HOME ASSIGNMENT 1 (MATH 285N, SPRING 2010)

1. Let $Q \subset \mathbb{R}^2$ be a convex polygon. A *qunti-partition* of Q is a point $z \in Q$ and five rays starting at z, which dives \mathbb{R}^2 into five equal cones, and divides Q into five polygons of equal area. Prove or disprove: every Q as above has a qunti-partition.

2. Let $Q_1, \ldots, Q_n \subset \mathbb{R}^2$ be (not necessarily convex) simple polygons in the plane (i.e. all Q_i are simply-connected). Suppose that every two of them intersect, and that all unions $Q_i \cup Q_j$ are connected, and all unions $Q_i \cup Q_j \cup Q_k$ are simply connected. Prove that the intersection of all Q_i is nonempty.

3. Let $Q \subset \mathbb{R}^2$ be a fixed convex *n*-gon (not necessarily regular), and let T_n be the set of triangulations of Q. We denote the vertices of Q by integers $i \in [n]$. Euler proved that $|T_n| = C_{n-2}$, where $C_n = \frac{1}{n+1} \binom{2n}{n}$ are *Catalan numbers*. For every vertex $v \in Q$ in a triangulation $\tau \in T_n$, denote by $\xi_{\tau}(v)$ the sum of areas of triangles in τ that contain v. Let $R_n \subset \mathbb{R}^n$ be a convex hull of all C_{n-2} functions $\xi_{\tau} : [n] \to \mathbb{R}^n$, defined as $v \to \xi_{\tau}(v)$, for all $\xi_{\tau} \in \mathbb{R}^n$.

a) Prove that all ξ_{τ} are vertices of R_n , i.e. that they lie in convex position.

b) Prove that the dimension of R_n is (n-3).

c) Show that the flips of one diagonal in a triangulation correspond to edges of R_n . Conclude that R_n is simple.

4. Prove that a *permutohedron* P_n can be decomposed into n^{n-2} parallelepipeds with edges parallel to edges of P_n . For example, P_3 is a regular hexagon which can be decomposed into 3 such parallelograms (even in two different ways). Use this to compute the volume of P_n .

5. Let $P \subset \mathbb{R}^3$ be a simple convex polytope with only quadrilateral faces.

- a) Prove that it has eight vertices.
- b) Prove or disprove: P is combinatorially equivalent to a cube.
- c) Prove that if seven vertices of P lie on a sphere, the so does the eighth vertex.

6. Let $P \subset \mathbb{R}^3$ be a convex polytope. Suppose we are allowed to cut P with a plane. Two parts are then separated, and each is then allowed to be separately cut with a new plane, etc. (think of chopping polytopes as if they were vegetables).

a) Prove that a cube can be cut into tetrahedral pieces with only four cuts.

 $b)\,$ Prove by an explicit construction that both icosahedron and dodecahedron can be cut into tetrahedral pieces with at most 100 cuts.

c) Prove that every convex polytope in \mathbb{R}^3 can be cut into tetrahedral pieces with finitely many cuts.