just seen that
the answer is negative in general, and this is due (o the existence of infinitely
many square-free words. For groups, the answer also is negative (see
Chapter 8 in Herstein 1968). Moreover, the groups of exponent n —that is,
groups where each element has exponent n—are in general infinite (see
Adjan 1979). The proof uses the fact that there are infinitely many square-
free words. For amother result on the Burnside problem, see Chapter 7,
Section 7.3.

In one special case, surprisingly, the answer is positive. Let 4 be an
arbitrary finite alphabet, and consider the congruence ~ generated by the
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relations
wW~w, WE A*. (242
The quotient monoid
M= A%/~

is called the free idempotent monoid on A; indeed, any element in M is
idempotent (mm=m), and any finitely generated idempotent monoid is
easily seen to be a quotient of a free idempotent monoid.

THEOREM 2.4.1 (Green—Rees). The free idempotent monoid on A is finite
and has exactly

é:o () 1 I (k—i+1)* (2.4.3)

<isk

elements, where n = Card( A).

The numbers (2.4.3) are growing very rapidly. For n=0,1,2, 3,4, they arc
1,2,7,160,332381.

Before starting the proof, it will be interesting to note the difference
between the relations (2.4.1) and (2.4.2). For the congruence defined by
(2.4.1), two distinct words can be congruent only if both contain at least one
pth power, for p=min(m, n). On the contrary, two distinct square-free
words may be congruent for ~. Indeed, the defining relations allow
introduction of squares and then dropping of other ones. We give now a
nontrivial illustration of this situation by verifying that x ~y with x =
bacbcabe and y = bacabe. Both x and y are square-free words, and they are
also equivalent. Indeed, note first that with ¥ = abcaca, we have (boldfaced
factors are those to be reduced) uy = abcacabacabe ~ abcacabe ~ abeabe ~
abc whence x = (bacbc)abe ~ bacbcuy = vy for v = bacbcu.

Next, for r = beabacbcacbebac, we have

xr = bacbcabebeabacbceacbebac
~ bacbcabacbcacbcbac
~ bacbcacbebac ~ bacbebac ~ bacbac ~ bac

whence
y = bacabc ~ xrabc ~ xs
with s = rabc. Finally,
X~ ~OPY ~ XY~ XXS ~ XS~ Y,

which proves the claim.
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Proof of Theorem 2.4.1. Recall from Chapter 1 that for we 4%,
alph(w) = {a€ 4||w]|,# 0}

[tis clear that x ~ y implies alph(x) = alph(y). First we prove the following
claim:

Claim (i). If alph(y) C alph(x), there exists u such that x ~ xyu.

This is indeed clear if y =1. Assume |y| =1, and let y = y’a with a€ 4.
By induction, there is a word u’ such that x ~ xy’u’. Furthermore, a€
alph(x), whence x = zaz’. Thus for u = z"y's’

xyu=zaz'y'az’y'u' ~ zaz'y'v’ = xy'u’ ~ x.

This proves Claim (i).

For x€ A", let x’ be the shortest left factor of x such that alph(x’)=
alph(x). Setting x” = pa for some p € 4*, a€ A4, we have alph(p) = alph(x)
—{a}. Symmetrically, the shortest right factor x” of x with alph(x”)=
alph(x) has the form x” = bq for some b€ 4, g € A* and alph(q) = alph(x)
—{b}. Thus to x there is associated a quadruple ( p, a, b, ). We write this
fact x =(p, a, b, q), and prove:

Claim (ii). If x =(p, a, b, q), then x ~ pabq.

Indeed let, x = pay = zbq. Since alph(y) C alph(x) = alph( pa), there is
by (i) a word u such that pa~ payu = xu. Since alph( pa) Calph(bq), the
dual of (i) shows that there is a word v with bg ~ vpabg = vX, where
%= pabq. This implies that

X = pabq ~ xubq = xw
for w=ubq and
x=2zbq~ zoX=1X
for t = zv. Whence
X~ X ~ XX ~ XK ~ XxXW ~ XW ~ X.
This proves (i1).

In view of Claim (ii), we can show that M is finite as follows. Assume that
the finiteness holds for alphabets that have fewer elements than 4. If
x=(p,a, b, q), then Card(alph(p)) < Card(4) and Card(alph(q)) <
Card( A), thus there are only finitely many ps and ¢s modulo ~. Since there
are only finitely many letters, M itself is finite. In order to compute the
number of elements in M, we prove the following equivalence.
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Claim (iii). Let x=(p,a,b,q) and x’=(a’,a’,b’,q’); then x~x' if
pNPr’ a:a,,b:bl, q~q/.

Suppose first that p~ p’, a=a’', b=1¥', g~ q'. Then pabg~ p’a’t’q’ ayy
x ~ x’ by (ii). Suppose now x ~ x’. One can assume that x = afv, x'= af?
for some words «, B, yE A*. We distinguish two cases.

Case 1. |a8| > p|. Setting x = pay, we have
af = pat, zZ=ty
for some 7 in A*. Then x’= patBy and alph( p) = alph(x)—{a} = alph(x)
— {a}. Thus by definition p’= p and a’=a.

Case 2. [aB| <] p|. Setting x = pay, there is a word s € A* such that
p=afs, Y =sag.

Then x’ = af3?sag and alph(af%s) = alph(afs) = alph(x)—{a} = alph(x’)~
{a}. Thus by definition p’ = af8%s whence p’~ p,a=a’'.

The relations 5 =b’, ¢ ~ ¢’ are proved in a symmetric manner.

We now are ready to compute the number of elements in M = A* /~. Let
7: A* > M be the canonical morphism and let, for B C 4,

B={x€ 4*|alph(x) = B}.

Then A* is the disjoint union of the sets B, BC A. Since x ~ x’ implies
alph(x) = alph(x"), each B is a union of equivalence classes mod ~ , whence
M is the disjoint union of the sets 7(B), B C 4.

In view of Claim (iii), if B %@, there is a bijection

7(B)~> U (B={a})x {a} x {6} Xn(B={h})

a,be A
Thus if Card(B) =k =1, and setting ¢, = Card(n(B)), we have
=k},

Clearly ¢, =1, whence

k .
o= I (k—i+ 1)~

i=]

Consequently, M being the disjoint union of the #(B),

_ g (n
Card M = kgo(k)ck.

This completes the proof. [ ]
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Notes

_Axel Thue was the first author to investigate avoidable regularities,
éé‘ ecially words without overlapping factors and square-free words. His two
papers (Thue 1906, 1912) on this topic contain the definitions of the words t
and m, and the proofs of Theorems 2.2.3 and 2.3.1 as reported here.
Theorem 2.3.3 is a slight improvement, due to Bean, Ehrenfeucht, and
McNulty (1979), of a result of Thue. The infinite word t was discovered
iddependently by Morse (1921, 1938), the square-freeness of m was proved
by Morse and Hedlund in 1944, Braunholtz in 1963, and Istrail in 1977.
Many other papers have been written on infinite square-free words or
related topics (Arson 1937; Dean 1965; Gottschalk and Hedlund 1964;
Hawkins and Mientka 1956; Leech 1957; Li 1976; Pleasants 1970;
Shepherdson 1958; Zech 1958; Dekking 1976; Entringer, Jackson, and
Schatz 1974; Ehrenfeucht and Rozenberg 1981; Main and Lorentz 1979;
Crochemore 1981). As noted by Hedlund in 1967, some of the work done
later is already contained in Thue’s papers, which were forgotten for a long
time.

.One of the problems raised in Thue’s 1912 paper that has been signifi-
cantly developed concerns the distance between two occurrences of a factor
in a word. Indeed, an infinite word a is square-free iff whenever xyx is a
factor of a with x # 1, then y # 1. Thus one may define the number

e,(x)=min{] y|: xyx is a factor of a}

and look for lower bounds for e,(x). Thue gives an infinite word a over k
letters (for each k = 3) such that e,(x)= k —2 for all x occurring twice in a.
F. Dejean (1972) improves this inequality. She constructs an infinite word a
over three letters such that

eq(x) =3]x|

for all factors x occurring twice in x. She also shows that this lower bound is
optimal. Pansiot, in a forthcoming paper, handles the case of four letters.
For more than four letters, the sharp value of the lower bound remains
unknown.

Square-free morphisms and more generally k th-power-free morphisms are
investigated in Bean, Ehrenfeucht and McNulty 1979. Characterizations of
square-free morphisms are given in Berstel 1979 and Crochemore 1982.
Bean et al. introduce the very interesting concept of so-called avoidable
patterns, which are described as follows:

Let E and A4 be two alphabets. For easier understanding, E will be called
the pattern alphabet, a word in E™* is a pattern. Letw = e e,--- e, (¢,€E)
be a pattern. A word u in 4™ is a substitution instance of w iff there is a
nonerasing morphism A: E*- A* such that u = A(w). Equivalently, u=
X)X5° -+ X, with x),...,x,E A" and with x, = x; whenever ¢, =e,. Setting
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for example E = {e}, 4 = {a, b, ¢}, the word u = abcabc is a substitution iy.
stance of ee.

A word u in A~ avoids the pattern w in E* iff no factor of u is 4
substitution instance of w. Thus for example u € 4™ avoids the pattern ee if;
u is square-free, and u avoids ee’ee’e iff u has no overlapping factor. Given 4
pattern w in E*, w is called avoidable on A if there exist infinitely mapy
words z in A" that avoid w. The existence of infinite square-free words, apg
infinite words without overlapping factor can be rephrased as follows: The
word ee is avoidable on a three-letter alphabet, the word ee’ee’e is avoidable
on a two-letter alphabet. This formulation, of course, raises the question of
the structure of avoidable patterns. Among the results of the paper of Beay
et al., we report the following: Let n=Card E; then there is a finite
alphabet 4 such that every pattern w with |w|=2" is avoidable on 4.

Another interesting extension of square-freeness is abelian square-free-
ness, also called strong nonrepetitivity. An abelian square is a word wy’,
such that " is a rearrangement of u, that is |u|, = |u’|, for each letter a. A
word is strongly nonrepetitive if it contains no factor that is an abelian
square. Calculation shows that over three letters, every word of length =8
has an abelian square. On the other hand, Pleasants (1970) has shown that
there is an infinite strongly nonrepetitive word over five letters. This
improves considerable the previously known bound of twenty five letters
given by Evdokomov in 1968. The case of four letters is still open. For
related results, see Justin 1972, T. C. Brown 1971, and Dekking 1979.

Concerning idempotent semigroups, Theorem 2.4.1 is a special case of a
more general result also due to Green and Rees (1952). Let r=1 be an
integer. Then the two following conditions are equivalent:

(i) Any finitely generated group G such that x" =1 for all x in G is finite
(ii) Any finitely generated monoid M such that x"*!'=x for all x in M is
finite.

The case considered in Theorem 2.4.1 is r =1, and in this case the group
G is trivially finite. For a proof of the theorem, see Green and Rees 1952 or
Lallement 1979. Note that there are integers » such that condition (i), and
consequently (ii), does not hold; r = 665 is such an integer (see Adian 1979).
Moreover, Theorem 2.4.1 was generalized by Simon (1980) who proved the

result that for a finitely generated semigroup S the following three condi-
tions are equivalent:

@) S is finite.
(i) S has only finitely many nonidempotent elements.
(i}) There exists an integer m such that for each sequence (s,,...,s,,) in §
there exist i, j (i< j) such that s;- - - s; 1s idempotent.



