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Lecture 2
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The probability of generating a group, part 2

Some notation from last time:

Let G be a group. We will write ϕk(G) for the probability that k random elements of G generate the entire
group. (We assume that all the elements are chosen independently, and each group element is equally likely.)
For example, ϕ1(G) 6= 0 if and only if G is cyclic.

We also define `(G) as the length of the longest subgroup chain in G; that is, `(G) is the largest ` such that

1 = G0 ( G1 ( · · · ( G` = G.

Yesterday1 we proved that, if |G| ≤ 2r (or even if we only have `(G) ≤ r), then ϕk(G) ≥ ϕk(Zr
2).

Today, we’ll estimate ϕk(Zr
2). We argued last time that this was the worst possible case (that is, ϕk(G) ≥

ϕk(Zr
2) whenever |G| ≤ 2r), so this immediately leads to a lower bound for ϕk(G) . . .

Theorem 1 Let G = Zr
2. Then ϕr(G) > 1

4 , ϕr+1(G) > 1
2 , and in general ϕr+j(G) > 1 − c

2j for some
constant c.

To make our estimate, we’ll use two famous identities of Euler (1748):
∞∏

j=1

(1− zj) = 1 +
∞∑

m=1

(−1)m(z
m(3m−1)

2 + z
m(3m+1)

2 )

and
∞∏

j=0

1
1− tzj

= 1 +
∞∑

m=1

tm

(1− z)(1− z2) · · · (1− zm)
.

Proof of Theorem 1

One way of visualizing ϕk(Zr
2) is as follows. Consider Zr

2 as an r-dimensional vector space over the two-
element field Z2. Then we’re asking for the probability that a given set of k vectors span the whole space of
r dimensions. Or, put in another way,

k

{
a1, a2, · · · , ar

b1, b2, · · · , br

· · ·
z1, z2, · · · , zr


︸ ︷︷ ︸

r
1Last Friday, actually, but it feels like only yesterday.

1
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if we make a matrix out of our k vectors, what is the probability that matrix has rank r? — Just when all
r of the columns are independent, of course.

k

{
a1 a2 ar

b1 b2 br

...
...

...
...

z1 z2 zr


︸ ︷︷ ︸

r

The probability that the first column is nonzero is (1 − 1
2k ). The probability that the second column is

linearly independent of the first row is (1− 1
2k−1 ). In general, the probability that the j-th column is linearly

independent of the previous j − 1 columns is (1− 2j−1

2k ), and hence the probability that all the columns are
linearly independent is ϕk(Zr

2) =
∏r

j=1(1−
2j−1

2k ).

Now, we already know that Zr
2 cannot be generated by fewer than r elements, and indeed ϕk(Zr

2) = 0 for
k < r, according to the formula we’ve just derived. How about for k = r? Then we have the estimate

ϕr(Zr
2) = (1− 1

2r
)(1− 1

2r−1
) · · · (1− 1

2
)

>
∞∏

j=1

(1− 1
2j

)

= 1− 1
21

− 1
22︸ ︷︷ ︸

= 1
4

+
1
25

+
1
27

− 1
212

− 1
215

+ · · ·︸ ︷︷ ︸
>0

>
1
4
.

Did you notice how we used one of Euler’s famous identities in the third line?

One down, two to go. For ϕr+1(Zr
2), we just mimic the previous argument.

ϕr+1(Zr
2) = (1− 1

2r+1
)(1− 1

2r
) · · · (1− 1

22
)

>
∞∏

j=2

(1− 1
2j

)

= (1− 1
2
)−1

∞∏
j=1

(1− 1
2j

)

= 2
∞∏

j=1

(1− 1
2j

)

> 2 · 1
4

=
1
2
.

We’ll use a different estimate for the general case.
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ϕr+k(Zr
2) = (1− 1

2r+k
)(1− 1

2r+k−1
) · · · (1− 1

2k+1
)

>
∞∏

j=1

(1− tzj) (let t =
1
2k

and z =
1
2
)

= (1 +
∞∑

m=1

tm

(1− z)(1− z2) · · · (1− zm)
)−1

Now, to get a lower bound on this, we need an upper bound on the quantity in parentheses. The denominator
of the sum might look familiar — it’s just ϕm(Zm

2 ) = (1−z)(1−z2) · · · (1−zm), which we already determined
was at least 1

4 .

1 +
∞∑

m=1

tm

ϕm(Zm
2 )

< 1 + 4
∞∑

m=1

tm

< 1 + 4
t

1− t

= 1 + 4
1
2k

1− 1
2k

< 1 + 4
1
2k

1
2

= 1 +
8
2k

Hence
ϕr+k(Zr

2) >
1

1 + 8
2k

> 1− 8
2k

.

You can, of course, make a better estimate.

Random Group Processes: Loose Ends

We can turn this around, and ask what the probability is that the elements we pick don’t generate a
group. Let δ(t) = 1 − ϕt(G), where G is (as usual) a finite group. Obviously δ(t + 1) ≤ δ(t), and in
general δ(t + s) ≤ δ(t)δ(s) since we’re picking each element independently. So δ is submultiplicative, it
decays exponentially2, and if you’ve been paying attention you should be able to estimate when δ first drops
below 1

2 .

Yet another way of posing this question, as you may recall from last lecture, is to ask how many elements
we have to pick to generate G. Recall that we defined the stopping time τ to be the number of elements we
have to pick, one at a time, to generate G. Of course, it depends on which elements we pick, but we can
estimate it.

Proposition 2 E(τ) =
∑∞

τ=0 δ(τ).
2The exponent turns out to be the smallest index of a proper subgroup of G.
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Proof:
∑∞

t=0 δ(t) =
∑∞

t=0 Pr(τ > t) =
∑∞

t=0 t · Pr(τ = t) = E(t).

We know E(τ) in terms of δ, and we know δ in terms of ϕk(G), and we have the estimate ϕk+r(G) > 1− 8
2k

from above. So we can estimate E(τ):

Corollary 3 For any group G, E(τ) ≤ `(G) + C, where C is a constant.

Proof: The worst possible case for a given r = `(G) is Zr
2, and in that case, ϕk+r(H) > 1− 8

2k , as we proved
earlier today. So δm+k(G) is less than 8

2k , and E(τ) < r +
∑∞

k+1
8
2k = r + 8.

Next time . . .

Babai proved that two random elements of Sn generate either An or Sn, with probability 1− 1
n + O( 1

n2 )3.

Tomorrow we’ll prove that, using classification of the finite simple groups.

(Where does the 1
n come from?, you may ask. Well, let’s suppose that the two permutations never mix some

of the n elements — that they permute k elements, and the other n− k separately. Specifically, if they both
fix a point, that gives rise to our 1

n term. (Only one pair in n2 fixes a given point under both permutations
— but there are n points to choose from. Hence 1

n .))

3Dixon proved the weaker result 1−O( 1
(log log n)2

).


