Old Problem:

Find *nice* bijections between combinatorial objects.
Specifically, between 200+ counted by the *Catalan numbers*.

New Problem:

Explain why some objects have *super nice* (canonical) bijections
while others do not (and what this all even means).

\[
C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{4^n}{\sqrt{\pi n^3}} \left(1 - \frac{9}{8n} + \frac{145}{128n^2} - \cdots \right)
\]
Plan:

1. Classical Catalan structures
2. Selected known results
3. Pattern avoidance
4. The results
5. Connections to probability
6. Applications
7. Alternating and Baxter permutations
1. Classical Catalan structures:

1) \(C_n = \) number of triangulations of \((n + 2)\)-gon (Euler, 1756)
2) \(C_n = \) number of non-associative products of \((n + 1)\) numbers (Catalan, 1836)

\[
((ab)c)d \quad (a(bc))d \quad (ab)(cd) \quad a((bc)d) \quad a(b(cd))
\]

3) \(C_n = \) number of binary trees on \((2n + 1)\) vertices
4) \(C_n = \) number of *plane trees* with \((n + 1) \) vertices
5) $C_n =$ number of *Dyck paths* of length $2n$

i.e. lattice paths $(0, 0) \rightarrow (n, n)$ below $y = x$ line.
Canonical bijections:

- Triangulations \leftrightarrow Binary trees
- Binary trees \leftrightarrow Non-associative products
- Binary trees \leftrightarrow Plane trees
- Plane trees \leftrightarrow Dyck paths

These can be extremely useful for studying asymptotics of combinatorial statistics and more generally the shape of combinatorial objects.
2. Selected asymptotic results:

Theorem (Aldous, 1991; DFHNS, 1999)
The p.d.f. of the maximal chord-length in a random triangulation of regular n-gon converges to

\[\frac{3x - 1}{\pi x^2 (1 - x)^2 \sqrt{1 - 2x}}, \quad \frac{1}{3} < x < \frac{1}{2}, \quad \text{as } n \to \infty. \]

Theorem (DFHNS, 1999)
$\Delta_n =$ maximal degree of a random triangulation of n-gon. Then for all $c > 0$

\[P(|\Delta_n - \log_2 n| < c \log \log n \to 1 \quad \text{as } n \to \infty. \]

DFHNS = Devroye, Flajolet, Hurtado, Noy and Steiger.
Theorem: Let δ_n be the degree of a root in a random plane tree with n vertices.

$$P(\delta_n = r) \to \frac{r}{2^{r+1}}, \quad E[r] \to 3 \quad \text{as} \quad n \to \infty.$$

Theorem: Let h_n height of a random plane tree with n vertices, m_n the height of a random Dyck path of length $2n$. Then:

$$h_n, m_n \sim \sqrt{\frac{\pi n}{2}}$$

3. Pattern avoidance:

Permutation $\sigma \in S_n$ contains pattern $\omega \in S_n$ if matrix $M(\sigma)$ contains $M(\omega)$ as a submatrix. Otherwise, σ avoids ω.

Example

$\sigma = (2,4,5,1,3,6)$ contains 132 but not 321.

$$M(\sigma) = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

contains

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

but not

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}$$
Patterns of length 3

\(s_n(\omega) := \text{number of permutations } \sigma \in S_n \text{ avoiding } \omega \)

Theorem (MacMahon, 1915; Knuth, 1968)
\(s_n(\omega) = C_n \) for all \(\omega \in S_3 \).

Two Observations:
\(s_n(123) = s(321), \ s_n(132) = s(231) = s_n(312) = s(213) \) via symmetries

[Kitaev]: Nine different bijections between 123- and 132-avoiding permutations.

Question: Can it be true that all nine and nice? How about canonical?

My Answer: No canonical bijection is possible. Here is why...
Simulations by Madras and Pehlivan

Monte Carlo simulation 1

Monte Carlo simulation 2

Figure: Randomly generated 312 avoiding permutation with N=100

Figure: Randomly generated 312 avoiding permutation with N=200
4. Shape of random pattern avoiding permutations

\[P_n(i, j) := \frac{1}{C_n} \sum_{\sigma} M(\sigma)_{ij}, \]

where the sum is over all 123-avoiding permutations.

\[Q_n(i, j) := \frac{1}{C_n} \sum_{\sigma} M(\sigma)_{ij}, \]

where the sum is over all 132-avoiding permutations.

Main Question: What do \(P_n(\ast, \ast) \) and \(Q_n(\ast, \ast) \) look like, as \(n \to \infty \)?
Shape of random 123-avoiding permutations (surface)

Surface $P_{250}(i,j)$ and the same surface in greater detail.
Shape of random 132-avoiding permutations (surface)

Surface $Q_{250}(i, j)$ and the same surface in greater detail.
Diagonal of $P_n(\ast, \ast)$ in details
Main Theorem for $P_n(\ast, \ast)$, [Miner-P.]

$$P_n(an, bn) < \varepsilon^n, \quad a + b \neq 1, \quad \varepsilon = \varepsilon(a, b), \quad 0 < \varepsilon < 1$$

$$P_n(an - cn^\alpha, (1 - a)n - cn^\alpha) < \varepsilon^{n^{2\alpha - 1}}, \quad \frac{1}{2} < \alpha < 1, \quad \varepsilon = \varepsilon(a, b, \alpha), \quad 0 < \varepsilon < 1$$

$$P_n(an - cn^\alpha, (1 - a)n - cn^\alpha) \sim \eta(a, c) \kappa(a, c) \frac{1}{\sqrt{n}}, \quad \alpha = \frac{1}{2}, \quad c \neq 0$$

$$P_n(an - cn^\alpha, (1 - a)n - cn^\alpha) \sim \eta(a, c) \frac{1}{n^{3/2 - 2\alpha}}, \quad 0 < \alpha < \frac{1}{2}, \quad c \neq 0$$

where

$$\eta(a, c) = \frac{c^2}{\sqrt{\pi(a(1 - a))^3}} \quad \text{and} \quad \kappa(a, c) = \exp \left[\frac{-c^2}{a(1 - a)} \right]$$
Diagonal of $Q_n(\ast, \ast)$ vs. $P_n(\ast, \ast)$
Main Theorem for $Q_n(*,*)$, macro picture:

$$Q_n(an, bn) < \varepsilon^n, \quad 0 \leq a + b < 1, \quad \varepsilon = \varepsilon(a, b), \quad 0 < \varepsilon < 1$$

$$Q_n(an, bn) \sim v(a, b) \frac{1}{n^{3/2}}, \quad 1 < a + b < 2$$

$$Q_n(n, n) \sim \frac{1}{4}$$

where

$$v(a, b) = \frac{1}{\sqrt{32\pi} \ (2 - a - b)^{3/2} \ (1 - a - b)^{3/2}}$$
Main Theorem for $Q_n(*,*)$, micro picture:

$$Q_n(an-cn^\alpha,(1-a)n-cn^\alpha) < \varepsilon^{n^{2\alpha-1}}, \quad \frac{1}{2} < \alpha < 1, \quad \varepsilon = \varepsilon(a,b,\alpha), \quad 0 < \varepsilon < 1, \quad c > 0$$

$$Q_n(an-cn^\alpha,(1-a)n-cn^\alpha) \sim z(a) \frac{1}{n^{3/2-2\alpha}}, \quad \frac{3}{8} < \alpha < \frac{1}{2}, \quad c > 0$$

$$Q_n(an-cn^\alpha,(1-a)n-cn^\alpha) \sim z(a) \frac{1}{n^{3/4}}, \quad 0 < \alpha < \frac{3}{8}$$

$$Q_n(an+cn^\alpha,(1-a)n+cn^\alpha) \sim y(a,c) \frac{1}{n^{3/4}}, \quad \frac{3}{8} < \alpha < \frac{1}{2}, \quad c > 0$$

$$Q_n(an+cn^\alpha,(1-a)n+cn^\alpha) \sim w(c) \frac{1}{n^{3\alpha/2}}, \quad \frac{1}{2} < \alpha < 1, \quad c > 0$$

$$Q_n(n-cn^\alpha,n-cn^\alpha) \sim w(c) \frac{1}{n^{3\alpha/2}}, \quad 0 < \alpha < 1, \quad c > 0$$

where

$$w(c) = \frac{1}{16c^{3/2}\sqrt{\pi}}, \quad y(a,c) = \left(1 + \frac{\zeta(3/2)}{\sqrt{\pi}}\right) \frac{c^2}{\sqrt{\pi} a^{3/4}(1-a)^{3/2}},$$

$$z(a) = \frac{\Gamma(3/4)}{2^{3/4} \pi a^{3/4}(1-a)^{3/4}}$$
Proof idea:

Lemma 1. For \(j + k \leq n + 1, \)
\[
P_n(j, k) = B(n - k + 1, j) B(n - j + 1, k),
\]
where
\[
B(n, k) = \frac{n - k + 1}{n + k - 1} \binom{n + k - 1}{n}
\]
are the ballot numbers.

Lemma 2.
\[
Q_n(j, k) = \sum_{r=\max\{0, j+k-n-1\}}^{\min\{j,k\}-1} B(n - j + 1, k - r) B(n - k + 1, j - r) C_r
\]

Proof of the Main Theorem = Lemmas + Stirling’s formula + [details]
Bijective combinatorics:

123-avoiding permutations \mapsto_{RSK} Pairs of SYT \mapsto Dyck paths

Corollary: $P_n(i, j) = \text{Probability that random Dyck path is at height } j$

after $(i + j)$ steps

132-avoiding permutations \mapsto Binary trees
5. Connections to Probability:

Random Dyck paths \rightarrow Brownian excursion

This explains everything!

Hint:

1. heights in Dyck paths \leftrightarrow distances to anti-diagonal in 123-av
2. tunnels in Dyck paths \leftrightarrow distances to anti-diagonal in 132-av
6. Applications

Corollary [Miner-P.]

Let \(fp(\sigma) \) denote the number of fixed points in \(\sigma \in S_n \).

\[
\mathbb{E}[fp(\sigma)] \sim \frac{2\Gamma\left(\frac{1}{4}\right)}{\sqrt{\pi}} \cdot n^{\frac{3}{4}}, \quad \text{as } n \to \infty.
\]

where \(\sigma \in S_n \) is a uniform random 231-avoiding.

Note: For other patterns the expectations for the number of fixed points were computed by Elizalde (MIT thesis, 2004). Curiously, they are all \(O(1) \).

Main theorem also gives asymptotics for a large number of other statistics, such as rank, \(\lambda \)-rank, lis, last, etc.
2) Random permutation process:

\[C_n = C_0 C_{n-1} + C_1 C_{n-2} + \ldots + C_{n-1} C_0 \]

Here \(k \) is chosen with probability
\[\rho_k = \frac{C_k C_{n-k-1}}{C_n} \propto k^{-3/2} (n - k - 1)^{-3/2} \]

Question: Can one define and compute the limit of this r.p.p.?
Bonus: final miracle

Theorem (Robertson, Saracino and Zeilberger, 2003; Elizalde, 2004, Elizalde and P., 2004)

The number of 132-avoiding permutations with k fixed points and m excedances is equal to the number of 321-avoiding permutations with k fixed points and m excedances.
7. The mysterious Baxter surface

Baxter permutations: Permutations $\sigma \in S_n$ such that there are no indices $i < j < k$ with $\sigma(j + 1) < \sigma(i) < \sigma(k) < \sigma(j)$ or $\sigma(j) < \sigma(k) < \sigma(i) < \sigma(j + 1)$.

$$B_n = \sum_{k=1}^{n} \frac{(n+1)\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{1} \binom{n+1}{2}}{(n+1) \binom{n+1}{k+1} \binom{n+1}{2}}$$

Note: They are connected to tilings (Korn), to plane bipolar orientations (Bonichon – Bousquet-Mélou – Fusy), and 3-tuples of non-intersecting paths (Dulucq – Guibert, Fusy – Poulalhon – Schaefer). They were introduced in analytic context by Glen Baxter (1964).
Open Problem: What is the the limit shape of Baxter permutations?

Note: The bijections allow uniform generation, but don’t seem to be very helpful.

Note: Computation by Ted Dokos, UCLA.
Doubly alternating Baxter permutations

Theorem [Guibert–Linusson, 2000]
The number of Baxter permutations \(\sigma \in S_{2n} \) (or \(S_{2n+1} \)), such that both \(\sigma \) and \(\sigma^{-1} \) are alternating, is the Catalan number \(C_n \).

Denote by \(B_n \) the set of such permutations.

Question: What is the limit shape of permutations \(B_m \)?

Let \(P(m, i, j) \) denote the probability that a random \(\sigma \in B_{2m} \) has \(\sigma(i) = j \).
Theorem [Dokos–P., 2014]
Let \(0 < \alpha < \beta < 1 - \alpha \). We have:
\[
P(m, \lfloor 2\alpha m \rfloor, \lfloor 2\beta m \rfloor) \sim \frac{\varphi(\alpha, \beta)}{m} \quad \text{as} \quad m \to \infty,
\]
where
\[
\varphi(\alpha, \beta) = \frac{1}{8\pi} \int_0^\alpha \int_0^{\alpha-y} \frac{dx\,dy}{(x+y)(\beta-x)(1-\beta-y)^{3/2}}.
\]
Final note: alternating permutations

Below is a plot of random $\sigma \in \text{Alt}_{500}$, i.e. $\sigma(1) > \sigma(2) < \sigma(3) > \sigma(4) < \ldots > \sigma(500)$. (only odd values are shown, boundary smoothened).

Right boundary is an inverted $\sin(x)$ curve, $0 < x < \pi/2$ [Diaconis–Matchett, 2012]

Conjecture: Limit shape of Alt_n is horizontally flat.
Thank you!