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Old Problem:

Find nice bijections between combinatorial objects.
Specifically, between 200+ counted by the Catalan numbers.

New Problem:

Explain why some objects have super nice (canonical) bijections

while others do not (and what this all even means).
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Plan:

1.

2.

3.

Classical Catalan structures
Selected known results
Pattern avoidance

The results

Connections to probability
Applications

Alternating and Baxter permutations



1. Classical Catalan structures:

1) C, = number of triangulations of (n + 2)-gon (Euler, 1756)
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2) (), = number of non-associative products of (n + 1) numbers (Catalan, 1836)

((ab)c)d (a(be))d (ab)(cd) a((be)d) a(b(cd))
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3) C, = number of binary trees on (2n + 1) vertices



4) (), = number of plane trees with (n + 1) vertices
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5) C, = number of Dyck paths of length 2n

i.e. lattice paths (0,0) — (n,n) below y = z line.
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Canonical bijections:

Triangulations <—  Binary trees

Binary trees Non-associative products

—
Binary trees +— Plane trees
—

Plane trees Dyck paths

These can be extremely useful for studying asymptotics of combinatorial statistics

and more generally the shape of combinatorial objects.



2. Selected asymptotic results:

Theorem (Aldous, 1991; DFHNS, 1999)

The p.d.f. of the maximal chord-length in a random triangulation of regular n-gon

3r—1 1 1
—<r<—=, asn— oo.
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converges to

Theorem (DFHNS, 1999)
A,, = maximal degree of a random triangulation of n-gon. Then for all ¢ > 0

P(]A, —log,n| < cloglogn) -1 as n — oc.

DFHNS = Devroye, Flajolet, Hurtado, Noy and Steiger.



Theorem: Let 9, be the degree of a root in a random plane tree with n vertices.

P, =1r)— E[r] =3 as n— 0.
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Theorem: Let h, height of a random plane tree with n vertices,

m,, the height of a random Dyck path of length 2n. Then:
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General References: Flajolet & Sedgewick, Analytic Combinatorics, 20009.
M. Drmota, Random Trees, 2009.



3. Pattern avoidance:

Permutation o € S, contains pattern w € S, if matrix M (o)

contains M (w) as a submatrix. Otherwise, o avoids w.

Example
o=(2,4,5,1,3,6) contains 132 but not 321.
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Patterns of length 3

Sp(w) := number of permutations o € S,, avoiding w

Theorem (MacMahon, 1915; Knuth, 1968)
Sp(w) = C, for all w € S.

Two Observations:
sn(123) = 5(321), $,(132) = s(231) = 5,(312) = s(213) via symmetries

[Kitaev]: Nine different bijections between 123- and 132-avoiding permutations.

Question: Can it be true that all nine and nice?” How about canonical?

My Answer: No canonical bijection is possible. Here is why...



Simulations by Madras and Pehlivan

Monte Carlo simulation 1 Monte Carlo simulation 2

200

150

100

Figure: Randomly generated 312 avoiding permutation with N=100

Lerna Pehiivan_(joint work with Neal Madras) Random 312 Avoiding Permutations



4. Shape of random pattern avoiding permutations

P,(i,7) CZM ij s

where the sum is over all 123-avoiding permutations.

Qn(i, 5) OZM i

where the sum is over all 132-avoiding permutations.

Main Question: What do P, (*,*) and @, (%, %) look like, as n — oo?



Shape of random 123-avoiding permutations (surface)

H025-030 m025-03
®0.20-0.25 m0.2-0.25
H0.15-0.20 H0.15-02
H0.10-0.15 m0.1-0.15
m0.05-0.10 H0.05-01
m0.00-0.05 m0-0.05

Surface Pas0(i,7) and the same surface in greater detail.



Shape of random 132-avoiding permutations (surface)

®025-030

®0.20-0.25
H015-020
®0.10-0.15
m0.05-010

m0.00-0.05

m0.25-0.3
®0.2-0.25
m0.15-0.2
m0.1-015
mO05-01

m0-0.05

Surface (Q250(7, j) and the same surface in greater detail.



Diagonal of P,(x,*) in details
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Main Theorem for P,(x,*), [Miner-P.]

Py(an,bn) < &", a+b#1, e=¢(a,b), 0<e<l1
2a—1 1
P,(an —cn® (1 —a)n —en®) <™ §<a<1, e=c¢(a,b,a), 0<e<1
Paan = en®, (1= an — en®) ~ (a0 (e, ) — 5 0
(an —en®, (1 —a)n —en®) ~ n(a,c)x(a,c) —, a=—=, ¢
1 NG 2
o o 1 1
Pn(an—cn,(1—a)n—cn)~n(a,c)m, 0<04<§, c#0
where
2 . o) [ _2 }
n(a,¢c) = ——— an »(a,c) = exp
(@) Vr(a(l —a))? a(l - a)



Diagonal of Q,(x,*) vs. P,(x,*)
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Main Theorem for @, (*, *), macro picture:

Qn(an,bn) < &, 0<a+b<l, e=¢(ab), 0<e<l
1
Qn(an,bn)wv(a,b)m, l<a+b<2
1
Qn(nan) ~ ZL
where )

v(aab) = 3 3
V32r(2—a—->b)2(1—a—0b)2



Main Theorem for @), (*, *), micro picture:

a— 1
Qn(an—cn®, (1—a)n—cn®) < e §<o¢<1, e=¢(a,b,a), 0<e<l1, ¢>0
- . 1 3 1 .
Qn(an —cen®, ( —a)n—cn)wz(a)m, g<a<y, ¢>
o N 1 3
Qn(an—cn,(1—a)n—cn)~z(a)m, O<a<§
o o 3 1
Qn(an—l—cn,(1—a)n+cn)~y(a,c)m, g <2<y, c>0
Qnlan +cn® (l—oz)n—i—cna)ww(c)L 1<a<1 c>0
n Y n3a/27 2 7
1
n(n—en®n—cen®) ~w(c) —s, a , C
Qn( « Y ()n?’a/? 0<a<l >0
where
) ? L(3)

w(c) = ! y(a,c) = (1 + <G ) I v VA
teelym’ VA ) rad(i - o)} Pral(l - o)




Proof idea:

Lemma 1. For j+k<n+1,
P.(j,k) = B(n—k+1,j) B(n—j+1,k), where

—k+1 k—1
B(n, k) = iy G are the ballot numbers
n+k—1 n
Lemma 2.
mln{]vk}_l
@l k) = Y Bn—j+Lk-r)Bn-k+1j-1)C,

r=max {0,j+k—n—1}

Proof of the Main Theorem = Lemmas + Stirling’s formula + [details]



Bijective combinatorics:

123-avoiding permutations +rgrskg Pairs of SYT — Dyck paths

Corollary: P,(i,j) = Probability that random Dyck path is at height j
after (i + j) steps

132-avoiding permutations ~— Binary trees



5. Connections to Probability:

Random Dyck paths — Brownian excursion
This explains everything!

Hint:

(1) heights in Dyck paths «— distances to anti-diagonal in 123-av

(2) tunnels in Dyck paths «— distances to anti-diagonal in 132-av
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6. Applications

Corollary [Miner-P.]
Let fp(o) denote the number of fixed points in o € S,,.

2T°(3)

=

1
ni, as n — oo.

E[fp(o)] ~

where o € S, is a uniform random 231-avoiding.

S

Note: For other patterns the expectations for the number of fixed points
were computed by Elizalde (MIT thesis, 2004). Curiously, they are all O(1).

Main theorem also gives asymptotics for a large number of other statistics, such as
rank, A-rank, lis, last, etc.



2) Random permutation process:

Cn = CoChq + CiChg + ... + Chm1 G

©eoeo .- o0 ()
n n-1  n2 k k-1 2 1
() elele :c- 00
1 2 k n k-1 2 1

Here k is chosen with probability pp = %;’“‘1 o k732 (n — k —1)73/2.

Question: Can one define and compute the limit of this r.p.p. 7



Bonus: final miracle

Theorem (Robertson, Saracino and Zeilberger, 2003; Elizalde, 2004, Elizalde and P.,2004)

The number of 132-avoiding permutations with k fixed points and m excedances

is equal to the number of 321-avoiding permutations with & fixed points and m
excedances.



7. The mysterious Baxter surface

Baxter permutations: Permutations o € S,, such that there are no indices + < j < k
with 0(j+1) <o(i) <o(k) <o(j) or o(j) <o(k) <o(i) <o(j+1).

= ) () G

Bn = n n
= ()

Note: They are connected to tilings (Korn), to plane bipolar orientations (Bonichon —
Bousquet-Mélou — Fusy), and 3-tuples of non-intersecting paths (Dulucq — Guibert, Fusy —
Poulalhon — Schaefer). They were introduced in analytic context by Glen Baxter (1964).



Open Problem: What is the the limit shape of Baxter permutations?

Note: The bijections allow uniform generation, but don’t seem to be very helpful.

Note: Computation by Ted Dokos, UCLA.



Doubly alternating Baxter permutations

Theorem |[Guibert—Linusson, 2000]

The number of Baxter permutations o € Sy, (or Sa,11), such that both
o and o~! are alternating, is the Catalan number C,,.

Denote by B,, the set of such permutations.
Question: What is the limit shape of permutations B,,?

Let P(m,1,j) denote the probability that a random o € By, has o(i) = j.



Theorem [Dokos-P., 2014]
Let 0<a<f<1—a Wehave:
RS

m

P(m, [2am], |26m])

as m — o0,

where
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Final note: alternating permutations

Below is a plot of random o € Altsg, i.e. o(1) > 0(2) < o(3) > o(4) <...> o(500).
(only odd values are shown, boundary smoothened).

Right boundary is an inverted sin(z) curve, 0 < x < 7/2 [Diaconis-Matchett, 2012]

Conjecture: Limit shape of Alt, is horizontally flat.




Thank you!




