Warning: everywhere below we follow book notation:

\[P(n, k) = \frac{n!}{(n-k)!} \quad \text{and} \quad C(n, k) = \binom{n}{k}. \]

6.2

6. \(P(11, 5) = \frac{11!}{6!} \).

8. \(P(12, 4) = \frac{12!}{8!} \).

29. \(C(12, 4) = \frac{12!}{8! \cdot 4!} \).

34. \(C(6, 3) \cdot C(7, 4) \).

35. (# of Total Committees) - (# of All Male Committees) = \(C(13, 4) - C(6, 4) \).

37. (# of Total Committees) - (# of All Male Committees) - (# of All Female Committees) = \(C(13, 4) - C(6, 4) - C(7, 4) \).

6.7

2. \((2c - 3d)^5 = \sum_{k=0}^{5} C(5, k)2^k(-3)^{5-k}c^k d^{5-k} = 32c^5 - 240c^4d + 720c^3d^2 - 1080c^2d^3 + 810cd^4 - 243d^5 \)

4. \(C(12, 6)2^6(-1)^6 = \frac{12!2^6}{(6!)^2} \)

5. \(C(10, 5)C(5, 3) = \frac{10!}{5!2!3!} \)

I.

Before we begin, here is a counting principle (CP) you can use repeatedly throughout this problem.

Say you have distinct natural numbers \(1 \leq i_1 < i_2 < \ldots < i_k \leq n \) and and ordered \(k \)-tuple of distinct natural numbers between 1 and \(k \), \((b_1, \ldots, b_k)\). How many permutations of \(\{1, \ldots, n\} \) are there with \(a_{i_j} = b_j \) for each \(j = 1, \ldots, k \)? There are \((n-k)! \) of them.

Here is why: There is a bijection between the set \(S \) of permutations of the elements of \(\{1, \ldots, n\} \) \(\backslash \{b_1, \ldots, b_k\} \) (the set of natural numbers between 1 and \(n \) that are not equal to any of the \(b_i \)) and the set \(T \) of permutations we are counting. The bijection \(f : T \rightarrow S \) takes a permutation in \(T \) and deletes \(b_1, \ldots, b_k \).

Here is a detailed explanation of why \(f \) is bijective. First, let us start with why \(f \) is injective. Take two permutations in \(T \) that become the same when \(b_1, \ldots, b_k \) are deleted. They (the two permutations in \(T \)) must agree in every position besides \(i_1, \ldots, i_k \) because for elements of \(T \), \(b_1, \ldots, b_k \) occur in the \(i_1, \ldots, i_k \) positions. However they also agree in the \(i_1, \ldots, i_k \) positions by the definition of \(T \) (permutations with \(b_j \) in the \(i_j \) position). Therefore, they agree at every position and are equal (the same) as permutations. To see \(f \) is surjective begin with an element of \(S \), choose one. Create a permutation by drawing \(n \) blanks (ordered) and writing \(b_j \) on the \(i_j \)-th blank. Fill the remaining \(n-k \) remaining blanks with your chosen element of \(S \); you will get an element of \(T \). When you apply \(f \) to this element of \(T \), all the \(b_j \) are deleted and you are left with your chosen element of \(S \). Since this argument works for any choice of an element of \(S \), \(f \) is surjective.

a) Since \(a_1a_n = 6 \), as \(6 = 1 \cdot 6 = 6 \cdot 1 = 2 \cdot 3 = 3 \cdot 2 \) are the only factorizations of 6 into two distinct natural numbers (between 1 and \(n = 12 \geq 6 \)), we are counting the number of permutations such that the ordered pair \((a_1, a_n)\) is either \((1, 6)\), \((6, 1)\), \((2, 3)\), or \((3, 2)\) and no two cases can simultaneously happen.
So by the addition principle, the number of permutations with \(a_1a_n = 6 \) is the sum of the number of permutations in each of the four cases. Using CP, each case has \((n - 2)!\) elements. Therefore there are \(4((n - 2)!) = 4(10!)\) permutations with \(a_1a_n = 6 \). Answer: \(4(10!)\).

b) We have \(a_1 - a_n = n - 1 \) if and only if \(a_1 = n \) and \(a_n = 1 \). Why? First check that \(a_1 = n \) and \(a_n = 1 \) ensures that \(a_1 - a_n = n - 1 \) (just substitute and see the equation is true). Any permutation has \(a_1 - a_n = a_1 + (-a_n) \leq n + (-a_n) \leq n + (-1) = n - 1 \). So when \(a_1 - a_n = n - 1 \) the chain of inequalities loops back to the beginning. Since \(\leq \) is antisymmetric we get that \(a_1 - a_n = n - a_n = n - 1 \) with the first equality giving \(a_1 = n \) and the second giving \(a_n = 1 \). Now by CP, there are \((n - 2)! = 10!\) such permutations. Answer: \(10!\).

c) Let \(S \) be the set of ordered pairs \((b, c)\) of distinct \((b \neq c)\) integers in \([1, \ldots, n]\) such that \(b + c = n + 2 \). Then \(S \) is the set resulting from removing the pair \((\frac{n + 2}{2}, \frac{n + 2}{2} + 1)\) from \((2, 3, n - 1, 4, n - 2, \ldots, (n, 1))\) \((n \text{ even})\). Then \(S \) has \(n - 2\) elements. \((\text{If } n \text{ were odd, then there would have been } n - 1 \text{ elements because we would not need to remove } (\frac{n + 2}{2}, \frac{n + 2}{2} + 1)!\)

The number of permutations with \(a_1 + a_n = n + 2 \) by the addition principle is the sum of number of permutations where \((a_1, a_n) = (b, c)\) where \((b, c)\) varies over the elements of \(S \). By CP, whenever \((b, c) \in S\), the number of permutations where \((a_1, a_n) = (b, c)\) is \((n - 2)!\). Therefore the total is the sum of \(n - 2\) copies of \((n - 2)!\). Answer: \(10(10!)\). Answer: \(10(10!)\).

d) This is a special case of CP. We have \((n - 2)! = 10!\) permutations with \(a_1 = 1 \) and \(a_n = n \). Answer: \(10!\).

e) Let \(S \) be the set of ordered pairs \((b, c)\) of distinct integers in \([1, \ldots, n]\) such that \(b = 2 \) or \(c = 3 \). There are \(n - 1\) elements of \(S \) of the form \((2, c)\) and \(n - 1\) elements of \(S \) of the form \((b, 3)\) \([2, 2), (3, 3) \notin S]\). All elements of \(S \) fall into one of these two categories and exactly one element, \((2, 3)\), falls into both. Then \(S \) has \((n - 1) + (n - 1) - 1 = 2n - 3\) elements.

By the strategy used in part c the number of permutations with \(a_1 = 2 \) or \(a_2 = 3 \) is \((2n - 3)((n - 2)!) = 21(10!)\). Answer 21(10!).

f) Let \(S \) be the set of ordered pairs \((b, c)\) of distinct integers in \([1, \ldots, n]\) such that \(b \leq 3 \) or \(c \geq 3 \). The number of elements of \(S \) with \(b \leq 3 \) is \(3(n - 1)\) \([\text{since } (1, 1), (2, 2), \text{ and } (3, 3) \text{ are not in } S]\) and similarly the number of elements of \(S \) with \(c \geq 3 \) is \((n - 2)(n - 1)\). The number of elements \((b, c)\) of \(S \) with both \(b \leq 3 \) and \(c \geq 3 \) is \(3(n - 2) - 1\) \([\text{since } (3, 3) \notin S]\). Therefore the total number of elements of \(S \) is \(3(n - 1) + (n - 2)(n - 1) - (3(n - 2) - 1) = n^2 - 3n + 4\).

Therefore the number of permutations with \(a_1 \leq 3 \) or \(a_2 \geq 3 \) is \((n^2 - 3n + 4)((n - 2)!) = 112(10!)\). Answer: 112(10!).

g) Take \(S \) to be the set of ordered pairs \((b, c, d)\) of pairwise distinct \((b \neq c, c \neq d, \text{ and } b \neq d)\) integers in \([1, \ldots, n]\) such that \(b = 2 \) or \(c = 3 \) or \(d = 4 \). There are \((n - 1)(n - 2)\) elements of the form \((2, c, d)\). Similarly, there are \((n - 1)(n - 2)\) elements of the form \((b, 3, d)\), and \((n - 1)(n - 2)\) of the form \((b, c, 4)\). There are \((n - 2)\) elements of the form \((2, 3, d)\) and same for \((2, c, 4)\) and \((b, 3, 4)\). Of course, there is only one element of \(S \) of the form \((2, 3, 4)\). By inclusion-exclusion principle there are \(((n - 1)(n - 2) + (n - 1)(n - 2) + (n - 1)(n - 2)) - ((n - 2) + (n - 2) + (n - 2)) + 1 = 3n^2 - 12n + 13\) elements in \(S \). Therefore the number of permutations with \(a_1 = 2, a_2 = 3, \text{ or } a_3 = 4 \) is \((3n^2 - 12n + 13)((n - 3)!) = 301(9!)\). Answer 301(9!).

II.

a) We need \(k - 2\) other elements from \([2, \ldots, n - 1]\). There are \(C(n - 2, k - 2)\) ways to choose them. Answer: \(C(10, 2)\).

b) We need \(k - 1\) elements from \([2, \ldots, n - 1]\). There are \(C(n - 2, k - 1)\) ways to choose them. Answer: \(C(10, 3)\).

c) By the inclusion-exclusion principle, \(C(n - 1, k - 1) + C(n - 1, k - 1) - C(n - 2, k - 2)\). Answer: \(2 \times C(11, 3) - C(10, 2)\).

d) There are \(C(n - 5, k)\) \(k\)-subsets which do not contain at least one integer \(\leq 5\). We subtract this from the total number of \(k\)-subsets. Answer: \(C(12, 4) - C(7, 4)\).
e) The number of k-subsets not containing an integer ≤ 3 is $\binom{n-3}{k}$. The number of k-subsets not missing any integer ≥ 10 is $\binom{n-(n-9)}{k-(n-9)} = \binom{9}{k-(n-9)}$. Therefore the number of k-subsets both not missing any integer ≥ 10 and not containing an integer ≤ 3 is $\binom{6}{k-(n-9)}$.

Therefore the number of k-subsets containing an integer ≤ 3 and missing at least one integer ≥ 10 is $\binom{n}{k} - \binom{n-3}{k} - \binom{9}{k-(n-9)} + \binom{6}{k-(n-9)}$. Answer: $\binom{12}{4} - \binom{9}{4} - 3$.

f) We subtract subsets with fewer than 2 numbers less than or equal to 6 from the total number of k-subsets. The number of k-subsets with exactly one number less than or equal to 6 are $6\binom{n-6}{k-1}$ by the multiplication principle. The number of k-subsets with zero numbers less than or equal to 6 are $\binom{n-6}{k}$. So $\binom{n}{k} - 6\binom{n-6}{k-1} - \binom{n-6}{k}$ subsets have at least two numbers less than or equal to 6. Answer: $\binom{12}{4} - 6\binom{6}{3} - \binom{6}{4}$

g) There are $\frac{n}{2}$ even integers in $\{1, \ldots, n\}$ (since n is even - otherwise we would round down) to choose from. Answer: $\binom{6}{4}$.

III.

Because f maps a finite set to itself, injection, surjection, and bijection are all the same.

a) Assume $f(x) = f(y)$. Then $x+1 = y+1 \mod 12$ and $x = y \mod 12$. Therefore since $0 \leq x, y < 12$, $x = y$. Answer: Injection, surjection, bijection.

b) Assume $f(x) = f(y)$. Then $5x = 5y \mod 12$ and so 12 divides $5(x-y)$. Since 5 and 12 have no common factors, by the fundamental theorem of arithmetic, 12 must divide $x-y$. Thus $x = y \mod 12$. We conclude like in part a that $x = y$. Answer: Injection, surjection, bijection.

c) It is not injective because $0^2 = 6^2 \mod 12$. Answer: Neither.

d) It is not surjective because $0^3 = 6^3 \mod 12$. Answer: Neither.

e) It is not surjective because since powers of 5 are always odd and thus not divisible by 12. That is there is no x for which $5^x = 0 \mod 12$ which is equivalent to $f(x) = 0$. Answer: Neither.

f) Observe that $f(2) = 3 = f(4)$. Answer: Neither.

g) Observe that $f(3) = 0 = f(6)$. Answer: Neither.