
18.317 Combinatorics, Probability, and Computations on Groups 3 October 2001

Lecture 11

Lecturer: Igor Pak Scribe: N. Ackerman

1. Random Walks on Groups

Let G be a finite Group and let S be a set of generators of G. We say that S is
symmetric if S = S−1. In other words S is symmetric if ∀s ∈ S, s−1 ∈ S

Definition 1.1. We define Γ = Γ(G, S) as the Cayley graph of G with respect to
S. This is the graph which has a vertices for each g ∈ G and edges between each
(g, h) such that g−1h ∈ S.

Observe that if S is symmetric then the Cayley graph of G with respect to
S, Γ(G, S) is unoriented. Also observe that if S contains the identity (id ∈ S) then
the Cayley graph of G with respect to S, Γ(G, S) has loops.

Definition 1.2. On a walk of a Cayley graph we define xt as the place you reach
after t steps.

We define a random walk as just a random walk on the Cayley graph starting
at the identity. In other words at each step you choose (randomly and uniformly)
which direction to go. (xt+1 = xt · s, x0 = id, s ∈ S (uniform in S))

We similarly define a lazy random walk as a random walk, except before each step
you choose first whether to move or stay where you are. Then, if you have decided
to move, you decide independently where to move (xt+1 = xt ·se, s ∈ S, e ∈ {0, 1}).

We define Qt(g) = Pr(xt = g) as the probability that after t steps on the walk
you will be at vertex g.

Proposition 1.3. If the Cayley graph is not bipartite then Qt(g) → 1/|G|, as as
t →∞.

For example, if S contains the identity (id ∈ S) then this proposition is true for
the lazy random walk.

Example: If G = Zm and S = {±1} then the Cayley graph Γ(G, S) is bipartite if
and only if m is even.

Example: If G = Sm and S = {(i, j)|1 ≤ i < j ≤ n} then the Cayley graph Γ(G, S)
is bipartite.

1



2 Lecture 11: 3 October 2001

Definition 1.4. If P and Q are probability distributions on G then we define the
convolution of P and Q as

P ∗Q(g) =
∑
h∈G

P (h)Q(h−1g)

Observe that if P is the probability distribution

P (g) =
{

1/|S|, g ∈ S
0 otherwise

then Qt = P ∗ P ∗ · · · ∗ P︸ ︷︷ ︸
t times

Definition 1.5. We then define the separation distance after t steps as

sep(t) = |G| ·max
g∈G

(1/|G| −Qt(g))

Proposition 1.6.
a) sep(t+1) ≤ sep(t)
b) sep(t+l) ≤ sep(t) · sep(l)
c) sep(t)∼ cρt as t →∞, 0 ≤ ρ ≤ 1,

where f(x) ∼ g(x) means that f(x) = g(x · (1 + o(1)))

Proof. a) Observe that sep(t) < ε is equivalent to saying that Qt = (1− ε)U + εN
where U is the uniform distribution, and N is some other distribution. Therefore
we know that because Qt+1 = Qt ∗ P ,

Qt+1 = ((1− ε)U + εN) ∗ P = (1− ε)U ∗ P + εN ∗ P

But we know U ∗P is still the uniform distribution, and ming∈G N ∗P ≥ ming∈G N
by the construction of P . So ming∈G Qt+1(g) ≥ ming∈G Qt(g). And so finally
sep(t+1) ≤ sep(t).

b) Let Qt = (1 − ε)U + εN1 and Ql = (1 − δ)U + δN2. We know that this is
equivalent to sep(t) < ε and sep(l) < δ

We then have
Qt+l = ((1− ε)U + εN1) ∗ ((1− δ)U + δN2)

and, after we condense terms it is easy to see that

Qt+l = (1− δε)U + δεN1 ∗N2

And so we have that sep(t+l) < sep(t) · sep(l) (because sep(t+1)< δε and δ and ε
are arbitrary).

c) Let A = (agh)g,h∈G be a matrix such that agh = P (hg−1). We then let
At = A ∗ · · · ∗A. Then observe that

Qt =

At ·


1
0
0
...
0




g
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We then have

At ·


1
0
0
...
0

 =


1/|G|
1/|G|

...
1/|G|

 + λt
1(v1) + · · ·+ λt

n(vn)

Where vi and λi are eigenvectors and eigenvalues. And so

Qt(g) = λt
1(w1) + · · ·+ λt

n(wn)

Now, if we let qt = ming∈G Qt(g) then qt = 1/|G|+ w1λ
t
1 + · · · and

1/|G| − qt = w1λ
t
1 + σC

Also observe that if we do this same thing for the lazy random walk we have
λ′i = 1/2(1 + λi).

�

Definition 1.7. We define the relaxation time as: τ1 = 1/(1− λ1)
We then define the mixing time as minimum time for the separation time to be less
than one half: τ2 = min{t : sep(t)≤ 1/2}.
Finally, we define the optimal time as: τ3 =

∑∞
t=0 sep(t)

Proposition 1.8. 1/2τ3 < τ2 < 2τ3

Proof. Now, we can see from the definitions that
τ3 ≥ 1/2 + 1/2 + · · ·+ 1/2︸ ︷︷ ︸ ≥ 1/2τ2

τ2

Now we also know from the definitions that
τ3 ≤ 1 + 1 + · · ·+ 1︸ ︷︷ ︸ +1/2 + 1/2 + · · ·+ 1/2︸ ︷︷ ︸ +1/4 + 1/4 + · · ·+ 1/4︸ ︷︷ ︸ + · · ·

τ2 τ2 τ2

= τ2(1 + 1/2 + 1/4 + · · · ) = 2τ2

And this completes the proof. �

Proposition 1.9. τ2 < τ1 log(|G|)

Proof. First, note that

|1/|G| −Qt(g)| <
∑

wiλ
t
i < |G|λt

1

(Note that λ = ρ if s = s−1).

Likewise, from the definitions we see that:
|G| · |1/|G| −Qt(g)| < |G|2(1− 1/τ1)t ≤ 1/e < 1/2 · qt, t = 2 log(|G|)

�
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Example If G = Zm and S = {±1} then

A =



0 1/2 0 0 1/2

1/2 0
. . . 0 0

0
. . . . . . . . . 0

0 0
. . . 0 1/2

1/2 0 0 1/2 0


One can show that λj = cos(2πj/m), so

λ1 = 1− (2π)2

m2
+ o

(
1

m4

)
= 1− c

m2
+ o

(
1

m4

)
.

Now Proposition 1.9 implies that mix = o(m2 log m). In the future we will show
that mix = θ(m2).


