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A THEOREM ON GRAPHS.

By HassLErR WHITNEY.

1. Results of this paper.

1. Let a finite number of eurves, or edges, whose end-points we eall
vertices, intersect at no other points than these vertices. Let the system
be connected, that is, any two vertices are joined by a suecession of edges,
each two successive edges having a vertex in common. This forms a graph.
A graph is planar if it can be mapped in a 1-1 continuous manner on
a plane (or a sphere). If the vertices a, b are joined by an edge, we shall
call the edge joining them ab, and shall say « touches b for short. A set
of distinet vertices, a, b, ¢, - - -, e, f, together with a set of distinet edges
joining them in cyelic order, ab, be, - -, of, fa, we shall call a eircuit.

A planar graph lying on the surface of a sphere divides this surface
into a number of simply connected regions. The houndary of each of these
regions may be a cireuit. If so, we shall call these cirenits elementary
polygons. If all these polygons are
n-gons, n fixed, we say the graph is
composed of elementary #-gons.

2. The fundamental theorem of this
paper is the following:

THEOREM 1. Ghven o planar graph
composed of elementary friangles, in
which there are no civenits of 1,2, or
3 edges other than these elementary
triangles, there exists a civcuit which
passes through every vertex of the graph.

The problem of finding graphs for
which this is so has been studied by
several people.? This seems to he
the first case when a large class of
planar graphs has been shown to have
this property.

3. This theorem gives immediately
the following:

Normar Form. Given any graph
as described in Theorem 1, containing

" Received April 7, and July 14, 1930.—Presented to the American Mathematical Society,
Febyr. 22, 1930.
?8ee St. Lagué, A., Lea Réseaux, Mémorial des Scicuces Math., fasc. 18, Paris (1926).
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n vertices, we can construct o graph homeomorphic with it as follows: Draw
a reqular polygon of n sides, and draw diagonals, no twoe of which cross,
dividing the inside of the polygon into triangles. Similarly draw civeular arcs,
no two of which cross, dividing the outside of the polygon into circular triangles.

We have merely to find the circuit given by Theovem I, and distort it
into the polygon.

4. A theorem on maps deducible immediately from Theorem I is the
following, as we shall see later:

TueoreM II.  Given a map on the surface of o spheve RN
containing at least three regions in which: . -

(A)) The boundary of each region is a single closed | g u
curve without multiple point, o

(B) Exactly three boundary lines meet at each vertexr, h

(As} No pair of vegions taken together with ony | ! ;
houndary lines separoting them form a multiply connected | 1.7
refion,

(Aa) No three vegions taken fogether with any boundary Fig. 3.
lines separating them jform a multiply connected region,
we may draw ¢ cosed curve which passes through each vegion of the map
once and only once, and louches no verfer.

5. By means of Theorem I and a lemma to be proved, we have a solution
of 4 conundrum, which we leave to the end of the paper.

6. Finally, Theorem I gives us a new statement of the four color map
problem. Given any map on the surface of a sphere, we “color” it by
assigning to each region a color in such a way that no two regions with
a common boundary are of the same color. Given any polygonal con-
figuration as described in 3., we “color” it by assigning to each vertex
of the polygon a color in such a way that no two vertices which are
joined by a line, either a side of the polygon or a diagonal, are of the
same color.

EquivALENT STATEMENT oF THE Four CoLor Map PRroBLEM. If every
polygonal configuration as described in 3. can be coloved in four colors, then
every map on the surface of a spheve can be colored in four colovs, and
conversely.

2. Proof of Theorem 1.

We consider only the graphs defined in § 1, 2. As the graph is com-
posed of elementary triangles, there are at least three vertices present.
If there are only three, the theorem is obvious. We shall assume from
here on that there are at least four vertices present.

As there are no circuits of one or two edges, no vertex touches itself,
and any two vertices are joined Dy at most a single edge.
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There is no vertex touching but a single other vertex. For then the
boundary of the region surreunding this other vertex would not be a cirenit,
and therefor not an elementary triangle.

There is no vertex touching only two others. For suppose a touched
b and ¢ alone. Then the edges ab and ac would each be sides of two
triangles, whose third sides are both edges bc. But there is only one
edge be, as two vertices are joined by at mest a single edge. The two
triangles thus cover the whole surface of the sphere, and there are thus
only three vertices in the graph, contrary to hypothesis.

Consider a vertex & touching other vertices b, ¢, ---, /. We read the
edges emenating from ¢ in a counter-clockwise sense, and say, a touches
b, ¢, ---, f in cyclic order; or, a touches b, next ¢, ---, next f, next b.

Remembering now that the graph is composed of elementary triangles,
we have the three properties:

() Each vertex fouches at least three other vertices in cyclic order, distinet
Jrom each other and distinet from the first,

() If a touches b and next ¢, then b touches ¢ and next a,

() There are no triangles other than elementary triangles.

These properties, together with the fact that the graph lies on a sphere,
is all we need to prove the following lemma, from which the theorem is
deduced.

LEMMA. Consider a circuit B in a graph of the type considered in Theorem 1,
together with the vertices and edges on one side, which we shall call the inside.
Let A and B be fwo distinct vertices of B, dividing R into the two paris K,
and Ry, in each of 1hich we include both 4 and B. Suppose

(1) No pair of vertices of B, louch each other inside R {(are joined by an edge
which lies inside R}, and

(2) Kither no paiv of vertices of R, louch each other inside R, o else theve
is & vertex C in Ry distinct from A and B, dividing R, into the two paris R,
and R,, in edch of which we include C, such that no pair of vertices of Ry
and no patr of vertices of By touch each othey inside R.

Then we can draw a line from A to B, passing only along edges of and in-
side R, and passing through each vertex of and inside R once and only once.

In brief, if we can divide the circuit R into either two or three parts,
such that in any part, including end vertices, no pair of vertices touch
each other inside K, we can then draw the required curve from any one
end vertex to any other end vertex of these parts.

The theorem is an immediate consequence of the lemma. For consider
any elementary triangle of the graph, containing the vertices 4, B, C,
which we call the circuit 2. The rest of the graph we call the inside
of the circuit. As each pair of vertices of R touch as a part of the
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circuit, and any two vertices are joined by at most one edge, it follows
that no pair of them touch inside 2. Thus the econditions of the lemma
are fulfilled, and we can pass from A to B through every vertex of R
and every vertex inside R, that is, through every vertex of the graph.
We now pass from B directly to 4, forming a closed eurve. The edges
passed over by the curve form the desired cireuit.

Proof of the lemma. Assume the lemma is true for all circuits which,
with the vertices inside, contain m vertices, m — 3,4, .-, n—1. It is
obviously true for the case where m == 3. We will prove it for all
circuits which, with the vertices inside, contain = vertices. Then, by
mathematical induction, it is true in general.

Take any circuit R therefore, which, with the vertices inside, contains »

vertices. Let the vertices of the eircuithe 4, a,, aa, -, @a, B, by, by, -, by,
C, &1, Cay -+~ ¢, 4, (reading in a clockwise sense). We assume that
no pair of the vertices A, ¢, ---, a«, B, no pair of the vertices
B, by, -, bs, €, (or with C replaced by A, if there is no €), and ne
pair of the vertices C, ¢, -+ -, ¢;, 4 touch inside the circuit. The vertices
€, ¢, -+, ¢y may be missing from the circuit, as may also the vertices
ty, -+, Qe O by, -, bg. We wish to draw the required curve from 4 to B.

We will divide the proof into four parts, aecording to what pairs of
vertices of the cireuit touch inside the cireuit:

Case (1). Some vertex a, touches a vertex b,, (', or ¢, inside R.

Case (2). There are no edges of the above form, but either B touches
a vertex ¢ or A touches a vertex b, inside R.

Case (3). No pairs of vertices of the circuit touch inside the cirenit.

Case (4). Some vertex b, touches a vertex ¢, inside R, but there are
no edges of other forms hetween vertices of the circuit inside the cireuit.

Case (1). Assume there is an edge of one of the forms e, C, a, ¢;. The
case where there is no edge as above, but there is an edge of the form
&y by, is reduced to this case by interchanging the rdles of A and B and
of ¢; and b,. Suppose the edge nearest 4 is a;e.. If it is a; €, we
call €, ¢x. The meaning of “nearest 4" is obvious. Now either, Case (13),
¢ touches none of the vertices a;ry, - --, e, B, or, Case (1h), o; touches none
of the vertices C, ¢, - - -, ex—1 inside the cirenit o, @z, -~ -, de, B, by, -, bs,
Cyey, oo aen If ¢ is €, the latter condition is satisfied automatically.

Consider Case (la). We shall draw the required curve in two steps:
first from 4 to ¢y, then from ¢ to B.

It first, Case (1a,), a; is not a,, a;—; exists, and does not toueh ¢ inside
the circuit, as the edge «; ¢, was the edge of this form nearest 4. Therefore
@; Inust touch some vertex in between ;- and ¢;. For if ; touched a;—
and next ey, a;—; would touch ¢ and next ¢, by (8). Thus @, would
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touch ¢ between a;—o (or A) and a;, and the edge a;_1 ¢ would therefor
be inside the eircuit, which it cannot be, again as the edge a;cy was the edge
of this form nearest 4. As a;touches

gy R {o no vertices of the set cuyr, - -, ¢,

2 A, a, -+, ai— inside the cireunit, any

A Py B vyertices it touches between «;, and ¢
must be vertices inside the circuit F.

cy & G by b, Call them in order g, pa. -, Pp.
Fig. 4. Then, by {8), @i touches p,, p, touches

Pe, -+, and pg touches ¢, We have

thus formed a eirentt 4, ¢;. <+, @1, Po. o -, Py Cry - - ¢, &, A No pair of
the vertices 4, a,. - -, d;— touch inside this ecirewit, as none of the set
A, a,, -, ve, B touched inside the eircuit B. Similarly no pair of the
set ey, -+, ¢y, A touch instde the circuif. Finally, no pair of the set
(i1, 3 -+ s Py ¢ touch inside the circuit. For suppose for instance pg

touched py inside, 1 >¢g. «; does not touch p, and next pn, as pg; and py,
would then touch as a part of the cirenit, and therefor not inside the
circuit, Therefor @ touches a vertex p; in between. But then a:, py
and py, torm a triangle, with p; on one side, and other vertices, as 4, on
the other side, which is therefor not an elementary triangle, in contra-
diction to {¢). Thus all the conditions of the lemma are satisfied for this
circuit, and there are fewer than # vertices in and within the circuit. We
can therefor draw a line from 4 to «n passing through every vertex of
and inside the eireuit.

If next a; is a,, suppose, Case (1as}, ¢z is not ¢p. (If the edge nearest 4
is a; €, suppose there is a vertex ¢, in R.) By nypothesis, ¢z does not
touch A inside the circuit., Therefor g, touches vertices hetween A and cg.
For otherwise, «, would touch 4 and next ¢, and therefor 4 would
touch ¢ and nex{ ¢,, by (8). But as ¢x is not ¢,, A would touch cx hetween
¢, and @, and the edge Acy; would be inside the cireuit. As @, does not
touch ¢pqy, -+ -, ¢, inside the eireuit, the vertices it touches between A
and ¢ must be vertices not in K. Call these vertices in order py, -« -, po.
We get thus a civeuit 4, py, -- -, pg, ¢, -- -, ¢, 4. No pair of the set
of vertices ¢, -, ¢y, 4 touch inside the circuit, nor do any of the set 4,
Prs o0y P, ¢y using exactly the same reasoning as in Case {1a,). Thus
the lemma applies to this cireuit, and we pass from A4 to ¢, passing through
every vertex of and inside the cireuit.

In each of the two Cases (la,) and (1a,) we have now passed through
every vertex of and inside R which is on A's side of the edge ;.
For consider the ecirvenit o, ¢, pg -, 1, Gi1, oz, (0F With @y re-
placed by 4, if «; is a;). As a; touches every other vertex of the
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circuit, there can bhe no vertices inside the civenit. For if there were
a4 vertex d inside the circuit, it must then le inside one of the tri-
angles a:, py, @i {or A), i, OV @iy, Pa, P, @iy OF * -, OT @y, Cuy Po, &
In any case, () wounld be violated. We have thus only to pass from ¢,
to B on B's side of the edge a; ¢y, that is, through the cirenit e, @i, ---,
ey, B, by -, bﬁ: C,a, "y G

We have still to consider in Case (1a) the Case (1a,), where the edge
nearest 4 was the edge o ey {ov @, €, when there is no c},). Draw
a line directly from 4 to ¢, (or €). As there are no vertices inside
the circuit 4, a, ¢, 4 (or 4, @, C, A) by {y), we have left to pass
through only vertices of and inside the same civeuit as in Cases (la,)
and (la,).

But we can do this, by the lemma. Ior, no pair of the set ay, - - . de,
DB touch inside the civcuit., Also, ¢ touches none of these vertices inside
the ecircait, by the hypothesis of Case (la). Thereforr none of the vertices
e, @y, - -, e, B toneh inside the ecircnit. Nor do any of the set B,
by, -+, bg, C, or any of the set C, ¢, -+, e, (if these are present),
by the original hypotheses. The eircuit is thus divided into two or threec
parts, depending on whether ¢, is €' or not, and the lemma applies in either
case., We thus pass from ¢. to B, completing the required curve from A
to B. This disposes of Case (1a).

Consider Case (1b), where a; touches none of the vertices €, ¢, -+, éx—1,
inside the circuit (if any are present). In this case, instead of passing from
A to ex through all the vertices of and inside the cirewit 4, o, ---, a:,
Chy "7y Cys A, exeept a,, the same steps show we can pass from A to a;
through every vertex of and inside this circnit execept ¢.. We now apply
the lemma to pass from a; to B. For, no pair of vertices of the set C,
o, o, o toueh mside the cirewit ap. - -, @a, B, b, <, ba, C, ¢, < -,
cn, @i, and a; touches none of these vertices inside the circuit; therefor
none of the set €, ¢, < -+, e, @; touch inside the cireuit. Alsa, no pair
of the set «;, -+, e, B, and no pair of the set B, b, ---, bz, C touch
ingide the circuit. The proof for Case (1) is now complete,

Case (2). Suppose B touches a vertex ¢ inside the cirenit. Of all such
vertices, let the one nearest 4 be ¢. Exactly as we before passed from
4 to ok, going through all the vertices on 4's side of the edge a: ¢r, we
now pass from A4 to ¢, going through all the vertices on A's side of the
edge Bey. We have now ouly to pass from o to H, goeing through all
the vertices on the other side of tlhe edge Be,. But we can do this, by
the lemma. For the vertices ¢, B do not touch inside the civeuit o, B,
by, -, b8, Cieyy -7, a. Also, no vertices of the set B, b, -, by, C,
and no vertices of the set £, ¢, -, o touch inside the civeuit,
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The proof is the same if A touches some vertex b, inside the cirenit.

Cnse (3). No vertices of the eircuit touch inside the cireuit. As
any circuit contains at least three vertices, there is at least one other
vertex bhesides 4 and B in the circuit. Thus if we eall the vertices of
the eireuit A, a,, -, aa, B, by, -, bg, A, either a, or bg, say Us, is
present. Draw a line from 4 to Lz. We have still to pass from by to B.

Suppose, Case (3a), «, is also present in the ecircuit. As «, and bg do
not touch inside the circuit, 4 does not touch bz and next a, and A
touches therefor other vertices in hetween. Calling these in order py, ---,
¥g, We have a cireuit bz, pi, ~*°, Pa, @, 0, Qw, B, by, -0, bg, where
at least bs, p, @ and B are present. The lemma applies to this civeuit.
For, no pair of the vertices bs, p1. ", Pg, ¢, no pair of the vertices
@, -, ta, B, and no pair of the vertices B, b, -+ -, bg touch inside
the cirenit. There are no vertices inside the ecircuit bg, 4, @), pg, =,
i, by, as A touches all the other vertices of this circuit.

Suppose now, Case (3b), a, is not present in the ecircuit, but by 4 by is.
Then, as B does not touch 5, ingide the circuit, A tonches vertices

between b4 and B, and we obtain the cireuit bg, p1, - - -, pg, B, bn, < -, ba,
to which the lemma applies. For, no pair of the vertices ba, p1, - - -, Py, B,
and no pair of the vertices B, by, - - -, b touch inside the eircuit.

Consider now Case {3¢), where the eircuit R counsists only of the vertices
A, B, b =bg, A. If there are no vertices inside the circuit, we pass
directly from bg to B. If there are vertices inside the circuit, 4 touches
vertices between hs and B, and we obtain the circuit bg, p1, .-+, pe, B, bg,
to which the lemina applies, as in Case (3b).

Case (4)., No pair of vertices of the circuit R touch inside except for
edges of the form b.ce. Of all such edges, let the one furthest from the
vertex ¢’ be the edge b;jc,. We will carry through the proof for this
case in three steps:

(1} A chain of vertices py, - - -, pp With the edges joining them stretching
from ¥ to A and to g, {or to B, if there is no a,), will be found.

(2) A subset of these vertices with the edges joining them will form
another chain, ¢, -- -, g6.

(3) The required curve will be drawn from A to b; on A’s side of this
latter chain, and from b to B on the other side of the chain.

(1) The chain of p's. As biy {or B, if there is no ) does not touch
ek, the edge bjc. being the one furthest from C, b, touches a vertex in
between, which is inside the cirenit B. Call p, the vertex b touches
just before cx. Then p, touches ¢x and forms the first vertex of the chain.
If p, touches A, the first part of the chain is finished. If not, let ¢, be
the vertex of the set ¢, - -, ¢ nearest 4 which it touches.
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Suppose we have constructed the chain as far as the vertex p;, which
does not touch 4, and ¢, is the vertex nearest 4 which p; touches. Assume
the following properties
hold:

(a) All the p's are
distinet.

(b} Each p,, s < 4,
tonches the vertex pess,
and each touches a ver-

tex ¢y, .
(¢) No p, touches any
of the vertices ¢y, ---, ¢
inside the cireuit 4, ay, - -, aa, B, by, oo, by pry -y pis Gy -0y o, Ao

These properties are seen to hold when we have found the first vertex of
the chain, p,. Having found p;, we find the next vertex, p;+1, as follows,
As p; does not touch cp i1, (or 4, if ¢ is ¢;), inside the cirenit, ¢, tonches
a vertex in between. Any such vertex is not a vertex of the circuit R,
nor is it any of the vertices py, - - -, p;, by the above assumptions. Call pigy
the vertex ¢, touches next after p,. If pirq touches 4, the first part of
the chain is finished. Otherwise, let ¢, be the vertex pearest A that
pi+1 touches (which may be ¢;). Now piy, is distinet from all former
p's, pi touches pits, pisy tonches ¢y, and no vertex g, - - -, pit1 touches
¢p,,, OF any vertex nearer 4 inside the new circuit. Thus the same properties
still hold, and we continue finding vertices of the chain.

We note that, although p;;; touches ¢, , it touches no vertex ¢ nearer €
than ¢,. Thus if p; touches ¢, p, touches ¢, and j > ¢, then { > s.

We must eventually reach 4. For each time a vertex p; does not
touch A, we find a new vertex p;y, all the vertices p, are distinet, and
there are only a finite number of vertices inside the cirenit.

Call the last vertex of this chain py. If py touches o, (or B, if there
is no @), call it also py. COtherwise, 4 touches vertices in between,
none of which are vertices of the circuit R ov of the chain pi, - -, py.
Call these in order pyiy. ---, pp. We now have a chain of vertices
Pis °°s Pg, stretehing from ¥ to as(or B}, each of which touches a vertex ¢
or 4.

(2) The chain of ¢’s. Mark in now any edges there may be joining
the vertices b;, p1, - - -, pg, 0. (B) inside the circuit we now have, which
includes the p's and B. Call ¢, the vertex of the set p,, - - -, py nearest a; (B)
which &; touches (which may be p,). Thus ¢, exists. Having found ¢,
if it touches @, (B), we cass call it g¢. Otherwise, we take as ¢y the
vertex of the set p,, .-, py nearvest a, (B) which 4 touches. Continue
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in this manner till we reach a, (B). Now every vertex g; touches a vertex ¢
or 4. Also, no vertices of the set by, q1, - - -, ¢o, @1 (D) touch inside the
cireait b, g, ---, go, @, - s @ay B, b, .-, by (where the o’s may be
missing), on account of the construction of the chain. As, alse, no pair
of the vertices ay, - - -, ¢w, B, and no pair of the vertices B, br, -+, I
touch inside the cirenit, we can apply the lemma and draw a line from
b to B, passing through every vertex of and inside this ecircuit.

(3.) The curve. If there are no vertices gs touching A, call a1 (B), ¢u.
Otherwise, call the first vertex g, which touches 4, 4. To finish the proof
of the lemma, we have only to pass from A to &; through every vertex
on s side of, but not in, the chain b, g1, - - -, gu, 4. For if gy is @ (B),
the chains b, g1, - - gw and by, g1, - - -, gs, @1 (B) are identical, and ‘we
have passed through every vertex of and on B's side of the chain in
passing from b; to B. 1f gy is not a:(B), consider the cirenit 4, a1 -(B),
Qo - s G, A, (Where g,y may be go}. As 4 touches each of these vertices,
there can Le no vertices inside the eircuit, by (). Thus all the vertices
we have not passed through on e¢s side of the chain b, q1, <+, go,
ag(B), 4, are also on ¢s side of the chain bj, q1, - -+, qu, 4.

We will pass from 4 to b; in two steps: first from A to ¢, on A’s side
of the edge b ¢z, then from c. to bj, on C's side of the same edge.

Mark in all edges between the ¢'s and the ¢'s. Remembering that each
vertex ¢;, i <y, touches a vertex ¢, and that if ¢; touches cg, ¢; totiches ¢,
and 7 >/, then 2> s, we see that these edges divide the section of the
graph we must pass through into a number of sections, each of which
we will pass through in twrn.

Suppose ¢y touches a vertex of the set ¢k, - -+, 6. Call the one nearest A
that g touches c,. If ¢; is ¢, there are no vertices inside the cireuit A,

qu, ¢y, A, and we pass directly from A to
Jy, e, Otherwise, ¢, does not touch A inside
the circuit, and therefor g, touches other ver-
tices in between. Call these vertices in order

7 P Figee e, P There are no vertices inside the

£ c circuit A, qy, ¢, Tu, -4y 11, Ao Thus we

A ey ¢ need only pass from A to ¢; through all the

¥ig. 6. vertices of and inside the cirewit A4, ry, - -,

Fu, Cgs o ¢y, 4. But we can do this, by the

lemma. For, no pair of the vertices 4, ry, -+, ru, ¢, and no pair of
the vertices ¢g. - --. ¢y, 4 touch inside the cirenit.

If ¢, touches any more vertices of the set ¢, ---, ¢, We pass through

each of the sections thus formed in turn in exactly the same manner, till
we reach the last ¢ that g, touches, ..
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If the vertex nearest A of the ¢'s that ¢, touches is ¢, we must now
pass through the section bounded by ey, ¢y, qu—1, ¢, -y 0.

If gy did not touch any vertex ¢;, we would have this section to pass
throngh in the first place, o being replaced by 4.

1f ¢; is cp, this section is a triangle which contains no vertices inside,
and we consider the next seetion. Suppose therefor ¢; is not e,. As
then gy does not touch ¢n, ¢ touches vertices
in between, mone of which are any of the set
gy« ++, ch We obtain thus a chain of vertices
stretehing from o, to gu—p, of which the last is )
say d. Similarly, we obtain a chain of vertices
stretehing from gy to «, of which the first is d.

As there are no vertices inside the civeuit e, ¢y, €i
Qomty Ciy vy dy o, Cn, We have only to pass Fig. 7.

from ¢, to ¢ through the cireuit ¢, ---, d, - -,

ey o, o We can do this, by the lemma. For, no vertices of the set
fny -+, d, none of the set d, --, ¢, and none of the set ¢, -+, ¢, touch
ingide the cireuit.

We pass in this manner through each section in turn, till we reach .
The last section, in particular, is bounded by the vertices ¢r, g1, by, er, -+, ¢y
where ¢ is either ¢, or the vertex nearest ¢ of the ¢'s that ¢; touches.
Thus here, b; takes the place of what wounld otherwise be the next g.

We have now but to pass from ¢ to b, on C’s side of the edge ¥ .
We can do this, by the lemma. For, the vertices ¢, &;, no pair of the
set by, -+, bz, €, and no pair of the set 7, ¢, ---, ¢ touch inside the
circuit thus desecribed.

The proof of the lemma, and therefor of Theorem I, is now complete.

g Gw-1

3. Proofs of the theorems on maps.

The dual representation. Given a
map on the surface of a sphere, we
find the dual representation in the
form of a graph as follows. Mark in
each region of the map a point, which
will be a vertex of the graph, and
which we shall call by the same name
as the region of the map in which
it lies. Aeross each houndary line of Fig. 8.
the map draw a line connecting the
vertices in the two regions the boundary separates, forming an edge of
the graph.
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Now surrounding each vertex of the map there is a region of the graph
hounded by a set of edges.

Proaof of Theorem 1I. We will show first that in any map of the type
considered in Theorem II, the dual graph holds to the properties (e}, (4)
and (y) of § 2.

Each region of the map is simply connected, on account of (4;). Each
boundary is a boundary between two distinet regions. For suppose there
were a boundary line QR running through a single region ¢. We could
then, starting from a point P of QR, move into & on one side of QR,
run along a path remaining always in «, and get back to P on the other side
of QR. [et us now run around the boundary of a¢. At some time we
pass along the boundary line QR. We are now inzide the path we have
drawn through a, and as the boundary of « is a closed curve, we must get out
again. But we can only get out by passing through P, which contradicts (4,).

Suppose we run around the houndary of a region « in a counter-clockwise
sense. We are on successively sections of the boundary separating a from
other regions b, ¢, ---, f, in cyclic order. Thus in the dual graph,
o touches b, ¢, .-+, f, in cyclic order, and these vertices are distinet from ¢.

Suppose @ touches b and next ¢. Then if we pass around the boundary
of the region @ in a counter-clockwise sense, two successive sections of
this boundary will be €, separating ¢ and b, and B, separating « and c.
¢ and B will meet at the vertex V. By (B), only one other boundary
line abutts at V. Call it 4. It must thus separate the regions b and c.
Run now around the boundary of b in a counter-clockwise sense. Two
suceessive sections of this boundary will be A and €. Thus we see that
the vertex b touches ¢ and next @, proving property (4).

Suppose now a tonches in ovder b, ¢, d, ---, f. These vertices are
then all distinet. For consider any two of the vertices « touches, say
b and d. If ¢ touches b and next 4, or 4 and next b, then b touches d,
and therefor & and 4 are distinct. Supjose now « touches a vertex ¢ after b
and before d, and a vertex f after 4 and before b. Here again b and d
must be distinet, for otherwise the regions «¢ and & would form a multiply
connected region, separating ¢ and f, contrary to (As).

Exeept in 2 map of three regions, for wbich Theorem II is obvious,
each region of the map touches at least three others. For if there were
a region touching only one or two others, that region or pair of regions
would form a multiply connected region, contrary to (A;) or (As). Thus each
vertex of the dnal graph touches at least three others, This finishes the
proof of property (e).

Finally, there are no triangles in the graph other than elementary triangles.
For if there were such a triangle, the regions of the map surrounding it
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would form a multiply connected region, contrary to (Ag). The properties
(«), (8) and () are now proved.

Now, applying Theorem I to the dual grapl, we find a circuit passing
through every vertex of the graph. This circuit is the desired closed curve
passing through every region of the map.

Proof of the equivalent stalement of the four color map problem. Tlementary
considerations in the four color map problem show that if any map of
the type considered in Theorem IT can be colored in four colors, then any
map on the surface of a sphere can he colored in four eolors. We need
therefor eonsider only maps of the abave type.

Put the dual graph of such a map in the normal form. Suppose we
can color this polygonal configuration in four colors. We then color each
region of the map with the same color as the corresponding vertex of the
dual graph. Any two regions with a common boundary correspond to two
vertices of the graph which are joined Ly an edge, and ave therefor of
different colors. ‘

The converse is obvious, as every polygonal configuration is the duat
of 2 map.

Conundrum. Suppose a man, living in a certain country (state), wishes
to visit all the countries about him, but does not wish to pass through
any country more than once on his voyage. Can he do it? If the region
he wishes to visit covers the entire globe, he can do it if the countries
make up a map of the type considered in Theorem II. Suppose now the
region covers but a portion of the globe. If, upon replacing the rest of
the globe by a single country, we obtain a map of the type considered,
he can do it also. e have but to apply the lemma to the ring of coun-
tiies about the added country. By (A3), no pair of the countries of this
ring touch inside the ring. Therefor, picking out any two adjacent eoun-
tries of the ring, A, B, we draw a line from one to the other, passing
through every country the man wishes to visit. We now join the two
ends of this line, completing the man’s path.

More generally, whenever the conditions of the lemma are satisfied by
the ring, calling some two adjacent countries .4 and B, we obtain the
desired path.

4. Further remarks.

Necessity of (Ay). Theorem I would not be true if the assmnption that.
there are no circuits of three edges other than the elementary triangles
were omitted. That is, Theorem II would not be true if the assumption (A4)
were omitted. The following example shows this.?

3 This ex;mple of such a map containing the least number of regions was communicated
te me by C. N. Reynolds.
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The number Py, In constructing the normal form for a graph, we divide
an n-sided polygon into triangles by diagonals. It is interesting to know
in how many ways we can do this. The formnla
for this number was found by Euler, A simple proof

wag first given by Lamé:*

3.8.7...{(21—15)

— Phd
B =2 3.4-5-.-(n—1} °

As we divide both the inside and outside of the

Fig. 9. polygon into triangles, we can construct in this

manner P, different figures. Of course these are not

all graphs of the fype considered, and many of them give the same graph.
For instance, therc are 96 different circuits in the graph, Fig. 1.

LJ. Math. Pures Appl. (1), 8 (1838), pp. 505-507.

Harvawn UxiversiTY.



