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Convex Polytopes
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Tiling spaces with congruent polyhedra

“Perhaps our biggest surprise when we started collecting material for the present
work was that so little about tilings and patterns is known. We thought, naively as
it turned out, that the two millenia of development of plane geometry would leave
little room for new ideas.”

B. Grinbaum & G. C. Shephard, Tilings and Patterns, 1986.



Motivation: Hilbert’s 18th Problem (1900)

Question 1: What polyhedra tile S¢, E? and H? with congruent copies?
Question 2: Are all such polyhedra fundamental regions of group actions?

People: Fricke, Klein, Fédorov, Voronoy, Schoenflies, etc.

Answer to 1: What is known is very small compared to what is not known.

Answer to 2: Not at all. Which explains the previous answer.



The Good:

Theorem |Bieberbach, 1911]
Crystallographic groups I' (discrete cocompact subgroups of SO(d, R) x RY)

are finite extensions of Z? by a finite G C GL(d, Z).

—

Theorem [Minkowski, 1910]: |G| < (2d)!  Thus, # of such I' is C'(d) < oc.
Sequence C'(d) grows rapidly: 2, 17, 230, 4894, 222097, 28934974, ...

Theorem [Feit, 1996]: |G| < 2%d! = |B,4| (this uses CFSG).
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From groups to tilings:

Let I' be crystallographic, and let R = I'(p) be an orbit of a generic point p.
Take the Voronoi diagram V(R) of R (= Dirichlet domain).
Then I' acts transitively on V and the cell V(p) tile the space.

More generally, let P be a fundamental region of the action of I'.

Take () C P s.t. congruent copies of @) tiles P (not necessarily face-to-face).




“[In H3] there is absolutely no hope of giving any reasonable kind of answer to this

question; there is a plethora of possible groups, and each group has a continuum of
orbits, which can lead to a variety of Voronoi polyhedra.”

John H. Conway (Wed, 13 Dec 1995, 11:26:55)
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The Bad:

Theorem [Sommerville, 1923|: Classification of tetrahedra which

tile E° when rotations are not allowed. Open in full generality.

Theorem [Davies, 1965]: Classification of triangles which tile S?.

Warning: In both cases there are nontrivial NON-face-to-face tilings.




The Ugly:

Open Problem 1. [aka the einstein conjecture]

Does there exist a (non-convex) polygon which tiles the plane E?,

but only aperiodically?

Open Problem 2.

Is the tileability problem by a convex polyhedron in HY decidable?

Open Problem 3.
Does there exist a tile such that the tileability problem is independent of ZFC?

Remark: NO on OP2 implies YES on OP3 (easy).



Main question: how bad can it get?

Open Problem [Fédorov, Voronoy, etc.]

Does every P which tiles E? has a bounded number of facets?

More generally, let X be either S%, E? or H?. Denote by ¢(X) the

maximum fy_1(P) over P which tiles X, or oo if max does not exist.

Question: What can be said about all ¢(X)?

Easy: ¢(E?) =6, ¢(S?*) =5, ¢(H?) = oo, ¢(H?) > 12 (just wait!).

Current champion: ¢(E?*) > 38 [Engel, 1980].



Euclidean tilings: parallelohedra

Theorem |[Minkowski, 1911]
In E? is tiled by parallel translations of P, then f;_;(P) < 24t — 2,
We have fy_(P) = 2% — 2 when P = I, is a permutohedron.

Note: This proof is an application of the Minkowski Uniqueness Theorem
(that the polytope is uniquely determined by the facet volumes).

Note: Fédorov proved there are exactly five parallelohedra in E3 (1885).



Euclidean tilings: stereohedra

Theorem [Delone & Sandakova, 1969]
If P is a fundamental region of crystallographic I' acting on E*, then
fa1(P) < 24(h+1) —2, where h=|G|, G=G().

Moral: aperiodic constructions are needed to show ¢(E?) = oc.

Note: Using Feit’s estimate H = |G| < 29d!, in E? this gives fo(P) < 390.
This bound was improved by Tarasov (1997) to 378.



Spherical tilings: the unbounded number of facets

Theorem [Dolbilin & Tanemura, 2006]
P(S?) = oo for d > 3.

Construction: Let d =3, 5% — R*. Fixn > 2.

Let R; be the set of points (sin = 2—”1 cmz—ﬁi 0,0),0<j53<n
Let R, be the set of points (0,0, sin 22, cos 22), 0 < j < n.
The set R = R1 U Ry has a tr a.nsltlve group of symmetries.
Now take the Voronoi diagram of R with Voronoi cell P.
Check that P is combinatorially an n-prism, so fy(P) =n + 2.

Question: Can we get larger f»(P) for spherical tiles of S*7?
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Theorem [Erickson, 2001; Erickson & Kim, 2003|: For every n > 1, there is a tiling
of E? with infinitely many congruent (unbounded) polyhedra with n facets.

Erickson’s construction: points on a helix

Let R, = {(t,sin 2, cos 2L)  t € Z}.
Take the Voronoi diagram of R,, with Voronoi cells F;.
Check that P, and P, have common facet if |s — t| < n/2.
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Spherical tilings: the neighborly construction
Definition: A (finite) tiling is neighborly if every two tiles have a common facet.
Theorem [Nguyen & P., 2015 |: For n > 2 and d > 3, there is a neighborly tiling

of S? with n congruent polyhedra.

Corollary [Nguyen & P., 2015 |: For n > 2 and d > 4, there is a neighborly tiling
of E? with n congruent (unbounded) polyhedra.

Our construction: points on a spherical helix

Fix0<0<n/2,m>2. Let Ag,(a) = (0059(:08 av, cos 0 sin av, sin 0 sin ma, sin  cos ma).

Take R, = {Ag!m(%‘i), 0<7< n} and the Voronoi diagram of R,,.



Our construction: points on a spherical helix

Fix0 <0 <7/2,m >2. Let Ay,(a) = (cosﬁ?cos av, cos 0 sin «v, sin @ sin ma, sin 6 cos mav).

Take R, = {Agjm(z—”i), 0<7< n} and the Voronoi diagram of R,,.

T

Explanation: Spherical helix Ay, () winds m times around the torus
Ty = {(:1:1?:1397:1:3,3:4), r? + x5 = cos? 0, 25 + 2] = sin® 9} c 53,

Now observe that Z, acts transitively on R,,.

Note: Drawing spherical tiles is a challenge, but for m large, the front end looks like this:
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Hyperbolic tilings: the generalized Boroczky construction

Theorem [Boroczky, 1974; Zare, 1995; etc.]: ¢(H?) = oo for d > 3. Specifically,
for n > 2, there exist a polyhedron P, with (?1,2 + 5) facets, which tiles H3.

Construction: In the upper half-space H?, let A, = {(1,4,5) : 0 < 14,j < n},
B, ={(n,0,0),(n,n,0),(n,0,n),(n,n,n)}, and P, = conv(A U B).




Hyperbolic tilings: combinatorial constructions

Theorem [Pogorelov, 1967; see also Andreev, 1970]:

A 3-connected planar graph G can be realized in H* as a bounded right-angled
polyhedron if and only if it is cubic, every face is a k-gon with k& > 5. and every
simple closed circuit in G* which separates some two faces intersects at least 5 edges.

Poincaré’s Polyhedron Theorem (1883):
Sufficient combinatorial conditions on 7', which can be checked
locally to prove that T tiles HY.

Theorem [Lobell, 1931]:

Let P, be right-angled hyperbolic polyhedron with two n-gonal and 2n pentagonal
faces (see the Figure). Then they tile H?®.




Hyperbolic tilings: basic arithmetic constructions

Recall: PSL(2,C) acts on H? by isometries.

Matrix A € PSL(2,C) is loxodromic if tr*A ¢ [0, 4]
(as opposed to elliptic or parabolic).

Theorem [Jorgensen, 1973; Drumm & Poritz, 1999]:
Let A € PSL(2,C) be loxodromic, I' = (A). Take Voronoi diagram V(I'(p)).

Then number of facets of the (unbounded) polyhedron V' (p) can be arbitrary large.

Note: This is a hyperbolic analogue of Erickson’s construction.



Hyperbolic tilings: nested property

Let 'y D'y DIy D ... be a chain of subgroups acting on E¢ or H¢.
Let P, C P, C P3 C ... be the corresponding Voronoi cells on the same point.

Question: Can we have fy_{(P,) — oo as n — o0?

Note: Erickson’s construction is suited for ascending, not descending chains.

Theorem [Nguyen & P., 2015+]:

For every HY, d > 3, there exists such a chain.

Proof is based on two difficult results: [Millson, 1976], [Lubotzky, 1996]
and an observation that f;_1(P,) > rank(l,).



Aperiodicity of Euclidean tilings

Tile T is weakly aperiodic if no tiling of E¢ with 7" is invariant under Z<.

Tile T is strongly aperiodic if no tiling of E? with T is invariant under Z.

Theorem [Conway, 1995

In E3, there exists a weakly aperiodic tile P. There is an action of Z, however.
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Aperiodicity of Euclidean tilings: some questions

Question: Does there exist a weakly aperiodic tile in any E?
with a dense set of rotations in SO(3,R)?

Question: Does there exist a strongly aperiodic tile in any E9?

Question: Is self-similarity decidable in E2?



Aperiodicity of hyperbolic tilings

Tile T is weakly aperiodic if there is no tiling with 7" of a compact H?/T", for any I".

Tile T is strongly aperiodic if no tiling of H? with T is invariant under Z.

Theorem [Margulis & Moses 1998
In H?, there are weakly aperiodic n-gons, for all n > 3. There is an

action of Z, however.
Proposition: In H?, d > 3, Boroczky polyhedra P, are weakly aperiodic.
There is an action of Z, however.

Question: Does there exist a weakly aperiodic right-angled polyhedral tile H?,

with an unbounded number of facets?



