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Math 206B Lecture 1 Notes

Daniel Raban

January 7, 2019

1 Teaser of Course Topics

This lecture will be an advertisement for the topics in the course.1

1.1 Combinatorics of Sn and applications

We denote [n] := {1, . . . , n}.

Definition 1.1. The symmetric group Sn is the group of bijections σ : [n]→ [n].

We can write permutations as products of cycles.

Example 1.1. The permutation σ =
(
5 1 2 4 3

)
represents the bijection sending

1 7→ 5, 2 7→ 1, etc.

The conjugacy classes of Sn are the different cycle types. These correspond to partitions
of n. Let p(n) be the number of conjugacy classes of Sn. Euler showed that

1 +
∞∑
n=1

p(n)tn =
∞∏
i=1

1

1− ti
.

What does this all have to do with the symmetric group itself? Here is Percy MacMa-
hon’s version of the story. If we have a partition, we can think of it as a sequence of
numbers, padded with zeros at the end to make it infinite. We can write∑

λ∈P
t|λ| =

∞∏
i=1

1

1− ti
.

If we write the partition over and over in a grid (chopping off an element from the front
each time, we can get what is called a plane partition. This gives us∑

A∈PP
t|A| =

∞∏
i=1

1

(1− ti)i
,

1This is an advertisement of an advertisement, much like the ad before watching a trailer online.
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where |A| =
∑

i,j ai,j is the sum of the numbers in the plane partition. Why should this
be true? This is actually related to the representation theory of Sn.

MacMahon made a conjecture for higher dimensions:

Theorem 1.1. ∑
A∈P(d)

t|A| =
∏ 1

(1− ti)(id−1)
.

This does not work. It actually fails for d = 3 and a low coefficient like the coefficient
of t7. MacMahon did not understand why the formula was true, even though he proved it.
Irreducible representations of Sn will correspond to partitions of n Pn := {λ ∈ P : |λ| = n}
because these correspond to conjugacy classes of Sn.

Theorem 1.2 (A. Young, 1897). Let fλ be the dimension of Sλ. Then fλ is the number
of standard Young tableau with shape λ.

Definition 1.2. Given a partition λ, the young diagram of λ is the partition expressed as
stacked rows of boxes.

Example 1.2. Take λ = (4, 3, 3, 2, 1). The Young diagram of λ is

Definition 1.3. A Young tableau is a Young diagram where we fill in the boxes with
the numbers 1 to n, according to the rule that the numbers have to be increasing going to
the right and going down.

Example 1.3. Here is a Young tableau:

1 2 3 7

4 5 10

6 8

9 12

11

Theorem 1.3 (FRT, c.1960). fλ = n!∏
i,j hi,j

, where hi,j is the length of the hook starting

from position i, j and going to the right and downwards.

From representation theory, we can get that fλ | |Sn|, so we know that fλ is n! divided
by something. The magic is in what that something is.
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1.2 Representation theory of GLn(C)

A basic representation of GLn(C) is ρM is the matrix M acting on Cn. Another represen-
tation is the determinant map. We will find that representations of GLn(C) correspond to
sequences λ1 ≥ λ2 ≥ · · · ≥ λn.

Theorem 1.4 (Weyl). dim(ρλ) equals the number of semistandard Young tableau with
shape λ.

This will be another remarkable product formula. This, paired with the hook-length
formula, will pave the way for a nice proof of MacMahon’s formula.

1.3 Young graph

Definition 1.4. The Young graph is the graph with vertices λ ∈ Γ, and edges (λ, µ
where µ \ λ is a single difference.

Essentially, we have taken all young diagrams and made an undirected graph, partially
ordering them by containment.

Theorem 1.5. The number of loops of length 2n (that do not zigzag up and down) in the
Young graph is n!.

Proof. We can prove this using basic representation theory.

# loops =
∑
λ∈Pn

(# paths φ→ λ)2 =
∑
λ∈Pn

SYT(λ)2 =
∑
λ∈Pn

(fλ)2 = |Sn| = n!

What about general loops?

Theorem 1.6. The number of general loops is (2n− 1)!!.
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1 Representation Theory of Finite Groups

This is meant to remind you of basic results in representation theory. Good references are
Chapter 1 of Sagan’s book and the book by Fulton and Harris.1

1.1 Conjugacy classes and characters

Let G be a finite group. There is an action of G on G in the following way: a · g = aga−1.
This is the action of conjugation, where conjugacy classes are the orbits of the action. In
other words, g ∼ h if g = aha−1 for some a ∈ G; conjugacy classes are equivalence classes
under this relation. We will denote c(G) as the number of conjugacy classes of G.

Example 1.1. Let G = Zn be the cyclic group of order n. Then c(Zn) = n.

Example 1.2. Let G = Sn. Then c(Sn) = p(n), the number of integer partitions of n.

Definition 1.1. A character χ1 : G → C is a function such that χ(g) = χ(h) whenever
g ∼ h.

Example 1.3. The trivial character is χ(g) = 1 for all g.

Example 1.4. Let G = Sn. The sign character is χ(σ) = sign(σ).

Theorem 1.1. dim(span(characters χ) = c(G).

Definition 1.2. The inner product on characters is defined as

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).

Example 1.5. If n ≥ 2, then

〈χ, sign〉 =
1

n!

∑
σ∈Sn

sign(σ) · 1 =
1

n!

(
n!

2
− n!

2

)
= 0.

Example 1.6. Suppose G = Zn. Let ω = e2πi/n. For each j, we have a character
χj(k) = ωjk.

1This is Professor Pak’s opinion. I hate this book.
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1.2 Linear representaitons

Let V = Cd. The group GL(V ) = GLd(C) is the group of automorphisms of V .

Definition 1.3. A representation is a group homomorphism ρ : G→ GL(V ).

Here are operations we can do on representations:

1. If we have ρ : G→ GL(V ), π : G→ GL(W ), then we can form ρ⊕π : G→ GL(V ⊕W )
by acting on the individual parts of the vector space by the respective actions.

2. We can form ρ⊗ π : G→ GL(V ⊗W ). The dimension of ρ⊗ π is dim(V ) dim(W ).

3. Reduced representations: If we have ρ : G→ GL(V ) and H ≤ G, we can define ρ ↓GH
as the restriction of ρ to H.

4. Induced representations: If we have π : H → GL(W ), there is an induced represen-
tation π ↑GH : G→ GL(W⊗h), where h := [G : H] = |G|/|H|.

Example 1.7. The trivial representation maps g 7→ idV for all g ∈ G.

Example 1.8. The regular representation π : G → GL(C|G|) acts on a basis indexed
by all g ∈ G by a · vg = vag.

Example 1.9. The natural representation ρ : Sn → GLn(C) sends σ to its permutation
matrix (applying the permutation to the basis vectors {e1, . . . , en}).

If we have a representation ρ : G toGL(V ), we can define its character χrho by χρ(g) =
tr([ρ(g)]). Since tr(AB) = tr(BA), tr(BAB−1) = tr(A). So χρ is in fact a character in the
previous sense.

Remark 1.1. Even though tr(AB) = tr(BA), then tr(ABC) 6= tr(CBA).

We also have tr(A+B) = tr(A)+tr(B). However, we do not have tr(AB) = tr(A) tr(B).

Example 1.10. Let π be the regular representation of G. Then

χπ(σ) =

{
n! σ = 1

0 σ 6= 1.

Example 1.11. Let ρ be the natural representation of Sn. Then χρ(σ) is the number of
fixed points of σ.

Example 1.12. Here is an example of a reduced representation. Let G = Sn, and H = Zn.
Let ρ be the natural representation of Sn. Then ρ ↓Sn

Zn
is the regular representation of Zn.
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1 Irreducible Representations and Characters

1.1 Irreducible representations

Recall that if π, ρ are representations of G, then π ⊕ ρ is well-defined.

Definition 1.1. A representation ρ is irreducible if ρ 6= π ⊕ π′.

Theorem 1.1. Let G be a finite group. There exists a finite number of irreducible rep-
resentations ρ0, ρ1, . . . such that every π =

⊕
miρi for some coefficients mi. Moreover,

mi = 〈χπ, χρi〉.

In other words, {χρi} is an orthonormal basis in the space of functions f : G→ C that
are constant on conjugacy classes.

Remark 1.1. The decomposition π =
⊕
miρi is non-unique. G can act on V = Cd

trivially. This representation is π =
⊕
dρ0. Any basis will work. When all mi are 0 or 1,

this decomposition is in fact unique.

Example 1.1. Let π be the regular representation of G. Let χi be the character of an irre-
ducible representation. Thenmi = 〈χπ, χi〉 = |G|−1

∑
g∈G χπ(g)χi(g) = |G|−1χπ(1)χi(1) =

|G|−1|G| dim(ρi).

1.2 Irreducible characters and character tables

Let χ0, . . . , χc−1 be the characters of the irreducible representations of G, where c = c(G).
Then 〈χi, χj〉 = δi,j . Let di = χi(1) = dim(ρi).

Theorem 1.2.
∑

i d
2
i = |G|.

Theorem 1.3. di | |G| for all i.

Theorem 1.4. All χi are real iff C−1 = C for all conjugacy classes C of G.

Let’s calculate character tables of irreducible representations of Sn.
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Example 1.2.
S2 id (1 2)

χ0 1 1
χ1 1 −1

For every n, there is the character χsign(σ) = (−1)inv(σ), where inv(σ) is the number of
the inversions.

Proposition 1.1. inv(στ) ∼= inv(σ) + inv(τ) (mod 2)..

Here is the character table for S3:

Example 1.3.
S3 id (1 2) (1 2 3)

χ0 1 1 1
χsign 1 −1 1
χ1 2 0 −1

How do we find the values for χ1? The first value is the dimension of the representation.
Since χ0 + χsign + 2χ1 = χπ, we can figure out the rest of the values.

What is the representation corresponding to the character χ1? We can calculate
〈χ0, χnat〉 = dim(ρG) or, combinatorially, = |G|−1

∑
σ∈Sn

fixed pts(σ)·1 = 1
n!

∑n
i=1

∑
σ(i)=i 1 =

1
n!n(n− 1)! = 1. Then χ1 = χnat − χ0.

Example 1.4.
S4 id (1 2) (1 2 3) (1 2)(3 4) (1 2 3 4)

χ0 1 1 1 1 1
χsign 1 −1 1 1 −1
χ1 3 1 0 −1 −1
χ′1 3 −1 0 −1 1
χ2 2 0 −1 2 0

We can figure out χ1 as the number of fixed points minus 1. Here, χ′1 = χ1 · χsign. We can
figure out χ2 using the regular representation, as before.
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1 Characters of Sn

1.1 Induced Mµ representations and µ-flags

Last time, we found a character of S4, but we didn’t quite know what representation it
corresponded to. Let’s try to understand this a little better.

Definition 1.1. Let µ = (µ1, . . . , µk) be a partition of n. Define

Mµ = indSnSµ1×···×Sµk
1.

Example 1.1. Let µ = (n − 1, 1). then Mn−1,1 = indSnSn−1
1. dim(Mn−1,1) = n. This is

the natural representation.

Definition 1.2. Let µ = (µ1, . . . , µk) be a partition of n. A µ-flag on [n] is ∅ ⊆ A1 ⊆
A2 ⊆ · · · ⊆ [n] such that |A1|+ µ1, |A2| = µ1 + µ2, and so on.

Example 1.2. Let µ = (n−k, k), where 1 ≤ k ≤ n/2. Then µ-flags are in correspondence
with (n− k) subsets of [n]: ∅ ⊆ A1 ⊆ [n].

Example 1.3. Let µ = (1n). µ-flags are in correspondence with Sn, where σ 7→ A1 ⊆
· · · ⊆ An, and Ai = {σ(1), σ(2), . . . σ(i)}.

1.2 Structure of the Mµ representations of Sn

Definition 1.3. Let G be a finite group, and let X be a finite set. Let G � X. Then
there is a permutation representation ϕ : G→ SX .

Equivalently, there is a permutation representation ρϕ : G → GL(V ) over C, where
V = C 〈x〉.

Proposition 1.1. Mµ is a permutation representation of Sn on µ-flags of [n] = {1, . . . , n}.
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Example 1.4. Let µ = (22). Then Mµ is the permutation representation of Sn on 2-
subsets of [4]. dim(M22) =

(
4
2

)
= 6. We claim that M22 = S(4)⊕S(3,1)⊕S(22), where these

refer to the irreducible representations of S4. Let’s calculate χ
M22 :

λ 14 2 12 22 3 1 4

χ
M22 6 2 2 0 0
zλ 1 6 3 8 6

Proposition 1.2. Let ν = (ν1, ν2, . . . ) = 1m1(ν)2m2(ν) · · · be a partition of n, where mi is
the number of is in ν. Then

zν =
n!

(m1!1m1)(m2!2m2) · · ·
.

Theorem 1.1. Mµ =
⊕

λmµ,λS
λ, where

mµ,λ := 〈Mµ, Sλ〉 =
1

n!

∑
ν

zνχMµ [ν]χSλ [ν].

Theorem 1.2. The matrix [mµ,λ] has nonnegative integer entries and is upper triangular
with 1s on the diagonal, where λ ≤ µ is the lexicographic order.
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1 Tableau

1.1 Young diagrams and tableau

We want to work toward the following theorem:

Theorem 1.1. Mµ =
⊕

λ≥µmµ,λS
λ, where

mµ,λ := 〈Mµ, Sλ〉 =
1

n!

∑
ν

zνχMµ [ν]χSλ [ν].

Definition 1.1. Given a partition λ, the Young diagram of λ is the partition expressed
as stacked rows of boxes.

Example 1.1. Take λ = (4, 3, 3, 2, 1). The Young diagram of λ is

Definition 1.2. A standard Young tableau1 is a Young diagram where we fill in the
boxes with the numbers 1 to n, according to the rule that the numbers have to be increasing
going to the right and going down.

Example 1.2. Here is a Young tableau:

1 2 3 7

4 5 10

6 8

9 12

11

1The plural of tableau is tableaux.
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1.2 Poly-tabloids and their relation to irreducible representations of Sn

Definition 1.3. A tabloid is a Young diagram filled with the numbers {1, . . . , n}. A
standard tabloid is the same thing, except you need that numbers are increasing going
to the right.

Example 1.3. Here is a tabloid:

3 5 6 8 10 11

1 2 7 13

4 12

Observe that λ-tabloids are in bijection with λ-flags.

Definition 1.4. A poly-tabloid is an equivalence class of tabloids under the action of
Sλ1 × Sλ2 × · · · .

Let Rλ = Sλ1 × Sλ2 × · · · be the group of row permutations on λ-tabloids, and let
Cλ = Sλ′1 × Sλ′2 × · · · be the group of column permutations on λ-tabloids.

Let
Xλ =

∑
σ∈Cλ

sign(σ)σ

be an element of the group algebra C[Sn].

Example 1.4. Let λ = (3 2).

1 2 3

4 5

Then Xλ = (1− (1 4))(1− (2 5)). where 1 is the identity in the group algebra.

We can also think of Mλ as Sn acting on C 〈λ− poly-tabloids〉. Define et := Xt{t},
where Xt is the projection of X onto C 〈{t}〉.

Example 1.5. Suppose

t = 4 1 2

3 5

Then

et = 4 1 2

3 5
− 3 1 2

4 5
− 4 5 2

3 1
+ 3 5 2

4 5

Theorem 1.2. The Sn action on et for t a λ-tabloid is an irreducible representation Sλ.

What is the idea here? Start with λ, and construct a λ-tabloid t. Now Xt is the element
of C[Sn] corresponding to t. Then et = Xt{t} is a linear combination of poly-tabloids. If
we let Wλ = C 〈{t}〉 be the linear span of poly-tabloids (Mλ acts on Wλ), then σ · et ∈ Eλ.
Now we can think of C 〈{σet : σ ∈ Sn}〉. The claim is that this is isomorphic to Sλ. That
is, if we define Sλ like this, then the claim is that these are all irreducible and distinct.
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1 Examples, Dimension, and Irreducibility of Sλ

1.1 Examples of Sλ

Let t be a tabloid, and consider C 〈σ · et : σ ∈ Sn〉 = Sλ.

Example 1.1. Let λ = (n). There is a single poly-tabloid,

1 2 3 · · · n

Sn acts trivially on this, so S(n) = 1.

Example 1.2. Let λ = (1n). The poly-tabloids correspond to permutations:

σ 7→
σ(1)

σ(2)

...

σ(n)

Let
∑

σ∈Sn
sign(σ)σ = X ∈ C[Sn]. Then π · X = sign(π)X .

Example 1.3. Let νk = (n − k, 1k). Then Mνk = indSn
Sn−k×1×···×1 1. The dimension is

dim(Mνk) = n!/(n− k)!. What is Sνk? Permutations do not act on the columns, but they
permute the elements in the first column. Let v =

∑
σ∈Sk+1

sign(σ)σ. What is π · v = w?

In general C 〈πet〉 will be a representation of Sn.

Example 1.4. Let λ = (2, 2). Let

t =
1 2

3 4

1



Then

v = 1 2

3 4
+ 3 2

2 4
− 1 4

4 2
+ 3 4

1 2

Then (1 2)v = v and (3 4)v = v. We can also calculate

(3 4)v =
1 3

2 4
+

2 3

1 4
− 1 4

2 3
+

2 4

1 3
:= w.

Then Mµ is a 2-dimensional vector space spanned by v, w.

1.2 Dimension and irreducibility of Sλ

Lemma 1.1. Let Sλ be as above.

1. dim(Sλ) = fλ = # SYT(λ).

2. n! ≤
∑

λ(fλ)2, where equality holds iff Sλ is irreducible for each λ.

Definition 1.1. The dominance order on partitions is the partial order λ E µ if λ1 +
· · ·+ λk ≥ µ1 + · · ·+ µk for all k.

We had that Mλ =
⊕

µEλmλ,µS
µ. The proof of the inequality in the 2nd statement

comes from this fact.
How should we prove the equality in statement 2 of the lemma? Suppose G is a finite

group. We have both a left and a right action of G � C[G]. This gives us a G × G
representation,

⊕
π π ⊗ π, where the sum is over all irreducible representations. We want

to view this equation as n! being the order of the group, and the (fλ)2 terms being the
tensor product of two irreducible representations. It is hard to do this in general, but it
will work in the symmetric group. This is called the RSK correspondence.
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1 The Robinson-Schensted Algorithm

1.1 Description of the algorithm

Recall Burnside’s identity:

Proposition 1.1. ∑
λ

(fλ)2 = n!,

where
fλ = dim(Sλ) = χλ(1) = # SYT(λ).

We want a bijection between the symmetric group and the set of pairs (A,B), where
A,B are SYT(λ) for some partition λ of n. We usually write the bijection Φ as σ 7→ (P,Q),
where P is called the insertion tableau and Q is called the recording tableau.

Example 1.1. Let σ = 4 2 7 3 6 1 5 be a permutation. For each partial reading of the
string representing σ, the algorithm will produce an outcome.

First, we start with the 4. Here are our two tableaux.

4 1

Now let’s add the 2. It can’t go to the right of the 4, so it pushes the 4 down. We record
the move into our right (recording) tableau:

2

4

1

2

Now we add the 7. It is bigger than the 2, so it goes to the right.

2 7

4

1 3

2

1



Now we add the 3. It bumps down the smallest number in the first row that is bigger than
it, the 7. When the 7 moves down, it does not need to bump the 4:

2 3

4 7

1 3

2 4

Now let’s add in the 6.
2 3 6

4 7

1 3 5

2 4

What happens when we put in the 1? It is smaller than 2, so it bumps the 2 down. Doing
the same process, the 2 is going to bump down the 4:

1 3 6

2 7

4

1 3 5

2 4

6

Finally, we can add in the 5:

P =
1 3 5

2 6

4 7

Q =
1 3 5

2 4

6 7

Theorem 1.1 (R-S, 1961). The map Φ : Sn → {(A,B) : A,B ∈ SYT(λ), |λ| = n} is a
bijection.

Proof. Here are the steps:

1. The map Φ is well defined.

2. P,Q ∈ SYT(λ) for some partition λ of n.

3. Φ−1 is well-defined.

The first two are easy to convince yourself of. For the third, run the algorithm in reverse
and see that it outputs the original permutation.1

1Back in the 60s, people used to listen to songs backwards to find hidden messages. This is same same,
except there is actually a message if you go backwards.
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1.2 Properties of the RS algorithm

This bijection is natural in some sense. It actually exhibits the following remarkable prop-
erty!

Theorem 1.2. Suppose Φ(σ) = (P,Q). Then Φ(σ−1) = (Q,P ).

We will not prove this now, but we will prove it later in the course.

Theorem 1.3 (Schensted). Let Φ(σ) = (P,Q), where P,Q ∈ SYT(λ). Then λ1 is the
length of the longest increasing subsequence in σ.

Proof. Proceed by induction. We claim that λ1 of Pi is the longest increasing subsequence
of σ = σ1 · · · σi, where Pi is the insertion tableau at the i-th step. Suppose we have
[a1 · · · ar]σi+1, where a1 · · · ar is the longest increasing subsequence in the permutation.
If σi+1 > ar, then we must add a number to the first row because nothing gets bumped
down. If ar > σi+1, then something in the first row gets bumped down.

How does one come up with an algorithm like this? Schensted was a graduate student
at either Berkeley or Stanford.2 Schensted had a roommate, Floyd, who later became a
famous computer scientist. They were interested in sorting things like solitaire (place the
newest card on the heap with the smallest number). Schensted saw the above property
and found it interesting. The rest of the story will have to wait until next time.

2Professor Pak doesn’t remember which.
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1 The RSK Algorithm

1.1 Semi-standard Young tablaeux

We will extend the RS-algorithm, which gave a bijection Φ : Sn →
∐
|λ|=n SYT(λ)2. RSK

will give a bijection Φ : M(a, b)→
∐
|λ|=N SSYT(λ, a)×SSYT(λ, b). Here, a = (a1, . . . , an),

b = (b1, . . . , bn), and N = |a| = |b| = a1 + · · · + an = b1, . . . , bn. M(a, b) is the set of N+

n × n matrices with row sums a1, . . . , an and column sums b1, . . . , bn. SSYT(λ, a) is the
set of semi-standard Young tableaux of shape λ and weight a.

Definition 1.1. A semi-standard Young tableau of shape λ is a Young tableau where
we are allowed to have numbers reused, and we have numbers are weakly increasing as we
go to the right. The weight of a semi-standard Young tableau is (m1,m2, . . . ), where mi

is the number of is in A.

Example 1.1. If a = e = (1, . . . , 1), then SSYT(λ, a) = SYT(λ). Then M(a,a) is the
number of 0-1 matrices with ros sums equal to 1 and column sums equal to 1. So the
number of such matrices is |Sn| = n!. This special case is the case of R-S.

Example 1.2. Let n = 2, and a = (m,m) = b. Then #M(a, b) = m+1 because the entire
matrix is determined by the upper left entry:[

∗
]

The right hand side is
∐
|λ|=2m SSYT(λ, a)2. Note that λ = (λ1, λ2). Otherwise, SSYT(λ, a) =

0. The number of such λ is m+ 1:

1 1 · · · 1 1 1

2 · · · 2

This case is very different from the R-S case.

1



1.2 Description of the algorithm

Given M ∈M(a, b), we first need to turn M into a word.

Example 1.3. Here is how we turn a matrix into a word.2 0 3
1 4 1
3 1 1

→ 1 1 3 3 3 1 2 2 2 2 3 1 1 1 2 3

We have 2 1s, then 0 2s, then 3 3s. Then we have 1 1, 4 2s, and 1 3. Continue like this.

Now we will proceed by applying the R-S bumping procedure to this word.

Example 1.4. Start with the previous word. Our partial outputs are

1 1 3 3 3

1 1 1 3 3

3

1 1 1 2 3

3 3

1 1 1 2 2

3 3 3

and so on.

This gives us anA ∈ SSYT(λ, b). How do we make our corresponding recording tableau?
The numbers that come from row i on the matrix get recorded in our recording tableau as
i. We fill in the shape of the insertion tableau as the shape of the insertion tableau evolves.

Example 1.5. Our partial outputs for the recording tableau are

1 1 1 1 1

1 1 1 3 3

2

1 1 1 2 2

2 2

1 1 1 1 1

2 2 2

and so on.

2



1.3 Properties and relationship to representation theory

Theorem 1.1 (Knuth, c. 1980). RSK is a bijection.

Proof. Here is what we need to show:

1. Φ is well-defined.

2. Φ−1 is well-defined.

Like before, we can prove these step by step and induct on the number of steps.

Theorem 1.2. If Φ(M) = (A,B), then Φ(M>) = (B,A).

From representation theory, we had the decomposition Mµ =
⊕
|λ|=nmλ,µS

λ. Here,

Mµ = indSnSµ1×Sµ2×···
1. Take a = (a1, . . . , ak). We can define Ma = indSNSa1×Sa2×···

1, where

N = a1 + · · ·+ ak.

Theorem 1.3.
Ma =

⊕
|λ|=N

mλ,aS
λ,

where mλ,a = # SSYT(λ, a).

Why should this be true?

#M(a, 1N ) =
N !

a1!a2! · · ·
= dim(Ma).

M(a, 1N ) =
∑
|λ|=N

# ∈ SSY T (λ, µ) ·# SYT(λ).

Now
M(a, b) = 〈χMa , χMb〉 = dim Hom(Ma,M b).

3
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1 Geometric RSK

1.1 Longest value of a path in RSK

Let Φ denote the R-S algorithm, and let Φ̂ denote RSK. For Φ, we had a property about
the longest increasing subsequence of a permutation. What about for Φ̂?

Example 1.1. When we run RSK on 2 0 3
1 4 1
5 3 1


we get the pair of tableau

1 1 1 1 1 1 1 1 2 2 2 3

2 2 2 2 3

3 3 3

1 1 1 1 1 2 2 2 3 3 3 3

2 2 2 3 3

3 3 3

Then λ1 = 12, which happens to be the sum of the numbers in the longest path from top
left to bottom right : 2 + 1 + 5 + 3 + 1 = 12.

Theorem 1.1. Let Φ̂(M) = (A,B) have shape λ. Then λ = γ(M), where γ is the
maximum total value of a path from (1, 1) to (n, n).

1



1.2 Geometric RSK

How would we feed a semistandard Young tableau to a computer? We want to think of
A = (λ ⊇ · · · ⊇ µ(2) ⊇ µ(1)), where µi is the shape of the tableau, only looking at the
numbers ≤ i.

Example 1.2. For the tableaux

1 1 1 1 1 1 1 1 2 2 2 3

2 2 2 2 3

3 3 3

1 1 1 1 1 2 2 2 3 3 3 3

2 2 2 3 3

3 3 3

we get
12 11 8

5 4
3

12
8 5
5 3 3

We can put these together into a matrix12 11 8
8 5 4
5 3 3

 .
The output of RSK can then be sent to a computer as x = (xi,j) such that

• xi,j ≥ 0

• xi,j ≤ xi,j+1, xi+1,j

•
∑

i−j=n−c xi,j = a1 + · · ·+ ac

•
∑

j−i=n−c xi,j = b1 + · · ·+ bc, where 0 ≤ c ≤ n.

This defines a polytope. So we can think of Φ̃ : M̃(a, b)→ X̃(a, b), where the left hand
side takes a polytope defined by a matrix, and the the right side outputs a polytope defined
by a matrix.

Theorem 1.2. Φ̃ is piecewise linear, volume preserving, and continuous.

These polytopes were invented by Gelfand and Tseitlin. This was further developed in
a paper by Gelfand and Zelevinsky.

2



1.3 Further generalization of RSK

Let |ν| = k be a Young diagram. Let

Pν(a, b) =

f : ν → R+ s.t. f(i, j) ≤ f(i, j + 1), f(i+ 1, j),
∑
j

f(i, j) = ai,
∑
i

f(i, j) = bj


Qν(a, b) =

g : ν → R+ s.t.
∑
i−j=c

g(i, j) = dc ∀c

 ,

where dc is something.

Theorem 1.3. There exists Φ∗ sending Pν(a, b) → Qν(a, b) which is piecewise linear,
continuous, volume preserving and a bijection Φ∗ : Pν ∩ Zk → Qν ∩ Zk.
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1 RSK: The Final Chapter

1.1 Diagonals in Young diagrams and generalizing geometric RSK

Let ν be a partition of k, and let f : ν → R+ be a function on squares of the Young
diagram. Define the diagonal sums αc :=

∑
i−j=c f(i, j), where c ∈ Z. Similarly, define

βc :=
∑rc

i=1

∑sc
j=1 f(i, j), where c ∈ Z.

Example 1.1. Consider the following partition.

Then
α−1 = f(1, 2) + f(2, 3) + f(3, 4) + f(4, 5)

and (rc, sc) = (5, 4) is the position of the lowermost square on this diagonal.

Theorem 1.1. Fix d, and let

Pν(d) = {f : ν → R+ | f(i, j) ≤ f(i+ 1, j) ≤ f(i, j + 1), αc(f) = dc ∀c},

Qν(d) = {g : ν → R+ | βc(f) = dc ∀c}.

Then there exists some Φ : Pν(d)→ Qν(d) such that Φ is

1. piecewise linear,

2. volume-preserving,

1



3. continuous,

4. Φ : Pν ∩ ZL → Qν ∩ ZK .

Moreover, Φ commutes with transposition.

Corollary 1.1. The number of integer points in Pν(d) is the same as the number of integer
points in Qν(d).

Corollary 1.2 (reduction to RSK).

#M(a, b) =
∑
λ

# SSYT(λ, a)×# SSYT(λ, b)

Example 1.2. Let ν(``) be an ` × ` square. If we split it up along the diagonal, we get
two tableaux, a SSYT(λ, (d0 − d−1, d−1 − d−2, . . . )) and a SSYT(λ, (d0 − d1, d1 − d2, . . . )).
So in the case of a square, we get RSK.

1.2 Description and proof of generalized geometric RSK

Let’s prove the theorem.

Proof. Proceed by induction. If λ = ∅, we are done, and if λ is a square, we are also done
because P and Q are the same. Let r− s = c, so (rc, sc) = (r, s). And let ν = ν− (r, s); we
are removing a box from the diagram at position (r, s) on the boundary of the diagram.
We have Φν : P nu → Qν , and we want to get Φν .

Draw a diagonal from the square (r, s) up and left. We want to alter boxes on the
diagonal. Take ξ sending f(i, j) 7→ max{f(i − 1, j), f(i, j − 1)} + min{f(i,+1, j), f(i, j +
1)} − f(i, j). Call this f(i, j). Then we get f 7→ f ∈ Pν 7→ g ∈ Qν . How do we get g ∈ Qν
from g? Just add the last square by setting g(r, s) := f(r, s)−max{f(r−1, s), f(r, s−1)}.

Why is Φ is well-defined? Note that no two adjacent diagonals can contain corners.
Now think about the order of the squares we chop off and replace. If we write this order
in reverse, we get a Young tableau. We claim that if Γ is a graph on SYT(ν) with (i, i+ 1)
swaps allowed in distinct diagonals, then Γν is connected. If we keep switching to put every
number in our tableau in lexicographic order, we will eventually get the full lexicographic
ordering. So the graph Γν is connected, which makes this process well-defined.

Example 1.3. Take the element of Pν

1 1 4

2 3 4

4 4 5

2



Chop off the 5 in the bottom right hand corner, and alter the diagonal of that 5. After
replacing the space of the 5, we get

0 1 4

2 3 4

4 4 1

Now chop off the 4 on the right in the bottom row and alter its diagonal. After replacing
that 4, we get

0 1 4

1 3 4

4 0 1

Continue like this, replacing one square at a time in the corner (of the diagram, only
counting squares we haven’t chopped off and replaced) and altering its diagonal until we’ve
altered everything.

0 2 4

1 3 0

4 0 1

1 2 4

1 1 0

4 0 1

1 2 2

1 1 0

4 0 1

Continuing like this, we eventually get

1 1 2

0 1 0

3 0 1

3
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1 RSK: The (final) Final Chapter

1.1 Properties of generalized RSK

Theorem 1.1. Φ : Pν(d)→ Qν(d) is

1. piecewise linear,

2. volume-preserving,

3. continuous,

4. Φ : Pν ∩ ZK → Qν ∩ ZK .

We had Φ = ξ(rn,sn) ◦ ξ(rn−1,sn−1) ◦ · · · , where ξ(ri,si) is the PL map corresponding to
removal of the (n + 1 − i)-th square in A ∈ SYT(ν). Last time, we showed that Φ is
well-defined.

Proof. Invertibility of Φ follows from construction, since we can reverse the process.
To prove that Φ is piecewise linear, let ξ send f(i, j) 7→ max{f(i− 1, j), f((i, j − 1)}+

min{f(i+1, j), f(i, j+1)}−f(i, j). Then ξ sends f 7→ f , so this is also volume preserving,
as it has determinant ±1.

We now have to show that Φ : Pν(d)→ Qν(d); that is, if M ∈ Pν(d) and αc(M) = dc,
then Φ(M) ∈ Qν(d), and βc(Φ(M)) = dc for all c. We also need that if M = [mi,j ] and
Φ(M) = [m′i,j ], then if mi,j ≥ 0 and mi,j ≤ mi,j+1,mi+1,j , then m′i,j ≥ 0. Let’s show this
2nd part. We only need to understand this for when we change a corner:

f(r, s) = f(r, s)−max{f(r − 1, s), f(r, s− 1)} ≥ 0.

To show that Φ : Pν(d) → Qν(d), proceed by induction on each step. Suppose ξr,s
sends M 7→ M , where M has share ν − (r, s). We only alter boxes on the diagonal, so
αc(M) = αc(M) for all c 6= r − s. Now let u = r − s. Then

αu(M) = αu+1(M) + αu−1(M)− αu(M) +m′r,s.

1



We also get, using inclusion-exclusion, that

βc(M
′) = βc+1(Φ(M)) + βc−1(Φ(M))− βc(Φ(M)− (r, s)) +m′r,s

= αc+1(M) + αc−1(M)− αc−1(M) +m′r,s

= αu(Φ(M)).

Comparing these two equalities proves the property by induction.

1.2 Maximal sum over a path

Proposition 1.1. Let (r, s) be a corner of ν. Then mr,s is equal to the maximal sum over
a path from (1, 1) to (r, s) in M ′.

Proof. Look at the formula

m′r,s = f(r, s) = f(r, s)−max{f(r − 1, s), f(r, s− 1)}.

Then we can prove this by induction.

When ν is a square, this is the corresponding property for RSK.
What is the moral here? We generalized RSK so far that we can prove all these

properties from just two equations involving α and β. Later, we will approach RSK from
a different angle, involving fλ.
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1 Applications of The Hilman-Grassl Bijection

1.1 MacMahon’s theorem

We showed the following last time:

Theorem 1.1 (Stanley). ∑
A∈RPP(λ)

t|A| =
∏

(i,j)∈λ

1

1− thi,j
,

where hi,j is the hook length of the square i, j in the Young diagram of λ.

Definition 1.1. A plane partition of shape λ is a tableau which is weakly decreasing
going down or to the right.

Example 1.1. Here is a plane partition of shape (4, 4, 3, 2).

7 7 6 4

4 3 1 1

3 3 1

2

Theorem 1.2 (MacMahon, c. 1900).

∑
A∈PP

t|A| =
∞∏
k=1

1

(1− tk)k

Proof. Let λ = mm; this is a square diagram. Then Stanley’s theorem says

∑
A∈RPP(mm)

t|A| =

m∏
k=1

1

(1− tk)k
·

2m−1∏
k=m+1

1

(1− tk)2m−k .

1



Now ∑
A∈PP

t|A| = lim
m→∞

∑
A∈PP∩(mm)

t|A|

because this limit stabilizes for each coefficient of the power series.

= lim
m→∞

∑
A∈RPP (mm)

t|A|

= lim
m→∞

m∏
k=1

1

(1− tk)k
·

2m−1∏
k=m+1

1

(1− tk)2m−k

=

m∏
k=1

1

(1− tk)k
.

MacMahon’s theorem is analogous to the following result.

Theorem 1.3 (Euler, 1738). ∑
λ∈P

t|λ| =
∞∏
k=1

1

1− tk
.

1.2 The hook length formula

We can also prove the hook length formula using Stanley’s theorem.

Theorem 1.4 (Frame-Robinson-Thrall, 1954).

fλ = # SYT(λ) = n!
∏

(i,j)∈λ

1

hi,j
.

Example 1.2. Suppose λ = (m,m). Here is a standard Young tableau of this shape:

1 2 4 5 9

3 6 7 8 10

Then the hook lengths of each square look like

m+1 m · · · 3 2

m m−1 · · · 2 1

In general,

f (m,m) =
(2m)!

m!(m− 1)!
=

1

m+ 1

(
2m

m

)
= Cat(m),

the m-th Catalan number.

2



Proof. Write

RPP(λ) =
⋃

A∈SYT(λ)

CA,

where CA is where we pick the numbers in order of sums of indices in the diagram. That
is 0 ≤ x1,1 ≤ x1,2 ≤ x2,1 ≤ x1,3 ≤ x2,2 ≤ x1,4 ≤ x2,3 ≤ x3,1 ≤ · · · ; this is a cone in Rn. Now
look at the number of A ∈ RPP(λ) such that |A| ≤ N . Asymptotically, this is about∑
T∈SYT(λ)

#{A ∈ CT : |A| ≤ N} = # SYT(λ) ·#{0 ≤ z1 ≤ · · · ≤ zn : z1 + · · ·+ zn ≤ N}

∼ #SY T (λ) ·Nn vol(∆),

where ∆ = {0 ≤ z1 ≤ z2 ≤ · · · ≤ zn : z1 + · · · + zn ≤ 1}. The vertices of ∆ are when we
have equalities. So we have

v0 = (0, 0, . . . , 0)

v1 = (0, . . . , 0, 1)

v2 = (0, . . . , 0, 1/2, 1/2)

v3 = (0, . . . , 0, 1/3, 1/3, 1/3)

...

vn = (1/n, . . . , 1/n).

This is a triangular matrix, so the volume (1/n! times the determinant), is 1/n! times the
product of the diagonal entries. That is,

Vol(∆) =
1

n!
· 1

n!
.

So we get

|{A ∈ RPP(λ) : |A| ≤ N}| ∼ Nn

(n!)2
# SYT(λ).

The right hand side of Stanley’s theorem is∑
t
∑
bi,jhi,j ,

where the sum is over matrices B = (bi,j) such that bi,j ≥ 0,
∑
bi,j ≤ N . This is asymp-

totically Nn vol(∆′), where ∆′ = {0 ≤ yi,j ,
∑
yi,jhi,j ≤ 1}. The vertices of ∆′ are

(0, 0, . . . , 0)

(1/h1,1, 0, . . . , 0)

(0, 1/h1,2, 0, . . . , 0)

3



...

So we get that

Vol(∆′) =
1

n!
·
∏

(i,j)∈∆

1

hi,j
.

By Stanley’s theorem, we have

|{A ∈ RPP(λ) : |A| ≤ N‖ = |{B : bi,j ≥ 0,
∑

bi,j ≤ N}|

So the asymptotics have to be the same. Then we get that

# SYT(λ) =
n!∏

(i,j)∈λ hi,j
.

We will prove the hook length formula in different ways, as well.
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1 The NPS Algorithm

1.1 Motivation

Here is the hook length formula.

Theorem 1.1 (FRT, 1958).

fλ = # SYT(λ) =
n!∏

(i,j)∈λ hi,j
.

The following is a general result from representation theory.

Theorem 1.2. Let χ be a character of a finite group G, and let d = χ(1) be the dimension
of the representation. Then d | |G|.

In this case, we get the following.

Corollary 1.1. # SYT(λ) | n!.

Why should this be true?

Example 1.1. Let λ = (n− k, 1k). Then

fλ =

(
n− 1

k

)
=

(n− 1)!

k!(n− k)!
| (n− 1)!,

so it divides n!.

Example 1.2. Let λ = (m,m), where n = 2m. Then

fλ =
1

m+ 1

(
2m

m

)
=

(2m)!

m!(m+ 1)!
=

n!

m!(m+ 1)!
.

Why should this be an integer?

Today, we will construct Φλ : Sn → SYT(λ), such that Φ−1λ (A) is a constant depending
on λ. In reality, this constant will be

∏
hi,j .

Example 1.3. Let λ = (n). Then fλ = 1. In this case, Φλ will be some sorting algorithm.

Example 1.4. Let λ = (1n). Then fλ = 1. In this case, Φλ will sort vertically.

1



1.2 Construction of Φλ

This will sort of be like 2-dimensional bubble sort.
Take λ = (5, 5, 3, 2), and choose a permutation:

9 8 11 12 4

15 3 14 2 5

10 7 1

13 6

Look at the last column. The column is sorted, so we are ok. Now include the next
column. 12 is bigger than 2, so we must switch them. Same with 12 and 5.

9 8 11 2 4

15 3 14 5 12

10 7 1

13 6

Now look at the 1 in the next column. This is sorted. Now look at the 14. This is
bigger than the 1, so we need to switch it.

9 8 11 2 4

15 3 1 5 12

10 7 14

13 6

Going up the columns, we need to switch the 11 with something. It must be switched
with the 11. Then we need to switch the 11 with the 5.

9 8 1 2 4

15 3 5 11 12

10 7 14

13 6

Move on to the next column. The 6 is fine, but when we move up to the 7, we see that
we have to switch it with the 6.

9 8 1 2 4

15 3 5 11 12

10 6 14

13 7

2



The 3 is fine where it is. But the 8 above needs to be switched. We switch it with the
1, then the 2, and then the 4 until this part is sorted.

9 1 2 4 8

15 3 5 11 12

10 6 14

13 7

The 13 is okay, but the 10 needs to be switched. Switch it with the 6.

9 1 2 4 8

15 3 5 11 12

6 10 14

13 7

The 15 has a long way to go. See if you can figure out where it needs to go:

9 1 2 4 8

3 5 11 12 15

6 10 14

13 7

Finally, we move the 9 where it needs to go:

1 2 4 8 9

3 5 11 12 15

6 10 14

13 7

We now have a standard Young tableau. We had no choice at each step, so we can see
that this algorithm is well-defined. Notice that this is similar to jeu-de-taquin.

1.3 Construction of Ψλ

Now we will construct Ψλ : Sn →
∏

(i,j)∈λ[−λ′j + 1, · · · , λi − i]. This range has size hi,j .

Lemma 1.1. (Φλ,Ψλ) gives a bijection between Sn and the Cartesian product of SYT(λ)
with the above product.

Example 1.5. When we are just doing bubblesort, Ψλ will give us (a1, . . . , a2, a1), where
ai is the number of steps the i-th number made.
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Take our example from earlier:

9 8 11 12 4

15 3 14 2 5

10 7 1

13 6

Let’s record the sorting procedure and keep track of what numbers move.

9 8 11 12 4

15 3 14 2 5

10 7 1

13 6

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0

12 is moved down and then to the right. Our rule is that when we move to the right,
we add 1. When we move a number down, we switch the two numbers and subtract 1 from
the top.

9 8 11 2 4

15 3 14 12 5

10 7 1

13 6

0 0 0 −1 0

0 0 0 0 0

0 0 0

0 0

9 8 11 2 4

15 3 14 5 12

10 7 1

13 6

0 0 0 −1 0

0 0 0 1 0

0 0 0

0 0

When we move the 14 down, we get:

9 8 11 2 4

15 3 1 5 12

10 7 14

13 6

0 0 0 −1 0

0 0 −1 1 0

0 0 0

0 0

When 11 goes down, we switch the two blocks and then subtract 1 from the new top:

4



9 8 1 2 4

15 3 11 5 12

10 7 14

13 6

0 0 −2 −1 0

0 0 0 1 0

0 0 0

0 0

Now the 11 has to move to the right:

9 8 1 2 4

15 3 5 11 12

10 7 14

13 6

0 0 −2 −1 0

0 0 1 1 0

0 0 0

0 0

The 7 in the next column has to be moved down:

9 8 1 2 4

15 3 5 11 12

10 6 14

13 7

0 0 −2 −1 0

0 0 1 1 0

0 −1 0

0 0

Now we have to move the 8. We only change the numbers in the “column and row of
action.”

9 1 2 4 8

15 3 5 11 12

10 6 14

13 7

0 3 −2 −1 0

0 0 1 1 0

0 −1 0

0 0

Now move the 13:

9 1 2 4 8

15 3 5 11 12

10 6 14

13 7

0 3 −2 −1 0

0 0 1 1 0

0 −1 0

1 0

Continuing like this, we get

5



1 2 4 8 9

3 5 11 12 15

6 10 14

13 7

4 3 −2 −1 0

4 0 1 1 0

1 −1 0

1 0

In summary, right moves change the numbers on the right as

x

y
7→ x+1

y

and down moves change the numbers on the right as

x

y
7→ y−1

x

Check that we can invert this algorithm. Next time, we will hear the story of this
algorithm and learn about the GNW algorithm.
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1 Hook Walks and Representation Theory of Stanley’s For-
mula

1.1 Hook walks

We want to prove the hook length formula in a more elegant way. This is a construction
due to Greene, Nijenhuis, and Wilf in 1979.1

We will probabilistically construct a standard Young tableau. First, take the empty
diagram. We need to put n into one of the corner spaces. We get

P(n is at (r, s)) =
fλ

∗

fλ
WTS
=

(n− 1)!

n!

∏ hi,j
h∗i,j

,

where λ∗ is λ− (r, s). Using this, if we had a guess for the hook length formula, we could
try to prove the hook length formula by induction. However, this is actually not that easy.
So GNW constructed a random process to do this.

The idea is a hook walk.

1. Start at a random (i, j) ∈ λ.

2. Mover to a random square in Hookλ(i, j).

3. Repeat step 2 until you get to the corner.

Lemma 1.1. P(corner is at (r, s)) = fλ
∗
/fλ.

Given this lemma, using the fact that
∑

P(corner is at (r, s)) = 1, we get fλ =
∑

λ∗ f
λ∗ .

This lets us use the guess for the hook length formula to use our induction. Here is a
stronger result, which is easier to prove.

1This is actually before the NPS algorithm, which is from 1992.
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Lemma 1.2. Let αi be the column number of the i-th square in this algorithm, and let βi
be the row number of the i-th square. Then

P((i, j)→ (r, s) via α, β) =
1

n

∏(
1 +

1

hi,α1

)∏(
1 +

1

hβ,j − 1

)
.

For the precise statement of the lemma, look at Exercise 3.17 in the textbook (Sagan’s
The Symmetric Group).

1.2 Stanley’s formula, explained

Let Wn = C[x1, . . . , xn], thought of as an infinite dimensional representation of Sn. Let
Hn ⊆ Wn be the set of harmonic polynomials, nonconstant polynomials f ∈ Wn such
that h · f = 0 for all h ∈ C[∂/∂x1, . . . , ∂/∂xn]Sn .

Example 1.1. Let n = 2. Then what survives when we apply ∂/∂x1, ∂/∂x2 or ∂/∂x1∂x2?
We get that H2 = C 〈1, x1 − x2〉.

Theorem 1.1 (Chevalley). Let Wn, Hn be as above.

1. Wn = Hn ⊗ In, where In = WSn is the symmetric polynomials.

2. Hn is the regular Sn-representation.

Write Wn =
⊕∞

k=0W
k
n , Hn =

⊕(n2)
k=0H

k
n, and In =

⊕∞
k=0 I

k
n. This is a grading by the

degree of the polynomials. Write

Pn(t) =
∞∑
k=0

(dim(W k
n )tk = 1/(1− t)n

In(t) =
∞∑
k=0

(dim(T kn ))tn =
(1− t)(1− t2) · · · (1− tn)

.

Hn(t) =
Pn(t)

In(t)
=

n∏
i=1

1− ti

1− t
=

n∏
i=1

(1 + t+ · · ·+ ti−1).

Now

Pλ(t) =

∞∑
k=0

dim(Hom(W k
n , S

λ))tk =
∏

(i,j) inλ

ti−1

1− thi,j
.

Then

Hλ(t) =
∑

dim(Hom(Bk
n, S

λ))tk = Hn(t)
∏

(i,j)∈λ

1

(hi,j)t
,

2



the t-analogue of hi,j . Then the hook length formula is

Hλ(1) = fλ =
n!∏
hi,j

.

This is an algebraic interpretation of how Stanley’s formula implies the hook length for-
mula.
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1 Odds, Ends, and Things to Come

1.1 Recap episode

We have learned a few things so far:

1. Representation theory of Sn

2. Combinatorics of Young tableau and combinatorial algorithms

(a) RSK algorithm

(b) Hook length formula

(c) Stanley’s formula and the Hilman-Grassl algorithm.

We will learn about two more things:

1. GLN (C) representation theory

2. Symmetric functions.

These are related to further topics we won’t cover, namely Schubert calculus and enumer-
ative algebraic geometry.

1.2 Combinatorial questions about partitions

Theorem 1.1 (MacMahon, c.1900). Let PP(λ, c) be the set of plane partitions of shape λ
numbers ≤ c. Then PP (ab, c) (rectangles with numbers at most c) satisfies

|PP(λ, c)| =
a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
.

Here is a q-version.

1



Theorem 1.2. ∑
A∈PP(ab,c)

q|A| =
a∏
i=1

b∏
j=1

c∏
k=1

(i+ j + k − 1)q
(i+ j + k − 2)q

,

where (m)q = (1− qm)/(1− q).

So when q → 1, we get the original theorem.
The number of Lozenge tilings of an a × b × c hexagon is the number of PP(ab, c).

View the tilings as stacked 3-dimensional cubes, a 3-dimensional partition of an a× b× c
box. This is a bit strange. For any graph G, the number of perfect matching in G is the
determinant of some matrix. We can view a tiling as a matching in terms of the dual
graph. How can this determinant have a product formula?

1.3 Related ideas in representation theory

Theorem 1.3 (Frobenius, c.1902). Let ξα be the character corresponding to Mα, let λ =
(λ1, . . . , λ`), let ρ = (`, . . . , 1) be a staircase partition, and for a permutation ω, let ωα =
(αω(1), αω(2), . . . ). Then

χλ =
∑
ω∈S`

sign(ω)ξλ−ωρ+ρ.

Here, the convention is ξα = 0 for all α /∈ N` (if we get negative entries, discard the term).

This formula looks a little like a determinant. There is a relationship between these
formulas.

Theorem 1.4 (Kostka). Let Kλ,µ = # SSYT(λ, µ). Then

ξµ =
∑
|λ|=n

Kλ,µχ
λ.

This explains the triangular nature of everything because you cannot have a semistan-
dard Young tableau with shape λ and weight µ if λ ≤ µ. Forbenius’s theorem gives a form
for the inverse of the matrix

(Kλ,µ)−1|λ|=|µ|=n.

These values are called the Kostka numbers. Here is what we will learn:

Definition 1.1. The Schur functions are sλ =
∑

A∈SSYT(λ) x
m1(A)
a · · ·xmN (A)

N , where
mi(A) is the number of i in A.

Theorem 1.5. The sλ are symmetric functions (C[x1, . . . , xN ]SN ).

Definition 1.2. The elementary symmetric polynomials are eα = eα1eα2 · · · .

2



Theorem 1.6 (Jacobi-Trudy). Using the convention that er = 0 for all r < 0,

sλ = det[ẽλi+j−i]i,j=1,...,`.

It turns out that the Jacobi-Trudy theorem is saying the same thing as Frobenius’s
theorem. Also, the definition of Schur functions is equivalent to Kostka’s theorem.1 The
idea is then that

|PP(ab, c)| = s(a,b)(1, 1, . . . , 1︸ ︷︷ ︸
c

).

Since the Schur functions have a determinant formula, we can see why there is a determinant
formula for Lozenge tilings. To get the q-analogue, we can look at s(a,b)(1, q, q

2, . . . , qc−1).
This is the general picture we will be going through in the next few weeks.

1This is in the same sense that whoever came up with the definition of variance understood a lot about
scalar products. The definition is designed to be compatible with the nice structure.
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1 Relationships of Schur Functions to Characters of GLN(C)
and to Young Tableau

1.1 Schur functions and characters of GLN(C)

Definition 1.1. The ring of symmetric functions of degree n is C[x1, . . . , xn]Sn . The
ring of symmetric functions is Λ = lim←−n Λn.

Example 1.1. Λ3 is spanned by x1 + x2 + x3, x1x2 + x1x3 + x2x3 and x1x2x3.

A representation is a homomorphism ρ : V toAut(V ), where V = Cd. Essentially, what
we do with representations of finite groups can be done with compact groups, as well.

Theorem 1.1. All representations of GLN (C) are rational. That is, if M = (xi,j), then
ρ(M) = (fpq(xi,)), where the fp,q are rational polynomials. Moreover, ρ(M) = (det)k times
a polynomial representation.

Example 1.2. Let ρ be the determinant map sending M 7→ det(M). This is a 1-
dimensional representation. Then ρk(M) = (det(M))k is also a representation for k ∈ Z.

Let λ = λ1 ≥ · · · ≥ λN with λ ∈ N. If ρ is an irreducible representation of GLN (C),
then consider diagonal matrices M and “characters of ρ” given by tr(ρ[M ]). Then these is
in ΛN .

Theorem 1.2 (Weyl1). If π is an irreducible representation of GLN (C) corresponding to
λ = (λ1 ≥ · · · ≥ λN ), then tr(π) = sλ, where sλ = aλ+ρ/aρ is a Schur function.

Here, if α = (α1, . . . , αn), then aα = det(x
αj

i )i,j=1,...,N is like a Vandemonde determi-
nant, and ρ = (N − 1, N − 2, . . . , 0) (so aρ is a Vandermonde determinant).

Example 1.3. Let N = 2 and λ = (4, 3). Then

sλ =

det

[
x4 y4

x3 y3

]
x− y

=
x4y3 − y4x3

x− y
= x3y3.

1Igor does not remember whose theorem this is, so Weyl is a guess.

1



Remark 1.1. The situation in the theorem is actually something that happens for all
compact groups.

1.2 Formula for Schur functions in terms of Young tableau

Theorem 1.3. Let λ = (λ1 ≥ · · · ≥ λN ). Then

sλ =
∑

A∈SSYT(λ,≤N)

x
m1(A)
1 · · ·xmN (A)

N ,

where mi(A) is the number of is in A.

Lemma 1.1. This sum is a symmetric polynomial of degree N .

Proof. We show that the sum is invariant under the transposition (i i + 1) ∈ SN for all
i = 1, . . . , N − 1. Given a semistandard Young tableau, look at each row. If we look at
rows with i and i + 1, look at parts where we do not have i + 1 squares directly below i
squares. Then we can switch the number of is and (i + 1)s in this part of each row and
still get a semistandard Young tableau.

Proof. We can prove the theorem by showing that aρ times the sum is aλ+ρ.∏
1≤i<j≤N

(xi − xj) =
∑
σ∈SN

sign(σ)s0σ(1)x− σ(2)1 · · ·xN−1σ(N)

Here is Gessel’s proof of this fact. It is easier to consider
∏
i<j(1− xj/xi).
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1 Bases, Involution, and Scalar Product of Symmetric Func-
tions

1.1 Five bases of symmetric functions

Let Λ = lim←−n λn be the ring of symmetric functions. Then Λ ⊆ C[x1, x2, . . . ]; that is
f ∈ Λ =

∑
cαx

α, where α = (α1, α2, . . . ),
∑

α αi <∞, and αi ∈ N.

Example 1.1. e2 = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4 + x1x5 + · · · .

Definition 1.1. The monomial symmetric functions are

mλ =

 ∑
σ∈S`

i1<···<i`

x
λσ(1)
i1

x
λσ(2)
i2
· · ·xλσ(`)i`

 /∏̀
i=1

mi(λ)!,

where λ = (λ1, . . . , λ`).

Proposition 1.1. The monomial symmetric functions form a basis for Λ.

Definition 1.2. The elementary symmetric functions are

ek = m(1k) =
∑

i1<···<ik

xi1 · · ·xik ,

eλ = eλ1 · · · eλ` ,

where λ = (λ1, . . . , λ`).

Proposition 1.2. The elementary symmetric functions form a basis for Λ.

Proof. f ∈ Λ is cλx
λ + · · · , when written in lexicographic order.

Theorem 1.1. The elementary symmetric functions are free generators of Λ as a ring;
i.e. they do not satisfy any algebraic equations.

1



Definition 1.3. The power symmetric functions are

pk = m(k) = xk1 + xk2 + · · · ,

pλ = pλ1 · · · pλ` ,

where λ = (λ1, . . . , λ`).

Proposition 1.3. The power symmetric functions form a basis for Λ.

Definition 1.4. The complete symmetric functions are

hk =
∑
|λ|=k

mλ =
∑

i1≤i2≤···≤ik

xi1xi2 · · ·xik ,

hλ = hλ1 · · ·hλ` ,

where λ = (λ1, . . . , λ`).

Proposition 1.4. The complete symmetric functions form a basis for Λ.

Definition 1.5. The Schur functions are

sλ =
aλ+ρ
aρ

=
∑

A∈SSYT(λ)

xA,

xA = x
m1(A)
1 x

m2(A)
2 · · · .

Theorem 1.2. The Schur functions form a basis for Λ.

1.2 Involution and scalar product on symmetric functions

Here is a dictionary relating symmetric functions and representation theory of Sn

Symmetric functions Representations of Sn
sλ Sλ

hλ Mλ = indSnSλ1×···×aλ`
1

eλ Mλ ⊗ sgn

This correspondence tells that we should have an involution ω : Λ→ Λ sending eλ 7→ hλ
corresponding to ⊗ sgn.

Theorem 1.3. The involution ω : Λ→ Λ sends sλ 7→ sλ′.

Theorem 1.4. The involution ω : Λ→ Λ sends pλ 7→ ελpλ.

There is a scalar product on Λ that relates to the scalar product on characters of
representations of Sn.

2



Definition 1.6. Define a scalar product on Λ by its value on the basis of Schur functions:

〈sλ, sµ〉 = δλ,µ.

If f =
∑
cλsλ and g =

∑
rλsλ, then

〈f, g〉 =
∑
λ

cλrλ.

Proposition 1.5. 〈mλ, hµ〉 = δλ,µ for all λ, µ.

Proof. Write Mµ =
⊕
Kλ,µS

λ. Then hµ =
∑
Kλ,µsλ,µ. We also have sλ =

∑
Kλ,µmµ.

Proposition 1.6. 〈pλ, pµ〉 = zλδλ,µ, where

zλ =
n!

1m1m1!2m2m2! · · ·

is the size of the conjugacy class corresponding to λ in Sn.

Theorem 1.5. sλ =
∑

µ χλ[µ]pµ.
1

So we can talk about characters of the symmetric group by only talking about symmetric
functions.2

1Maybe there is a factor of zλ in here. Professor Pak doesn’t remember.
2Newton studied pµ. That’s how old the idea of symmetric functions is.
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1 Generating Functions of Symmetric Functions and Cauchy-
Type Identities

1.1 Relationship between ek and hk

We want to prove a correspondence between en and hn. Define E(t) =
∑∞

n=0 ent
n and

H(t) =
∑∞

n=0 hnt
n. So we just need to prove a relation between E and H.

Proposition 1.1. E(t) =
∏∞
i=1(1 + xit).

Proof. This follows from en =
∑

i1<···<in xi1 · · ·xin .1

Proposition 1.2. H(t) =
∏∞
i=1

1
1−xit .

Proof. This follows from hn =
∑

i1≤···≤in xi1 · · ·xin .

Corollary 1.1. E(t)H(−t) = 1.

Definition 1.1. The ω-involution ω : Λ→ Λ is ω(ek) = hk for all k.

Proposition 1.3. ω2 = idΛ.

Proof. This is equivalent to ω(hk) = ek for all k. The relation for E and H shows that∑n
i=0(−1)n−ieihn−i = 0 for all n. The map ω is an algebra homomorphism, so applying ω

to the sum should still give 0. We can then recursively determine that ω(hk) = ek.

Example 1.1. Say we are looking at n variable symmetric functions. Then

ek(1, . . . , 1) =

(
n

k

)
,

hk(1, . . . , 1) =

(
n+ k − 1

k

)
.

1Igor says that this is the kind of thing he thinks is so simple, he doesn’t actually know how to really
prove it. He’s not being facetious.

1



Some people call this latter quantity
(−n
k

)
. The generating function of

(
n
k

)
is

∞∑
k=0

(
n

k

)
tn = (1 + t)n,

while the generating function of
(−n
k

)
is

∞∑
k=0

(
−n
k

)
tk = (1− t)−n.

So this is the symmetric function analogue of these classic generating function identities.

1.2 Cauchy-type identities

Consider the multivariate generating function

Q(x, y) =
∏
i,j=1

1

1− xiyj
.

Proposition 1.4.

Q(x, y) =
∑
α,β

|Mat(α, β)|mα(x)mβ(y) =
∑
λ

mλ(x)hλ(y),

where Mat(α, β) are matrices with row-sums α and column-sums β.

Proof. For the first part, the xαyβ term in the product is a sum of terms of products of
(xiyj)

ai,j . If we put the ai,j into a matrix, the matrix has row-sums α and column-sums β.
For the second part, use hλ =

∑
α |Mat(α, λ)|mα(x).

Proposition 1.5.

Q(x, y) =
∑
λ

zλpλ(x)pλ(y).

Theorem 1.1.
Q(x, y) =

∑
λ

sλ(x)sλ(y).

Proof. This follows from RSK. The coefficient of xαyβ in sλ(x)sλ(y) is |SSYT(λ, α)| ·
|SSYT(λ, β)|.

When Richard Stanley wrote his textbook, he didn’t believe that Cauchy proved this
identity. After looking through hundreds of pages of Cauchy’s works, he determined that
Cauchy did not actually prove this identity. After more research, he found that Cascoux
was the first person to cite the identities as theorems of Cauchy. So in fact, none of these
Cauchy-type identities are due to Cauchy.

2



Proposition 1.6. {fα} is an orthonormal basis of Λ if∏
i,j

1

1− xiyj
=
∑
λ

fλ(x)fλ(y).

Corollary 1.2. {pλ/
√
zλ} is an orthonormal basis of λ.
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1 The Jacobi-Trudi Identity

1.1 Connection to Frobenius’ theorem

Theorem 1.1 (Jacobi-Trudy1). Let λ = (λ1, . . . , λ`). Then

sλ = det(hλ1−i+j
)`i,j=1.

This should remind you of the following theorem:

Theorem 1.2 (Frobenius).

χλ =
∑
ω∈S`

sgn(ω)ζλ+ωρ−ρ,

where ζµ is the character of Mµ and ρ(`− 1, `− 2, . . . , 1, 0).

In fact, these are the same.

Example 1.1. Let λ = (4, 2, 1), so ` = 3. Then

s(4,3,2) =

∣∣∣∣∣∣
h4 h5 h6
h1 h2 h3
0 1 h1

∣∣∣∣∣∣ = h(4,2,1) − h(5,1,1) − h(4,3) + h(6,1)

The Frobenius formula in this case says

χ(4,2,1) = ζ(4,2,1)−(2,1,0)+(2,1,0) − ζ(4,2,1)−(1,2,0)+(2,1,0)

− ζ(4,2,1)−(2,0,1)+(2,1,0) + ζ(4,2,1)−(0,2,1)+(2,1,0) + 0 + 0

= ζ(4,2,1) − ζ(5,1,1) − ζ(4,3) + ζ(6,1).

1You can find this in section 7.16 of Richard Stanley’s Enumerative Combinatorics volume 2.

1



1.2 Proof of the identity

The idea of the proof is term cancellation. We expand the determinant and show that a
lot of terms cancel. Here is an analogy.

Proposition 1.1. Let A = (ai,j), B = (bi,j) be n × n matrices. Then det(AB) =
det(A) det(B).

You prove this by representing both sides as counting something and showing that the
extra terms in det(AB) compared to det(A) det(B) cancel out in pairs.

Proof. The idea is a non-crossing path argument, like you can use to prove the statement
about determinants.

Sλ =
∑

ASSYT(λ)

xA =
∑
A

x#1s
1 x#2s

2 · · ·

Take A and construct a system of paths. For example, if

A = 1 1 2 4 4

3 4 5 5

5

construct the system of paths

Fix the starting points and ending points. Now consider all systems of paths from
the starting points to the ending points. A path Q will produce the monomial xQ =

2



x#1s
1 x#2s

2 · · · , and if we switch two paths that intersect, we get a sgn(σ) coefficient in front.
Then each system with a pair of paths that intersect somewhere will not be counted because
we can just switch the paths after the intersection point; in this case, the contribution of
the paths to the sum will cancel. Since the paths define polynomials hλ with this definition,
we are done.

3
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1 Littlewood-Richardson Coefficients

1.1 Multiplying symmetric functions

Recall
sλ =

∑
A∈SSYT(λ)

xA, xA = x#1s in A
1 x#2s in A

2 · · ·

We can multiply many of the different bases of Λ:

eλeµ = eλ∪µ,

hλhµ = hλ∪µ,

pλpµ = pλ∪µ.

And multiplying mλmµ is straightforward. What about multiplying Schur functions?
Let |µ|+ |ν| = 1. Then

sµsν =
∑
|λ|=n

cλµ,νsλ

What are the coefficients cλµ,ν?

Proposition 1.1. cλµ,ν ∈ N.

Proof. Let Sν , Sλ be irreducible representations. Then sµsν corresponds to ind
Sk×SSn

n−K
Sµ⊗

Sν . So cλµ,ν is the inner product of Sλ with this induced character. This is the dimension

of the irreducible representation Sλ in this representation.

Theorem 1.1. cλµ,ν = # LR(λ/µ, ν), the number of a certain type of semistandard Young
tableaux.

This is difficult to prove.1

1It is so difficult that Stanley did not actually prove it in his textbook.

1



1.2 Multiplying Schur functions

Let µ ◦ ν be the skew shape

Then
sµsν = sµ◦ν =

∑
A∈SSYT

xA =
∑
|λ|=n

cλµ,νsλ

How do we determine a tableau with shape µ ◦ ν? Take the skew-shape and reduce it
using Jeu-de-taquin.

Example 1.1. We reduce the skew tableau

1 1

3

1 2

3 3

to the tableau
1 1 1

2 3 3

3

So cλµ,ν is the multiplicity of any P ∈ SSYT(λ) as a jeu-de-taquin of B ◦ C, where
B ∈ SSYT(µ) and C ∈ SSYT(ν).

Corollary 1.1. cλµ,ν ∈ #P .

There is a polynomial algorithm, jeu-de-taquin, for determining if B and C produce the
correct tableau. But this is a very messy combinatorial interpretation. There is a better
interpretation.

2



1.3 Ballot sequences

Definition 1.1. (a1, . . . , an) is a ballot sequence if for all k ∈ [n], the number of is
among a1, . . . , ak is greater than the number of (i+ 1)s among a1, . . . , ak for all i.

Example 1.2. The sequence (1, 1, 2, 1, 1, 2, 3, 3, 1, 2, 3) is a ballot sequence.

Cat(n) is the number of ballot sequences with n 1s and n 2s. Young tableau are basically
the same as ballot sequences; if the number i in our tableau is in row j, we can make the
i-th term in the sequence j.

When we have a pair of tablueux that we arrange into a skew shape, form a sequence
by listing the numbers in each row from left to right, going down in rows.

Example 1.3.

1 1

3

1 2

3 3

gives us the sequence (1, 1, 3, 3, 1, 3, 3).

Theorem 1.2. cλµ,ν = # SSYT(ν, λ \ µ) such that the sequence obtained from B ◦ C is a
ballot sequence, where B ∈ SSYT(µ) and C ∈ SSYT(ν).

Next time we will discuss the following.

Corollary 1.2. cλµ,ν is the number of integer points in a polytope defined by the vectors
λ, µ, ν.

Theorem 1.3. It can be determined in polynomial time whether cλµ,ν = 0.
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1 Complexity Aspects of Young Tableau

1.1 Generating random Young tableau

Given λ, we want to generated a random A ∈ SYT(λ). We have two algorithms for doing
this:

1. NPS algorithm: the sort of 2-dimensional bubblesort on tableaux

2. GNW algorithm: Place n according to a hook walk, update λ to be λ \ {n}, and
repeat.

Which one is faster?

Example 1.1. Let λ = (n), which will produce a 1-row tableau. Then NPS will take
E[inv(σ)] = Θ(n2) steps. Alternatively, GNW will take Θ(n log(n)) steps.

Example 1.2. Let λ be the shape of a k × k square tableau, λ = (kk). Here, n = k2.
Then GNW will run in Θ(n log(n)) time. What about NPS? It goes column by column,
and each column takes Θ(k2) time. So does NPS run in Θ(k3) = Θ(n3/2) time? We
really want to look at the average complexity. It turns out that the average complexity is
Θ(k3) = Θ(n3/2) anyway.

1.2 Generating random partitions

Given n, we want to uniformly generate a random partition |λ| = n. Here is a (not too)
slow algorithm:

Compute pk(n), the number of partitions λ of n such that λ1 = k parts. Then pk(n) =
p1(n − k) + pn(n − k) + · · · + pk(n − k) and p1(n) = 1, so we can solve the recurrence
relation. This takes Θ(n3.5) steps.

What is a smarter algorithm? We know

∞∑
n=0

p(n)tn =

∞∏
i=1

1

1− ti

1



Write this as the following:

=
∑
λ∈P

t|λ|.

Now think of this probabilistically. Let Zi + 1 ∼ Geom(1 − ti). Then let λ = 1Z12Z2 · · · .
Now

P(λ) = P(Z1 = m1(λ), Z2 = m2(λ), . . . ) =

∞∏
i=1

timi(1− ti) = t
∑
imi

n∏
i=1

(1− ti).

If we generate λ like this, then |λ| = n ⇐⇒ Z1 + · · ·+ 2Z2 + · · · = n. So we can generate
all these and output λ. So we get

P(|λ| = n) = p(n)tn
n∏
i=1

(1− ti) ∼ ec
√
ntn

n∏
i=1

(1− ti).

Optimize over all possible values of t. Then the number of steps becomes Θ(n3/4) or so.
This idea is called Boltzmann sampling.

1.3 Generating random 3-dimensional partitions

Given n, we want a random 3-dimensional (called solid/plane) partition A. We proved1

the generating function

∑
A∈PP

t|A| =
∞∑
n=0

PP(n)tn =
∞∏
i=1

1

(1− ti)i
.

We can do the same type of sampling as before. Let Zi,j ∼ Geom(1− ti), where 1 ≤ j ≤ i.
Place the Zi,j in a matrix:

Z1,1 Z2,1 Z3,1 · · ·
Z2,2 Z3,2 · · ·
Z3,3 · · ·

Flip the matrix across the (non-main) diagonal and apply the Hilman-Grassl algorithm.

1.4 Generating random skew shapes

Suppose we have the skew shape λ \ µ. How do we generate a random A ∈ SYT(λ \ µ)?
The Jacobi-Trudy identity gives us

sλ = det([hλi−i+j ]).

1Maybe the word ‘proved’ should be taken lightly.
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Then we get

fλ = n! det

([
1

(λi − i+ j)!

])
We can calculate the probability of putting n into a corner using

P(n in corner) =
fλ\{n}

fλ

Here, we use a generalized version of the Jacobi-Trudy identity:

Theorem 1.1 (Jacobi-Trudy). Let

sλ\µ :=
∑

A∈SSYT(λ\µ)

t|A|.

Then
sλ\µ = det([hλi−µi−i+j ])

3
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1 Topics on Skew Tableau and Skew Schur Functions

1.1 Complexity of the number of skew tableau

Recall that skew Schur functions satisfy

sλ\µ =
∑

A∈SSYT(λ\µ)

xA.

Let fλ\µ be the number of SSYT(λ \ µ).

Theorem 1.1 (Jacoi-Trudy).

fλ\µ = n! det

[(
1

(λi − µi + j − i)!

)]
Corollary 1.1. fλ\µ can be computed in polynomial time.

Theorem 1.2 (Pittmer-Pak). Let D be an arbitrary shape of a diagram (not necessarily
a skew shape). Then fD is #P complete.

This is equivalent to the following theorem.

Definition 1.1. Bruhat(σ) = {ω ∈ Sn : ω ≤ σ}.

Theorem 1.3. |Bruhat(σ)| is #P complete.

1.2 Littlewood-riichardson coefficients for skew Schur functions

Recall that sµsν =
∑
|λ|=n c

λ
µ,νsλ, where cλµ,ν are the Littlewood-Richardson coefficients.

Theorem 1.4.
sλ\µ =

∑
|ν|=n−k

cλµ,νsν .

1



Proof. The idea is to perform jeu-de-taquin on the skew tableau A of shape λ \ ν.

One interpretation of this is that we can use Schur functions to construct sλ\ν , which
are symmetric functions that end up being nice.

Recall that

cλµ,ν =
〈
Sλ, Sµ ⊗ Sν ↑Sn

Sk×Sn−k

〉
=
〈
Sλ ↓Sn

Sk×Sn−k
, Sµ ⊗ Sν

〉
.

by Frobenius reciprocity. Then if πλ is an irreducible representation of GL(n,C) corre-
sponding to λ and sλ is a character of πλ, then

cλµ,ν = 〈πλ, πµ ⊗ πν〉 .

Theorem 1.5 (Knutsen-Tao, c. 2000). For all k, cλµ,ν > 0 iff ckλkµ,kν > 0.

Corollary 1.2. It can be decided if cλµ,ν = 0 in polynomial time.

Proof. cλµ,ν 6= 0 if there exists a rational point in some certain polytope P (λ, µ, ν) containing

cλµ,ν integer points.

Theorem 1.6. Computing cλµ,ν is #P complete.

This is related to the following problem. When does A + B = C, when A,B,C are
Hermitian matrices?

Theorem 1.7 (Klyacko). Let A,B,C be hermition matrices with (vector of) eigenvalues
µ, ν, λ, respectively. Then there exist matrices A,B,C solving A+B = C iff cλµ,ν 6= 0.
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1 Inequalities in Algebraic Combinatorics

1.1 Largest number of tableau for a partition of n

Proposition 1.1. (fλ)2 ≤ n!

Proof. This is because
∑
|λ|=n(fλ)2 = n!.

Here is a restatement of this fact:

Corollary 1.1. |SYT(λ)|2 ≤ n!.

This seems much less obvious, and requires RSK to prove it directly.

Corollary 1.2. Denote D(n) = max|λ|=n f
λ. Then D(n) ≥

√
n!/p(n), where p(n) is the

number of partitions of n.

Here is a conjecture:

Theorem 1.1. The number of |λ| = n such that fλ = D(n) is O(1).

This is open, even though it seems like it should be obvious. In fact, we don’t know if
it is eO(

√
n). The following, however, is known.

Theorem 1.2 (V-K). D(n) <
√
n!α
√
n for some α > 1.

So we have this upper bound and the lower bound
√
n!/β

√
n. Here is a conjecture that

Professor Pak wants to prove:

Theorem 1.3. The following limit exists:

lim
n→∞

1√
n

log

(
D(n)√
n!

)
.

In 1954, someone at Los Alamos, used extra computing power to compute character
tables of Sn for n ≤ 15. They became interested in D(n) and conjectured that D)n≤

√
n!/n.

This was proven false about 15 years later.

1



Theorem 1.4 (Bufetov). Let H(n) = 1/p(n)
∑
|λ|=n f

λ. Then the following limit exists:

lim
n→∞

1√
n

log

(
H(n)√
n!

)
.

Theorem 1.5 (V-K). Let fλ = D(n). Then the shape of λ (scaled by
√
n) looks like a

rotated version of the graph

Φ(x) =
2

π
(x arcsin(x/

√
2) +

√
2− x).

Corollary 1.3. The average longest increasing subsequence of a permutation is 2
√
n.

1.2 Bounds for Littlewood-Richardson coefficients

Theorem 1.6 (PPY). (cλµ,ν)2 ≤
(
n
k

)
.

The upper bound is actually somewhat tight: the idea is to show that∑
|λ|=n

∑
|µ|=k,|ν|=n−k

(cλµ,ν)2 =
∑

α∈conj(H=Sk×Sn−k)

zα(Sn)

zα(H)

≥
α = 1

(
n

k

)
.

Then

max
λ,µ,ν

cλµ,ν ≥

√(
n
k

)√
p(k)p(n− k)p(n)

.

Proof. The idea of the proof of the theorem is to show that
(
n
k

)
fµfν is the dimension

of indSn
Sk×Sn−k

Sµ ⊗ Sν and decompose the representation into irreducible repesentations.
Then ∑

|µ|=k

∑
|ν|=n−k

cλµ,νf
µfν = fλ,

and ∑
|λ|=n

(cλµ,ν)2 ≤
∑
|λ|=n

cλµ,ν
fλ

fµfν
=

1

fµfν
fµfν

(
n

k

)
=

(
n

k

)
.

So (cλµ,ν)2 ≤
(
n
k

)
.

Theorem 1.7 (PPY, 2018). There exist λ, µ ν such that cλµ,ν = 2n/eO(−
√
n).
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1.3 Bounds on the number of skew tableau of size n

Let fλ\µ = |SYT(λ \ µ)|. We know that this number is the determinant of a matrix we
get from λ, µ. Can we understand this number better? Our previous considerations give
us the following:

Proposition 1.2. Let |λ| = n and |µ| = k. Then

fλ\µ ≤

√(
n

k

)
p(n− k)

√
(n− k)!.

Proof. This follows from the previous inequalities applied to the identity:

fλ\µ =
∑
|ν|=n−k

cλµ,νf
ν .

What about lower bounds?

Theorem 1.8 (Naruse,MPP).

fλ\µ = n!
∑

D∈E(λ\µ)

∏
(i,j)/∈D

1

hi,j
,

where E(λ \ µ) is the set of “excited diagrams” (start with chips in the removed shape µ,
and move them to the right or down to get a configuration in λ \ µ).

Example 1.1. Suppose λ = (3, 3) and µ = (2). Then we start with

? ?

We get 3 excited diagrams:

? ? ?

? ? ?

If we take only the first term of the sum, we get the following lower bound:

Corollary 1.4.

fλ\µ ≥ n!
∏

(i,j)∈λ\µ

1

hi,j

3
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1 D-Finite and Polynomially Recursive Series

Note: Today’s lecture is a guest lecture. The lecture material is from section 6.4 of Stanley’s
Enumerative Combinatorics (Volume 2).

1.1 D-finite series

Let K be a field. We have the ring of formal power series KJxK.

Definition 1.1. If u =
∑

n f(n)xn, then the formal derivative is d
dxu = u′ =

∑
n nf(n)xn−1.

Proposition 1.1. Let u ∈ KJxK. The following are equivalent.

1. dimK(x)(K(x)u + K(x)u′ + K(x)u′′ + · · · ) <∞.

2. There are p0, . . . , p` ∈ K[x] with p` 6= 0 such that

pdu
(d) + pd−1u

(d−1) + · · ·+ p1u
′ + p0u = 0.

3. There are q0, . . . , qm, q ∈ K[x] with qm 6= 0 such that

qmu(m) + qm−1u
(m−1) + · · ·+ q1u

′ + q0u = q.

Proof. (1) =⇒ (2): Suppose dim = d. Then u, u′, . . . , u(d) are linearly dependent over
K(x). Write down the dependence relation, and clear the denominators to get the pi.

(2) =⇒ (3): This is a special case.
(3) =⇒ (2): Suppose that degx(q(x)) = t ≥ 0. Differentiate the polynomial relation

t+1 times to get a homogeneous relation involving the derivatives of u. We get pd = qm 6= 0.
Solve for u(d) to get

u(d) ∈ K(x)u + K(x)u′ + · · ·+ K(x)u(d−1).

Writing u(d) as a linear combination of u, . . . , u(d−1) and differentiating gives u(d+1) ∈
K(x)u+ · · ·+K(x)u(d) = K(x)u+ · · ·+K(x)u(d−1). By induction, for all k ≥ 0, u(d+k) ∈
K(x)u + · · ·+ K(x)u(d−1).

1



This allows us to make the following definition.

Definition 1.2. u ∈ KJxK is D-finite if any of these three conditions hold for u.

Example 1.1. u = ex =
∑

n x
n/n! is D-finite. This satisfies u′ = u, so u′ − u = 0. In

general, u = xmeax is D-finite, as u′ = mxm−1eax + axmeax = (m/x + a)u.

Example 1.2. Suppose u =
∑

n≥0 n!xn. Then (xu)′ =
∑

n≥0(n + 1)!xn, so we see that

1 + x(xu)′ = u. That is, x2u′ + (x− 1)u = −1, so u is D-finite.

1.2 Polynomially recursive series

Definition 1.3. Say f : N → K is P -recursive (or polynomially recursive) if there
are P0, . . . , Pe ∈ K[x] with Pe 6= 0 such that

Pe(n)f(n + e) + Pe−1(n)f(n + e− 1) + · · ·+ P0(n)f(n) = 0

for all n ∈ N.

Proposition 1.2. Let u =
∑

n≥0 f(n)xn ∈ KJxK. Then u is D-finite if and only if f is
P -recursive.

Proof. First, suppose u is D-finite. Then we have polynomials pI such that

peu
(d) + · · ·+ p1u

′ + p0u = 0.

Then xju(i) =
∑

n≥0(u+ i− j)if(u+ i− j)xn, where (u+ i− j)i is the falling factorial. For

k � 0, equate coefficients of xn+k in the polynomial relation to get the recurrence. Note
that if [xj ]pd(x) 6= 0, then [nd]Pd−j+k(n) 6= 0 (where brackets denote the coefficient of the
term inside).

Now suppose f is P -recursive. Then f satisfies a relation

Pe(n)f(n + e) + Pe−1(n)f(n + e− 1) + · · ·+ P0(n)f(n) = 0

with Pe 6= 0. For each i, {(n+ i)j : j ≥ 0} is a basis for the K-vector space K[u]. So Pi(n)
is a K-linear combination of (n+ i)js. So

∑
n Pi(n)f(n+ i)xn is a K-linear combination of

series of the form
∑

n≥0(n+ i)jf(n+ i)xn. Now
∑

n≥0(n+ i)jf(n+ i)xn = Ri(x)+xj−iu(j),

where Ri ∈ x−1K[x−1]. For example, x−1u′ =
∑

n≥−1(n + 2)f(n + 2)xn = f(1)x−1 +∑
n≥0(n + 2)f(n + 2)xn. Now multiply the relation by xn and sum over n ≥ 0 to get

0 =
∑

ai,jx
j−iu(j) + R(x).

This sum is finite, ai,j ∈ K are not all 0, and R(x) ∈ x−1K[x−1]. Multiply by xq with
q � 0. We get that u is D-finite.
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Example 1.3. Let u = ex. Another way to show that u is D-finite is to show that
f(n) = n! is P -recursive: f(n + 1)− (n + 1)f(n) = 0.

Example 1.4. Let f(n) =
(
2n
n

)
. This is P -recursive: (n+ 1)f(n+ 1)− 2(2n+ 1)f(n) = 0.

So u =
∑

n≥0
(
2n
n

)
xn is D-finite. This is the series for 1/

√
1− 4x.

Proposition 1.3. Suppose f, g : N→ K is P -recursive and f(n) = g(n) for all sufficiently
large n. Then g is P -recursive.

Proof. Suppose f(n) = g(n) for n ≥ n0. Thenn0−1∏
j=0

(n− j)

 [Pe(n)g(n + e) + · · ·+ P0(n)g(n)] = 0,

so g is P -recursive.

Theorem 1.1. Suppose u ∈ KJxK is algebraic over K(x) of degree d. Then u is D-finite
and satisfies a polynomial equation of order d.

Proof. Let P (Y ) ∈ K(x)[Y ] be the minimal polynomial of u over K(x). Suppose P (Y ) =∑d
i=0 piY

i. Then P (u) = 0. Differentiate to get

0 = (P (u))′ =

(
d∑

i=0

piu
i

)′
=

d∑
i=0

p′iu
i

︸ ︷︷ ︸
=Q(u)

+
d∑

i=0

ipiu
i−1u′︸ ︷︷ ︸

=( ∂P
∂Y

(u))u′

The derivarive ∂P
∂Y (u) 6= 0. So u′ = Q(u)/(∂P∂Y (u)) ∈ K(x)(u). Similarly, u(n) ∈ K(x)(u)

for all N . Then we get linear dependence among u, u′, . . . , u(d).
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1 Operations on D-Finite Series

Note: Today’s lecture is a guest lecture.

1.1 Addition, multiplication, and composition of D-finite series

Last time, we showed that u ∈ KJxK is D-finite iff dimK(x)(span({u, u′, u′′, . . . })) <∞.

Theorem 1.1. The set D of D-finite u ∈ KJxK is a subalgebra of KJxK. If u, v ∈ D and
α, β ∈ K, then αu+ βv ∈ D, and uv ∈ D.

Proof. Given w ∈ KJxK, let Vw = spanK(x)({w,w′, w′′, . . . }) ⊆ K((x)). Suppose u, v ∈ D,
α, β ∈ K, and let y = αu+βv. Then y, y′, y′′, · · · ∈ Vu+Vv. Thus, dim(Vy) ≤ dim(Vu+Vv) ≤
dim(Vu) + dim(Vv) <∞.

Next, let u, v ∈ D. Consider φ : Vu ⊗K(x) Vr → K((x)) defined by φ(y ⊗ z) = yz
for all y ∈ Vu and z ∈ Vv. The product rule implies Vuv ⊆ φ(Vu ⊗K(x) Vv) ; indeed,

(uv)(i) =
∑i

j=0

(
i
j

)
u(i)v(i−j). Thus, dim(Vuv) ≤ dim(Vu⊗K(x) Vv) = dim(Vu) dim(Vv) <∞,

so uv ∈ D.

Theorem 1.2. Let u ∈ D and v ∈ KalgJxK (i.e. v ∈ KJxK and v is algebraic over K(x))
with v(0) = 0. Then u(v(x)) ∈ D.

Proof. Let y = u(v(x)). Then y′ = u′(v(x))v′(x), (u′(v(x)))′ = u′′(v(x))v′(x), etc. In
general, y(i) is a linear combination of u(v(x)), u′(v(x)), u′′(v(x)), . . . with coefficients in
K[v, v′, v′′, . . . ]. Since v is algebraic over K(x), v(i) ∈ K(x, v) for all i (proved last time).
Thus, K[v, v′, . . . ] ⊆ K(x, v).

Let V = spanK(x)({u(v(x)), u′(v(x)), . . . }) 3 y(i) for all i. We want to show that
dimK(x)(V ) < ∞. Since u is D-finite, dimK(x)(spanK(x)({u(x), u′(x), . . . })) < ∞. By
“specializing x at v,” dimK(x)(spanK(x)({u(v(x)), u′(v(x)), . . . })) < ∞. So we get that
dimK(x,v)(spanK(x,v)({u(v(x)), u′(v(x)), . . . })) < ∞. Then dimK(x,v)(V ) < ∞, and (since
v is algebraic over K(x)) [K(x, v) : K(x)] <∞, so

dimK(x)(V ) = (dimK(x,v)) · [K(x, v) : K(x)] <∞.

1



Example 1.1. We know that
∑

n≥0 n!xn, ex, and x√
1−4x are in D. So we can get that

u = (
∑

n≥0 n!xn)ex/
√
1−4x ∈ D. This would be difficult to do by hand without the results

we have proved.

1.2 Hadamard products of P -recursive series

Given h : N → K and R(n) ∈ K(n), we want to define Rh : N → K by Rh(n) =
R(n)h(n). But this could be undefined when R(n) = ∞. Here is the solution: given
h1, h2 : N → K, say h1 ∼ h + 2 if h1(u) = h2(u) for all n � 0. Call [h], the equivalence
class of h, the germ of h. Define G = {[h] | h : N → K}; this is a K(n) vector space.
Note: if g ∼ h, the nh is P -recursive iff g is P -recursive . For each h : N → K, set
Gh = spanK(n)({[h(n)], [h(n+ 1)], [h(n+ 2)], . . . }).

Fact: h is P -recursive iff dimK(n) Gh <∞.

Definition 1.1. Given u =
∑

n f(n)xn and v =
∑

n g(n)xn, define the Hadamard prod-
uct u ∗ v =

∑
n≥0 f(n)g(n)xn.

Theorem 1.3. If f, g : N → K are P -recursive, then so is fg. That is, u, v ∈ D =⇒
u ∗ v ∈ D.

Proof. It is sufficient to show that if [f ], [g] are P -recursive (element member of the germ
is recursive), then so is [fg]. Define φ : Gf ⊗K(n) Gg → G such that for each i, j, on simple
tensors, φ([f(n+ i)]⊗ [g(n+ j)]) = [f(n+ i)][g(n+ j)] = [f(n+ i)g(n+ j)]. So the image
of φ contains Gfg = spanK(n)({[f(n)g(n)], [f(n+ 1)g(n+ 1)], . . . }). So

dimK(n)(Gfg) ≤ dimK(n)(Gf ⊗ Gg) = (dim(Gf ))(dim(Gg)) <∞.

So fg is P -recursive.

1.3 Fun facts

Here are some fun facts from Professor Pak’s 2016 206A notes:

Theorem 1.4. Let S ⊆ Zd with |S| < ∞. Let an be the number of walks 0 → 0 of length
n on Zd with steps in S. Then (an) is P -recursive.

Theorem 1.5. If an = |{σ ∈ Sn : σ2 = 1}|, then an = an−1 + (n − 1)an−2, so (an) is
P -recursive.

Definition 1.2. Given F =
∑
f(n1, n2, . . . , nr)x

n1
1 · · ·xnr

r ∈ F Ja1, . . . , xrK, define the di-
agonal, diag(F ) ∈ KJtK, by

(diag(F ))(t) =
∑
n

f(n, n, . . . , n)tn.
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Theorem 1.6 (Furstenberg). Suppose F (s, t) ∈ KJs, tK ∩K(s, t). Then diag(F ) is alge-
braic. If P,Q ∈ Z[x1, . . . , xr], then diag(P/Q) is D-finite.

The proof of this theorem involves Puiseaux series.

Remark 1.1. The converse is also true. An algebraic single variable power series is the
diagonal of such a multivariable series.
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