
1 Graphs of convex polytopes

Reminder: simple polytopes are those whose vertices have degree d.

Theorem 1.1 (Blind, Mani 197x). Let P ⊂ Rd be simple. Then the face-lattice
of P is determined by G(P ).

All faces are set, the moment you decide the vertices and edges. “This took
decades to figure out.”

1.1 Why you should not believe in this type of result

There exists polytopes P,Q such that G(P ) ' G(Q), but P 6' Q. If P = ∆5,
then G(P ) = K6. For Q, put two triangles on orthogonal planes in R4. We
claim that G(Q) = K6 as well.

There’s a whole class of polytopes, that of neighborly polytopes, all of whom
satisfy G(P ) = Kn.

Theorem 1.2. For general polytopes P , all faces of dim ≤ d/2 are needed to
uniquely determine the face-lattice of P (necessary and sufficient).

Proof by Kalai of Theorem 1.1. Another use of Morse functions. Let ϕ be Morse
and consider the orientation Oϕ induced on P by ϕ. Once more let hi be the
number of vertices with out-degree i (we proved last time that these are in-
dependent to our choice of Morse function). Then the number of faces of P
is

h0 + 2h1 + 4h2 + · · ·+ 2dhd (1)

(again, this follows from our proof of Dehn-Sommerville on Monday).
Let O be an arbitrary acyclic orientation of G(P ). We can still define hOi

in the same way as above. Let

α(O) = hO0 + 2hO1 + · · ·+ 2dhOd . (2)

Lemma 1.3. α(O) ≥ |F|, the total number of faces of P .

Proof of lemma. Easy: recall our bijective proof from last time based on min-
imal vertices. Here we no longer have a bijection, but the idea still carries
through.

We say that O is good if α(O) = |F| (there do exist a.o.’s that do not
correspond to Morse functions).

Definition 1. X ⊂ V (G) is final if there is a (any) good acyclic orientation O
of G so that H = G|X is k-regular and has no out-edges.

Lemma 1.4. Faces in P correspond directly to final subsets X ⊂ V (G).

Note: this gives us an algorithm (useless in practice) for finding all faces of
P .
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Proof of lemma. Let F be a face of P . We prove that V (F ) is a final subset.
Let H be any supporting hyperplane of F , and perturb H into H ′ Define ϕ
by letting ϕ(H ′) = 0 and increasing as we move away from the polytope. This
gives us an a.o. which makes V (F ) final. Regularity is ensured by the fact that
P is simple.

Conversely, suppose that X is a final subset with respect to a good a.o. O.
We prove that X is a face in P . In O|X there must be at least one source vertex
z ∈ X. We are going to use goodness to show that z is unique. Let H = G|X
and let H ′ ⊂ G be the vertices of a face F with source at z (we can do this: take
all the outgoing edges of z as our subspace generating set). Since X is final,
H ′ ⊂ H, as we can never leave X. Finally, since H ′ is a face, we know that it’s
k-regular.

“And now a fantastic sentence:” if a connected k-regular graph sits inside
another connected k-regular graph, we in fact have equality. Thus, H = H ′.

2



1 Graphs of polytopes

Theorem 1.1 (Balinski, 1961). Let P ⊂ Rd be a convex polytope with dimP =
d. Then G(P ) is d-connected.

1961 is around the time that linear programming, simplex method type stuff
started up. Also, note that the theorem is obvious in dimensions 2 and 3.

Definition 1. A graph G is d-connected if after removing any d − 1 vertices
from G we still have a connected graph.

Proof. Let X ⊂ V = V (G(P )) be a set of d − 1 vertices, X = {x1, . . . , xd−1}.
Fix a vertex z ∈ V \X. Denote by H the hyperplane spanned by X ∪ {z} (d
points in d-dimensional space create a hyperplane)(we can of course always find
z to ensure that H is unique, but I’m not sure we care).

Let ψ be a nonzero linear function with ψ(H) = 0, and let ϕ be a Morse
function obtained by a small perturbation of ψ. Orient all edges as in Figure .
Now, the top v and bottom w of the polytope form sinks.

Lemma 1.2. Every vertex y with ϕ(y) > 0 is connected to v, which maximizes
ϕ on P .

Proof of Lemma. Suppose y does not maximize ϕ. Then there are vertices above
it and connected to it which are bigger, so move to those. Eventually this process
must terminate at v.

To finish, we observe that z is connected to v and w. Thus, the graph is
connected.

z

w

v

Figure 1:

2 Examples of polytopes

1. The d-simplex in Rd is the convex hull of d+ 1 points in general position.
It is the only polytope that is both simple and simplicial. Additionally, it

1



is self-dual, and

fi =

(
d+ 1

i+ 1

)
; hi = 1. (1)

2. The d-cube. We already calculated that

fi = 2d−i
(
d

i

)
; hi =

(
d

i

)
. (2)

2′. The d-cross polytope is the dual to the d-cube (generalizes the octahe-
dron).

3. The Birkhoff polytope Bn is the convex hull of all n× n bistochastic ma-
trices M = (mij), with mij ≥ 0. First, observe that dimBn = (n − 1)2,
as the matrix is determined by the first (n− 1)× (n− 1) minor. Second,
observe that the vertices of Bn are the permutation matrices Mσ, with
mij = 1 if and only if σ(i) = j. Thus, |V | = n!. The number of facets
fd−1 with d = (n− 1)2 is equal to n2, as each facet is given by mi,j ≥ 0.
Bn is neither simple nor simplicial: each vertex Mσ belongs to n2 − n
facets, but d = n2 − 2n+ 1.

It’s clear that each Mσ is a vertex, since they are clearly extreme points.
To argue that they are the only vertices, just show that everything is a
convex combination of the Mσ.

In general, fi is complicated (though there is a description). f1 is nice
enough to present today, however. In fact, we claim that (Mσ,Mω) is an
edge in Bn if and only if σω−1 is a cycle in Sn.

To see this, let’s suppose that ω = (1) and that σ is a product of two
disjoint cycles c1c2 (we do allow additional fixed points, so cycles of
length > 1). Consider A = αMσ + (1− α)I. But then if σ′ = c1, σ

′′ = c2,
we can construct D = αMσ′ +(1−α)I, E = αMσ′′ +(1−α)I. Observe that
A = 1

2 (D + E), so there are two different affine combinations of vertices
for A. Thus, A cannot lie on an edge. The other direction, is easier.

We now claim that

f1 =
deg(n) · n!

2
, (3)

where deg(n) is equal to the number of cycles in Sn. Last quarter we
established that

deg(n) =

n∑
`=1

(
n

`

)
(`− 1)! = n!

∑ 1

(n− `)!`
= θ((n− 1)!) (4)

(“the total number of cycles is not much more than the number of n-
cycles”).
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1 Birkhoff polytope

Proposition 1.1. Let Bn be the Birkhoff polytope. Then the diameter of G(Bn)
is equal to 2. This is equivalent to saying that every σ ∈ Sn can be written as
σ = ω1ω2, where ωi are cycles.

No proof: refer to last time where we showed an edge criterion.
In fact, we have a stronger result.

Theorem 1.2 (P.). The mixing time of G(Bn) is equal to 2. Equivalently,

||Q2 − U ||TV → 0 (1)

as n → ∞, where || − ||TV is the total variation distance, U is the uniform
distribution and Q2 is a random edge-walk.

Proposition 1.3. Bn can be inscribed (topologically) into Sd with d = (n−1)2.

Proof. Let O be the matrix with every entry = 1/n. Then

|Mσ −O| =

[
(n2 − n)

1

n2
+ n

(
1− 1

n

)2
]1/2

, (2)

which simplifies to
√
n− 1.

2 Permutohedron

We now introduce a different polytope with n! vertices. For σ ∈ Sn, let a(σ) =
(σ(1), . . . , σ(n)) ∈ Rn.

Definition 1. The permutohedron Pn is defined as the convex hull,

Pn = conv{a(σ) : σ ∈ Sn}. (3)

Since
∑
σ(i) =

(
n+1
2

)
, we observe that dimPn = n−1. Additionally, we can

observe that Pn is inscribed into Sn−1, due to the fact that

n∑
i=1

σ(i)2 =
n(n+ 1)(2n+ 1)

6
. (4)

As a consequence of these two observations:

Proposition 2.1. Pn has n! vertices.

Theorem 2.2. G(Pn) = Cayley(Sn, {(12), (23), . . . , (n− 1n)}).

Corollary 2.3. Pn is simple.
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Proof of Theorem 2.2. Observe that Pn is Sn-invariant. Sn acts on Rn by per-
muting coordinates, so it suffices to prove the theorem for one vertex, specifically
the vertex with σ = 1, 2, . . . , n. Let a(σ) = (1, 2, . . . , n) and suppose we are ad-
jacent to a(ω). We’d like to show that a(ω) = (1, 2, . . . , i+ 1, i, . . . , n) for some
i.

The difference vector is equal to (0, . . . , 1,−1, . . . , 0). Notice that we can
arrive at any permutation using such difference vectors (a positive combination,
which is necessary for our next sentence). So, every permutation lies in a cone
spanned by the possible difference vectors. Thus the only possible edges are
the edges of the cone, which are exactly the permutation vectors of the desired
form. Full dimensionality implies that we in fact have every such edge.

This is slightly misleading: the adjacencies for non-identity permutations
still swap i and i+ 1 instead of the coordinates. For example, 24135 is adjacent
to 14235, 34125, 23145 and 25134.

Our knowledge of the Cayley graph immediately gives us a diameter of
(
n
2

)
(an observation) and a mixing time of θ(n3 log n) (a hard theorem).

2.1 The f-vector of the permutohedron

Let fi = fi(Pn) First, fn−1 = 1.

fn−2 =? (5)

Let’s look at the h-vector instead. Consider the function

ϕ = x1 + εx2 + ε2x3 + · · ·+ εn−1xn, (6)

where ε is really small. This is a Morse function, so let’s try and figure out the
out-degree of a(σ). An example: consider σ = 24135. Switching to 14235 lowers
the value of ϕ, while switching to 34125 raises it. In general, the out-degree is
the number of descents of σ. Thus,

hk = #{σ ∈ Sn : des(σ) = k} = A(n, k), (7)

an Euler number. Recall the easy recurrence,

A(n, k) = (n− k)A(n− 1, k − 1) + (k + 1)A(n− 1, k). (8)

Now, how can we get to the f -vector? For n = 3, hexagon. For n = 4, trun-
cated octahedron, with 8 hexagons and 6 squares. Non-adjacent transpositions
form a square, while adjacent ones form a hexagon (copy of S3).
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1 Permutohedron

I was late! Pn ⊂ Rn is defined by

Pn = conv(a(σ : σ ∈ Sn)) (1)

where a(σ) = (σ(1), . . . , σ(n)).

Theorem 1.1. Permutohedron is simple, n− 1 dimensional and hk = A(n, k)

Theorem 1.2. The graph of the Permutohedron is the Cayley graph.

Anyway, Igor estalishes that

fk = k!S(n, k) (2)

via a bijection(?) to cosets(?) of Sn.

2 Associahedron

Let’s recap on the number of vertices:

• Simplex: n

• Cube: 2n

• Permutohedron: n!

• Associahedron: Cn, the n-th Catalan number.

Igor shall use Qn to refer to the associahedron. Recall of course that

Cn =
1

n+ 1

(
2n

n

)
. (3)

Definition 2.1. Qn is defined by letting V be all triangulations of an n+2-gon
Wn+2, and letting the faces be all subdivisions of Wn+2 with non-intersecting
diagonals.

Example: for n = 2, we get S0. For n = 3, we get a pentagon (see Igor’s
book, chapter 8 for a good picture).

Theorem 2.2 (Stasheff conjectured in 1963, Lee proved in 1989). Qn is ge-
ometrically realizable as an (n − 1)-dimensional polytope. That is, there is a
polytope of dimension n− 1 whose face lattice matches the one described above.

2.1 Edges

The edges of Qn correspond to pairs of triangulations, from which one can reach
the other by a “flip” (again, Igor’s book chapter 8 for a good picture).

Observation 2.3. Qn is simple.

This is based off the fact that the number of diagonals off one fixed vertex
is n− 1 (?).
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3 The GZK-construction (≈ 1990)

Let W = Wn+2 be a convex polygon with vertices 1, . . . , n + 2. For a triangu-
lation T of W , let fT : [n+ 2]→ R be the function given by

f(i) =
∑
∆3i

area(∆). (4)

The set of such functions can be viewed as a point in Rn+2. Then let

Qn = conv{fT } ⊂ Rn+2. (5)

Theorem 3.1 (Gelfand-Zelevinsky-Kapranov). Qn has the Stasheff face struc-
ture. That is, this is in fact a geometric realization of the associahedron.

4 Another realization

Igor provided another, more combinatorial realization of the associahedron, by
Loday (2004). Consider the set of full binary trees, a binary tree where every
vertex has either 2 or 0 children (note that these are a Catalan object).

i

Figure 1: A full binary tree

For a given tree, let f be a function from the non-leaf vertices to R, defined
by

f(i) = aibi, (6)

where ai is the number of leaves to the left of i, and bi the number to the right.
Additionally, we label our vertices in depth-first search order. For example in
Figure 1, ai = bi = 1.

Now for Tn the set of full binary trees with n non-leaf vertices (2n+1 vertices
total), we have the functions fT for T a particular tree. Again, we think of each
fT as a point in Rn.

Theorem 4.1 (Loday, 2004). The polytope

Qn = conv(fT : T ∈ Tn) (7)

has the Stasheff face structure, and hence is another geometric realization of the
associahedron.

Initally Igor thought these two realizations were the same, but they aren’t.
The GZK-construction can be parametrized into a family (slightly bending the
original polygon changes the area of the triangles), but “somehow the Loday
construction is unique.”
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1 Associahedron continued

Recall:

Theorem 1.1 (Loday). Let Tn be the set of full binary trees with n+ 1 leaves,
and let

Qn = conv{a(t) : t ∈ Tn}. (1)

Then Qn is a Stasheff polytope, i.e. it is a realization of the associahedron.

Some clarification: Stasheff introduced the lattice structure of the associahe-
dron, but only conjectured that it could be realized as a polytope. Igor is using
“Stasheff” and “associahedron” somewhat interchangeably. The name “asso-
ciahedron” is also kind of silly: it’s coming from the “balanced parentheses”
Catalan structure.

1.1 Example (Loday)

Let n = 3.

Figure 1: The five full binary trees with 3 interior vertices

The trees in Figure 1 yield the (aibi)-vectors (in-order traversal for the co-
ordinates) (1, 4, 1), (1, 2, 3), (2, 1, 3), (3, 1, 2), (3, 2, 1).

We know that Q3 has dimension 2, and we notice that all these points lie on
the hyperplane x+ y + z = 6.

Claim 1.2. In general, the hyperplane is H = {x1 + · · ·+ xn =
(
n+1
2

)
}.

Igor drew a projection onto the first two axes and pointed out that two pairs
of edges were each parallel. A high degree of paralellism is a special property of
Loday’s construction.

1.2 Example (GZK)

Once more let n = 3. We take the regular pentagon as our initial object to
triangulate: the area of the central triangle will be β, and the other two have
area α. The coordinates are therefore going to become

(2α+ β, α, α+ β, α+ β, α) (2)

and its cyclic shifts. Note that this cyclicity means it’s a regular pentagon, and
thus has no parallel edges.
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β αα

Figure 2: I hate TikZ SO MUCH

1.3 Proof of claim

A proof by picture: we start with a full binary tree with n + 1 leaves, and
consider the left and right subtrees.

Figure 3: Left and right subtrees

Claim 1.3. The associahedron Qn is equal to the intersection H ∩HJ , where

J = {k, k + 1, . . . , `} (3)

HJ =

{
xk + xk+1 + · · ·+ xk+` ≥

(
`− k + 2

2

)}
(4)

Again, the proof is by picture:

Figure 4: uhh

Together, these two claims give Loday’s theorem.

1.4 Another property

Theorem 1.4. Qn is simple in Rn−1, and

hi =
1

n

(
n

i

)(
n

i+ 1

)
= N(n, i), (5)

the Narayana numbers.

One can interpret the Narayana numbers in many combinatorial ways, but
the one most useful to us is the number of (not full) binary trees with n wertices,
and k left edges. In particular, we draw special attention to the fact that N(n, k)
sum up to Cn, and thus

h0 + h1 + · · ·+ hn−1 = f0 = Cn. (6)

We can prove that N(n, k) has this interpretation by induction, or some bijective
stuff.

2



Proof using GZK. (Can be done using Loday as well) Start with the standard
bijection between triangulations and binary trees. Introduce a Morse function:

ϕ = x1 + εx2 + ε2x3 + · · · (7)

where ε is some tiny positive number.
We consider what happens under a flip: Note that the flip increases the

Figure 5: flip

area at vertex 1, and so this flip is “better” according to our Morse function.
This gives us an orientation on the edges, which correspond to flips. Since
the increasing flips turn a left edge into a right edge... something something
Narayana numbers.
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1 Rational and irrational polytopes

Definition 1.1. Today we consider a polytope to be defined by its face struc-
ture, the lattice of faces. A realization of a polytope P is a polytope P ⊂ Rd. A
polytope P is rational if there is a realization over Q, and irrational if not.

Question: do there exist irrational polytopes? Yes!

Theorem 1.2 (Steinitz). All 3-dimensional polytopes are rational.

Theorem 1.3 (Perles, Mrev, Richter-Gebert). There exist irrational polytopes.

Additionally, all simple and simplicial polytopes are rational: for in a simpli-
cial polytope, we can perturb the vertices slightly to be rational with no prob-
lems (NOTE: highly sensitive to the fact that each face is a triangle/simplex).
For simple polytopes, we perturb their hyperplanes to be rational. Then their
intersections are rational as well. As was pointed out, you can’t perturb vertices
on a facet without changing it, unless the facet in question is a simplex.

2 Point and line configurations

Take a set of lines and points which lie on these lines (not necessarily at the
intersections). We denote the points by X = {x1, . . . , xn} and the lines by
L = {`1, . . . , `n}. Then we can encode the combinatorial data as a bipartite
graph where (xi, `j) if and only if xi ∈ `j .

Question: given such a graph G = (X tL), does there exist a point and line
configuration having G as its graph of incidences?

In general, this is a hard question, as often points are subtly forced onto
lines (for example, Desargue’s theorem, which Igor proved by slightly lifting the
middle line and looking at intersecting planes). As another example, the Fano
plane (Fig 12.3 in Igor’s book, p. 112) has a realization in F2, but not in the
reals:

Theorem 2.1 (Gallai-Sylvester). In a point and line configuration (where we
draw all possible lines through 2+ points) over R, some line must contain either
every point, or ≤ 2.

The Fano plane clearly violates this condition.

Lemma 2.2 (Perles). There exists an irrational configuration of points and
lines.

Proof. Consider the Perles configuration (Fig 12.4, p. 112 of Igor’s book), with
vertices 1, 2, . . . , 9. We argue by contradiction: assume there exists a rational
realization. First, we project the line 1234 to a line at infinity.
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1 Universality theorems

Let A be an algebraic closure of Q, and let k be a proper subfield of A.

Theorem 1.1 (Mnëv). There is a point and line configuration which is realiz-
able over A, but not realizable over k.

1.1 Ruler and compass constructions

A trip back in time: Gauss was interested in whether a regular n-gon can be
constructed with a ruler and compass.

Theorem 1.2 (Gauss). The regular heptagon cannot be obtained in such a way.

People were not impressed with negative results at this time however, and
so:

Theorem 1.3 (Gauss). The regular 17-gon is constructible.

In general, a regular n-gon can be constructed if and only if

n = 2rp1 · · · pk, (1)

where the pi are distinct Fermat primes, i.e. pi = 22
i

+ 1.

Theorem 1.4 (Euler). 22
5

+ 1 is not a prime.

Today, we’ll prove theorem 1.3 “in a strange way.”

Definition 1.5. Let k0 = Q, and ki+1 = ki[
√
ai] for some ai ∈ ki. If z ∈ kr for

some r, we call z a geometric number.

Theorem 1.6. A number z is geometric if and only if z can be constructed
using ruler and compass.

Together with the fact that cos π
17 is a geometric number, Theorem 1.6 im-

mediately implies Theorem 1.3.
It suffices to show that given positive geometric numbers a, b, we can con-

struct a+b, a·b, a/b,
√
a (see chapter 12 of Igor’s book for one set of constructions

that does this).

1.2 Proof of universality for points and lines

Igor shows us how to add, and multiply using point and line configurations (see
chapter 12 for the constructions). Consider a polynomial f(x) = anx

n + · · · +
a0, with ai integral. If we start with the point x, we can use addition and
multiplication to construct the point f(x).

By declaring that f(x) must be equal to the origin point in our configura-
tion, we obtain a configuration that is only realizable if we have access to an x
satisfying f(x) = 0.

I should note that this is explained in more detail in chapter 12 of Igor’s
book.

1



Theorem 1.7 (Mnëv). For all algebraic varieties X, there is a point and line
configuration L such that M(L) = X × (C∗)m.

1.3 Irrational polytopes

Theorem 1.8 (Mnëv). For all X, there is a polytope P such that M(P ) =
X × · · · (M(P ) is the space of realizations of P ).

Lawrence construction proof. Let L = {(p1, . . . , pn), (`1, . . . , `m)}. Lift the points
pi = (ai, bi) ∈ R2 to (1, ai, bi) ∈ R3. Now, we set P equal to the convex hull of
{vi, wi}, where vi, wi ∈ R3+n and

vi = (pi, ei); wi = (pi, 2ei). (2)

Suppose that some nonzero combination of vi and wi is equal to 0. This gives
us a linear relation on our points pi. Because we have lifted into R3 (another
projective trick), this corresponds to a colinearity condition.
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1 Linkages and applications

Today’s lecture draws heavily from chapter 13 of Igor’s book, so I’m only going
to include things that are not there. He’s got all the figures he drew today in
that chapter.

Theorem 1.1 (Kapovich, Millson). “Nearly” any semi-algebraic set can be
drawn using a bar and joint linkage.

Example of a semi-algebraic set: points satisfying x2 + y2 ≤ 1 and x, y ≥ 0.
We’re not gonna prove this one.

Igor first builds an adder x 7→ x + c, then a multiplier x 7→ cx (this last
one is a pantograph). Additionally, Igor shows us how to do vector addition
~z = ~x + ~y. Multiplying x and y is more difficult. First Igor builds an inverter,
then exploits the fact that inverters are sufficient for multiplication, via

1

z − 1
− 1

z + 1
=

2

z2 − 1
. (1)

This allows us to square z 7→ z2, at which point we have products via

xy =
1

2
[(x + y)2 − x2 − y2]. (2)

1.1 How this changed our lives

Before computers, people still needed to do calculations. For example, the
planimeter gadget was invented: a linkage that computes the area inside a
simple closed curve. In 1928-31, Vannevar Bush at MIT created the differential
analyzer, a mechanical computer for solving differential equations.
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1 Steinitz’s theorem

Today’s lecture brought to you by chapter 11 of Igor’s book. Recall

Theorem 1.1 (Balinski). The graph of a 3-dimensional polytope P is planar
and 3-connected.

Theorem 1.2 (Steinitz). Every 3-connected planar graph G is the graph of a
convex rational polytope.

Corollary 1.3. Every 3-connected planar graph has a unique embedding into
S2.

Igor will give four proofs of the Steinitz theorem.

1.1 Proof 1

Section 11.2 of Igor’s book. We apply operations to our graph G to reduce it to
K4. Our operations are the Y ∆ transformation and its inverse ∆Y , along with
the removal of sequential and parallel edges (Figure 11.1).

Main Lemma 1.4 (Steinitz). Every planar 3-connected graph can be reduced
to K4 by this set of transformations.

Igor shows us the reductions on the graph of the cube to K4 (Figure 11.2).

Lemma 1.5. The Main Lemma implies the Steinitz theorem.

Proof of Lemma 1.5. The Y ∆ moves correspond to slicing a corner of a polytope
off with a hyperplane, and its inverse of “joining up” three points of a triangular
face (may require a projective transformation). Thus the Main Lemma states
that we can start with a simplex and build a polytope with any graph desired.

Lemma 1.6. If a planar graph G goes to K4, then so will every minor of G.

“Fairly obvious.”

Lemma 1.7. If G is planar, then it is a minor of some k × n grid graph.

“Even easier.”

Lemma 1.8. Every k × n grid graph goes to K4.

Proof of Lemma 1.8. Starting with a k × n grid, we turn two opposite corners
into diagonals. We move one of these diagonals upwards to the top (sublemma
in class), at which point we can kill it using an easy ∆Y transformation. Then
repeat along the bottom row, until we’ve reduced to a smaller case, and it’s
some induction.

It’s clear that the 3 × 3 graph can be turned into K4.
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There’s a slight lie in Lemma 1.6: obviously some extreme minors cannot
get to K4. It turns out that you need to add the stipulation that we take a
2-connected minor (not 3, it’s too restrictive), but then this is still not enough.
Ziegler ended up modifying the proof to be phrased inductively, which eliminates
these scares.
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1 More on Steinitz

Recall:

Theorem 1.1 (Steinitz). Every 3-connected planar graph G is the graph of a
convex polytope P ⊂ Q3.

1.1 Steinitz theorem for triangulations

We prove this by induction on n = |V |. By Euler’s formula we have:

|E| = 3n− 6. (1)

In particular, we observe that there must be a vertex having degree 3, 4, or 5.
For the case of a degree 3 vertex: remove that vertex, realize the polytope by
induction, then add a little pyramid when putting the vertex back. For degree 4,
we have a quadrilateral formed by the neighbors of v. Remove v, put a diagonal
in, realize the polytope, put a pyramid in with apex slightly above the diagonal.

Finally, we consider the case of a degree 5 vertex. Now the neighbors form a
pentagon. Remove v, triangulate the pentagon, and realize the polytope. Then
place above the orange line but below the purple line in Figure .

“Why do some theorems need many proofs?” In this case, we have a goal:
the quantitative Steinitz theorem. Having more methods means having more
chances of proving it.

1.2 Quantitative Steinitz theorem

For all G, we’d like to find the minimum bounding box containing P with integer
vertices and G(P ) = G.

Conjecture 1.2. For triangulations G, there is some constant c so that a nc×
nc × nc bounding box suffices, where n is the number of vertices of G.

By contrast, our Y ∆/∆Y construction from last time requires an enormous

bounding box: O.S. proved that our construction is eO(n3).
The triangulation proof above “gives at best an exponential bound.”

Theorem 1.3 (Demaine-Schulz). If there is a sequence G → K4 of type 3
(removing a degree 3 vertex each time), then we can build a bounding box with
dimensions O(n5)×O(n5)×O(n5).

Sketch of idea: these vertex removals form a ternary tree. Allocate space on
your simplex for the big branches of the tree.

The problem is the degree 5 case: our final step is very restrictive.
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2 Tutte’s spring theorem andMaxwell-Cremona
construction

For a planar and 3-connected G and a convex polygon Q, we create a spring
embedding of G by letting the outside face of G be Q with vertices pinned, and
if all inside edges are springs, then the interior vertices are in equilibrium.

Theorem 2.1. For any spring weights, there is a unique spring embedding.
Furthermore, this embedding is planar and every interior face is a convex poly-
gon.

Physics intuition helps a bunch here: Hooke’s law for a spring states that

F = k · `, (2)

and when we integrate we obtain the energy:

E =
1

2
k · `2. (3)

For today, Igor wants k = 1 for every edge.

Lemma 2.2. For every connected graph G, there is a unique spring embedding
equilibrium.

The intuition is clear: eventually the springs stop wiggling. To make it
rigorous, consider the energy function

E =
1

2

∑
(vi,vj)∈E(G)

(xi − xj)
2 + (yi − yj)

2. (4)

Our equilibrium condition corresponds to solving a system of linear equations.
If the solution space is 1-dimensional or higher, we would have no minimum
energy.
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1 Maxwell-Cremona theory

Last time we discussed the Tutte embedding of a planar 3-connected graph G.
Let wi,j : E → R+.

Theorem 1.1 (Maxwell 1864). Any projection of a 3-dimensional polyhedral
surface is a (generalized) Tutte embedding. That is, there exist weights wi,j such
that the projection is a Tutte embedding.

Theorem 1.2 (Cremona). For any generalized Tutte embedding p : V → R2,
there exists a 3-dimensional polyhedral surface which projects onto p.

1.1 A (slightly dishonest) explanation

“Normals of hyperplanes are dual to the edge vectors of the graph.”

Theorem 1.3. Let P be a convex polytope, and let ui be the normal to face Fi.
Let ai be the area of Fi. Then

∑
aiui = 0.

Proof.

2 Circle packings

Question: can you draw every planar graph as the dual of a circle packing?

Theorem 2.1 (Koebe-Andreev-Thurston). Yes.

Theorem 2.2 (Schramm 1988). For every 3-connected planar graph G, there
is a convex polytope P with G(P ) = G and P is “midscribed” around the unit
sphere (all edges are tangent to S2). Moreover, such an embedding is unique up
to Möbius transformations.

Next time: proof using variational principle.

1



1 Basic variational principle

Most of the content today is from Chapter 9 of Igor’s book.

Theorem 1.1 (folklore). Suppose P ⊂ Rd is a convex polytope, and z is a point
in P . Then there is a facet F such that the orthogonal projection of z onto the
affine span of F lies inside of F .

“Obvious,” why? There’s a physical proof: make z your center of mass
using some materials, then set your polytope P on the ground. “But how do
you know physics works in dimension 112?” Let’s postpone answering that for
a second. “How do you know it doesn’t roll forever?” Answer: the height of z
is decreasing with each roll (informally, it’s losing potential energy) (see Figure
9.1 if you don’t see why). This gives us an idea of how to reinforce the physical
intuition.

Variational principle proof. Let d(F ) be the orthoganl distance from z to the
affine span of F . We argue that the F which minimizes d has the desired facet
property.

Theorem 1.2. For any polygon Q ⊂ R2 with z the center of mass of Q, there
are at least 2 faces which z projects orthogonally onto.

Note that for z ∈ Q general, it’s false: see Figure 9.3 of Igor’s book.

Lemma 1.3. Let P,Q ⊂ R2 be convex plane sets with cm(P ) = cm(Q) and
area(P ) = area(Q). Then the boundaries of P,Q intersect in at least 4 points.

Proof. By contradiction: obviously the number of intersection points must be
even. Suppose there are only 2 points. Draw the line segment between these
points. Then the intersection X = P ∩Q satisfies

cm(P ) = αcm(P \X) + (1− α)cm(X), (1)

cm(Q) = αcm(Q \X) + (1− α)cm(X). (2)

Proof of Theorem ??. Draw a circle C centered around z = cm(Q) satisfying
area(C) = area(Q). Since C intersects Q at least 4 times,

Theorem 1.4. In d = 11, there is a simplex with only one stable equilibrium.
Furthermore, there is a simplex that “rolls” onto every single facet.

1.1 Billiards

Theorem 1.5. Let Q be a smooth convex figure. Then there are at least two
double-perpendiculars.

Proof. The first one is easy: just take the diameter. Finding the second one is
significantly more tough: we have to use a minimax argument (See the proof of
Theorem 9.10).

1



1.2 Birkhoff’s theorem

These double perpendiculars are special cases of billiard trajectories, specifically
those of size 2.

Theorem 1.6 (Birkhoff). Every convex set Q ⊂ R2 has at least two closed
billiard trajectories of size p (“p is prime, but it’s not really important”).

Proof. Take points x1, . . . , xp ∈ ∂Q. Define f(x1, . . . , xp) to be the sum of
the distances between successive points. Let z1, . . . , zp be a set of points that
maximize f . Then we claim that z1, . . . , zp is our desired billiard trajectory.

To see this, we must verify the equal angle property of a reflection. Using
the fact that xi maximizes the sum of distances, all points in Q lie in the ellipse
with focal points xi−1, xi+1. In particular, the ellipse and Q have the same
tangent at xi. By the reflection property of an ellipse, the angles are equal.
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1 Variational principle

1.1 Monostatic polytope

There is a convex polytope in R3 which only rests on one face. An easy con-
struction is the “sliced cylinder” in Figure 9.5.

1.2 The Gömböc

The aforementioned cylinder has a stable facet (local min), but three more non-
stable equilibria: balance it on the top edge (saddle), or on the sides (local
maxes). Arnold’s conjecture states that there exists a convex body having only
one local min and one local max.

Theorem 1.1. Arnold’s conjecture holds: the Gömböc has one local max, one
local min, and no saddle equilibria. Furthermore it can be done as a polytope
(?).

Why is it called a Gömböc? It’s the Hungarian name for the “clown who
won’t stay down” toy (Russian: Heblg[uw]ka http://ru.wikipedia.org/wiki/

2 Closed geodesics

For a surface A, we can think about curves γ which provide the shortest length
from x to y on ∂A. A geodesic γ is a curve which is “locally the shortest.” In
particular, for every z ∈ γ there are x, y ∈ γ such that z lies between x and y,
and the restricted γ is the shortest curve from x to y.

Problem: find closed geodesics on a two dimensional surface S. Simple closed
geodesics (no self-intersection) are of interest.

Theorem 2.1 (Lusternik-Shnirelman). For every smooth convex body A ⊂ R3,
the boundary S = ∂A has at least 3 simple closed geodesics.

Theorem 2.2 (Morse). An ellipsoid E with distinct axis lengths/radii has ex-
actly 3 simple closed geodesics.

The proof of Theorem 2.1 is hard, and we won’t do it. Let’s get one geodesic
though: think of a homotopy of circles starting at some base point and ending
at some other point. Specifically, let C(t) be a family of closed curves, with
t ∈ [0, 1]. Let

C = min
{C(t)}

max
t∈[0,1]

|C(t)|. (1)

Here we are minimizing over all possible families of curves. What this really is,
is a rubber band that won’t slide when you let go. Thus this curve C is a closed
geodesic.
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3 More billiards

Conjecture 3.1. Every triangle has a closed geodesic.

This is “high school obvious, by bouncing around the altitudes,” but it’s
totally open for obtuse triangles where you can’t get away with that.

3.1 Quasi-billiard trajectories

What happens if we let our billiard path to hit corner x with angle γ at angles
α, β but demanding that |α− β| ≤ π − γ?

Theorem 3.2 (quasi-Birkhoff). For a polygon P , there exists a closed quasi-
billiard trajectory.n

These trajectories are useful, for example for proving Theorem 2.1 in the
polytopal case.
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Today’s lecture draws from Chapters 10 and 25.

1 Curvature of convex polyhedra

Recall:

Theorem 1.1 (Poincaré,Birkhoff,Lusternik,Shnirelman). Every smooth convex
body has at least three simple closed geodesics.

The result is tight for an ellipsoid.

Theorem 1.2 (Pogorelov). Every convex body has at least 3 (simple closed)
quasi-geodesics.

A quasi geodesic is a path composed of piecewise geodesic segments, and at
each corner we have that the two corner angles α, β both are less than or equal
to π (if that sounds crazy, think about the angles at the vertex of a polytope).

A combinatorial proof of Pogorelov’s result exists, “but it’s too complicated
for today.”

Claim 1.3. Random tetrahedra do not have simple closed geodesics.

“Random” is purposefully left ambiguous.

Proof. There are possibly two closed geodesics that we can have on a tetrahe-
dron: triangles around three faces, or quadrilaterals around all four.

In the first case, take the angle sum of the face angles at the isolated vertex.
We express this in terms of the three small triangles formed by our geodesic:

Σ = 3π−π−π−π = 0formerfromalltriangles, latterfromgeodesiccondition
(1)

The 3π comes from the angle sums of all three triangles, while each copy of −π
Since the angle sum can’t be zero, this is a contradiction.

For the second case, consider the angle sums from one pair of isolated ver-
tices:

Σ = 2 · (2π) + 2 · π − 4 · π = 2π. (2)

This angle sum however is a measure zero condition, so a random tetrahedron
won’t satisfy this condition.

Definition 1.4 (Descartes). Suppose C is a cone with vertex O. Define ω(C)
to be equal to 2π −

∑
(∠), the sum of the angles of the cone. Call this the

curvature of C at O.

Theorem 1.5 (Descartes). For every convex polytope P ⊂ R3,∑
v∈V (P )

ω(Cv) = 4π. (3)

1



Boring proof. Triangulate everything, thus assuming that P is simplicial. If
not, we can just triangulate each face and we don’t care if faces are parallel.

Then we have

ω(P ) =
∑

v∈V (P )

ω(Cv) = 2πn−
∑

(∠). (4)

By Euler’s formula, there are 2n− 4 faces, and since each is a triangle the angle
sum above is equal to (2n− 4)π. The result is proved.

Gauss’ proof. Assume every cone has three faces, i.e. we have a simple polytope.
For every vertex, construct a second cone

C∗v = {~x : 〈x, y〉 ≤ 0∀y ∈ Cv}. (5)

Redefine ωv to be the surface area of of C∗v ∩ S2, where S2 is a unit sphere.
We claim of course that ωv = ω(Cv). We also claim that

∑
ωv = 4π. This

latter claim is not hard to see: if we give the dual cones C∗v a common origin
point, they form a disjoint union (modulo boundaries) of R3. Hence, the sum
is equal to the area of S2. To see the disjoint union property, consider the
hyperplane orthogonal to a specified point, to determine which cone the point
lies in.

Lemma 1.6 (Girard’s formula). The area of a spherical triangle is equal to
α+ β + γ − π, where α, β, γ are the angles of the triangle.

Proof of lemma. See Chapter 41 of Igor’s book for an inclusion-exclusion style
proof.

Now to see the first claim, we note that the condition defining C∗v turns the
face angles into dihedral angles, i.e. α→ π − α. Then we immediately have

ω(Cv) = 2π − α− β − γ = (π − α) + (π − β) + (π − γ)− π = ωv. (6)
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Today’s lecture brought to you by Chapter 35 of Igor’s book.

1 Alexandrov’s curvature theorem and the Weyl
problem

Suppose we have P ⊂ R3 with vertices v1, . . . , vn. Let Ri be the rays from the
origin to vi.

Question: given the rays Ri, what can be said about the curvatures wi =
ω(vi)?

Theorem 1.1 (Alexandrov, 1930s). Given rays R1, . . . , Rn, a vector w =
(w1, . . . , wn) is a vector of curvatures if and only if:

1. wi > 0 for all i,

2.
∑
wi = 4π (Gauss-Bonnet),

3. For every subset I ⊂ [n], we have∑
j /∈I

wj > ω(CI), (1)

where CI is the cone of the rays Ri with i ∈ I.

Moreover, such P = conv(v1, . . . , vn) is unique up to expansion.

In other words, there is a bijection between ray-polytopes modulo expansion,
and “valid” curvature vectors. This last comment on uniqueness turns out to
be an important factor in the proof.

Lemma 1.2. Suppose P Q are ray-polytopes that lie on the same set of rays,
with vertices vi and wi respectively. Then if ω(vi) = ω(wi) for all i, we have
that P is an expansion of Q.

Proof of lemma. Without loss of generality, assume Q is small enough to fit
completely inside P . We grow Q until a vertex of Q first touches the boundary
of P (necessarily at a vertex of P ). Now if P,Q are not equal, there is a
contact vertex wi = vi where the cone of wi lies strictly inside the cone of vi.
But curvature is a (strictly) monotonic function, which is easily seen by using
the orthogonal cones of last lecture. Thus we would have ω(wi) > ω(vi), a
contradiction.

Lemma 1.3. Let A,B be d-dimensional manifolds, and let ϕ : A → B satisfy
the conditions

1. Every connected component of B intersects ϕ(A).

2. ϕ is injective.

3. ϕ is continuous.
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4. ϕ is proper (preimages of compact sets are compact).

Then ϕ is a homeomorphism.

Proof of Alexandrov. Let A be the space of ray-polytopes P up to expansion,
and letB be the space of valid curvature vectors. Of course, we let ϕ(v1, . . . , vn) =
(w1, . . . , wn). We then show that ϕ satisfies the conditions of the above lemma,
which will prove our theorem.

It is better to consider ϕ as a function of the distances ri along rays Ri

(remember that our rays are fixed from the start). Conditions 1 and 2 of the
lemma are trivial. Condition 3 is a consquence of Lemma 1.2. Thus, it remains
to check that ϕ is proper. To do this, we will need to use the third condition
on validity of a curvature vector.

To ignore expansion, designate that
∏
ri = 1. To prove properness, we will

show that a convergent sequence of curvature vectors ϕ(Pj) has a limit point
P ∈ A, by contradiction.

1.1 Relation to the Weyl problem

Given now a smooth manifold, how much does the Gaussian curvature determine
a convex body? Alexandrov’s student Pogorelov extended our above theorem to
all convex bodies. Another person used analytic methods to prove the smooth
version around the same time.
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Chapter 15 of Igor’s book would be good reading for this lecture.

1 Hilbert’s third problem

Hilbert’s famous problem list was delivered in 1900. The third problem was the
first one solved.

Definition 1.1. Suppose P,Q ⊂ Rd are convex polytopes of equal volume. We
say that P,Q are scissors congruent and write P ∼ Q if P = tPi, Q = tQi

where the unions are finite and Pi ' Qi (congruent).

1.1 Problem statement

True or false: are all polytopes in R3 of equal volume scissors congruent?

Theorem 1.2 (Dehn 1902). The unit cube is not scissors congruent to the
regular tetrahedron of volume 1. That is, C 6∼ ∆.

1.2 Why three dimensions?

Why start with R3?

Theorem 1.3 (Bolyai, Gerwein). All equal-area convex polygons in R2 are
scissors congruent.

Proof. Start by cutting P,Q into triangles P = tPi, Q = tQj . Denote by αi

the area of Pi, and let βj be the area of Qj . Now refine our cuts into triangles
Pij , Qji having area αiβj . We have now reduced our problem to showing that
any two triangles of equal area are scissors congruent.

Proving that two triangles are scissors congruent is easy: First, chop off
the top of a triangle and move it onto the side, in order to convert it to a
parallelogram. Note that two parallelograms with one side length in common
are scissors congruent (see Figure 15.2). (Then the proof finishes... how?)

(In fact, we can get more general: there is a lemma that states that if G acts
on X such that P,Q are fundamental regions, then P ∼ Q.)

1.3 Area and volume

This above proof tells us an easy way to define the area of any polytope, by
using scissors congruence to relate it to a rectangle. To compute the volume of
a regular tetrahedron, people typically use calculus-like results.

1.4 Proof

Proof. Let P have dihedral angles α1, . . . , αN . Call P fortunate if there are
rationals c1, . . . , cN such that

c1α1 + · · ·+ cNαN = π. (1)

1



Lemma 1.4 (Main Lemma). If P ∼ C, then P is fortunate.

Before we prove the Main Lemma, let us observe that it implies the theorem:
all dihedral angles of the regular tetrahedron are equal to α = arccos(1/3).
However, α/π is not a member of Q.

1.4.1 First “proof”

For the Main Lemma, Igor presents a “correct but also incorrect” proof as
follows:

Proof 1 of Main Lemma. Let P = tPi, C = tCi be a decomposition of P,C
into congruent polytopes. Since Pi ' Ci the sum of all dihedral angles is equal:∑

allPi

∠ =
∑
allCi

∠. (2)

Interior dihedral angles contribute multiples of 2π to this sum. Meanwhile, the
angles corresponding to the surface of the cube contribute a multiple of π/2.
Thus, we can take the surface angles of P and create a fortunate combination.

What’s wrong with this? Igor brings up another theorem to illustrate:

Theorem 1.5 (Bricard 1897). The tetrahedron and cube are not scissors con-
gruent, even if you consider dissections.

Our above proof only works if our cuts are always face-to-face, as we may
end up counting the same dihedral twice in a general dissection.

Proof 2. To fix this, let e be an edge of the dissection, and consider the modified
sum ∑

e∈Pi

|e|∠e =
∑
e∈Ci

|e|∠e. (3)

We get the same result, but only if |e| is always rational.

So we can do it for face-to-face triangulations, and we can do it for rational
dissections. Our final proof closes the gap:

Proof 3. Let’s try to find a rational valued function f(|e|) to help us. What will
this function need to do? We’d need to satisfy∑

e∈E

f(e) =
∑
e′∈E′

f(e′);
∑

f(e)∠e = cπ. (4)

Now, this first sum equality is a system of equations in the unknowns f(e), f(e′).
We know at least one solution exists via f(e) = |e| However, once one solution
exists we know that a rational function exists (?).
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1.5 Final comments

Hidden behind the scenes here is a tensor product R ⊗ R/πZ, along with the
function φ(P ) =

∑
e⊗∠(e). This more algebraic approach can be used to show

more things, such as the “inverse problem.”
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1 Scissors congruence: combinatorial approach

Last time was a double counting argument, but we can do even better. Idea: use
valuations! Define a map ϕ from all d-dimensional polytops P to R, satisfying:

∗ ϕ is invariant under scissors congruence. Namely, if P ' P ′ then ϕ(P ) =
ϕ(P ′). Additionally, we’d like that if P = P1 t P2 then ϕ(P ) = ϕ(P1) +
ϕ(P2).

1. ϕ(C) = 0, where C is the cube, and

2. ϕ(∆) 6= 0, where ∆ is the tetrahedron.

Technically, this first one is the only thing we need to call our function a (sym-
metric) valuation.

Example: ϕ(P ) = c · vol(P ) is a valuation for any c.

Definition 1.1. An additive function f : R→ R is any function which satisfies

f(a+ b) = f(a) + f(b).

Today, we require of an additive function that

f(π) = 0. (π)

Definition 1.2. For an additive function f , the Dehn valuation is defined by

ϕ(∆) =
∑
e∈∆

|e| · f(∠e).

Theorem 1.3. The Dehn valuation is a symmetric valuation.

Before proving this, let’s see that the theorem implies Hilbert’s third prob-
lem. Let θ = arccos(1/3) and let us demand that f(θ) = 1.

Lemma 1.4. For any polytope P , we have

ϕ(P ) =
∑
e∈P

|e|f(∠e).

Thus for the cube, we have

ϕ(C) = 12f
(π

2

)
= 0,

and for the tetrahedron we have

ϕ(∆) = 6|e|f(θ) = 6|e| 6= 0.

Therefore, it would be impossible for the cube and the tetrahedron to be scissors
congruent.
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1.1 Theorem implies lemma

Assuming our theorem, take any polytope P and triangulate it into simplices
∆i. Then we have that ϕ(P ) =

∑
ϕ(∆i). More specifically, we have∑

∆i

∑
e∈∆i

|e|f(∠e).

But all the interior dihedrals add up to rational multiples of π, so only the
dihedrals of P remain. This proves that the lemma follows from our theorem.

To prove our theorem we will use the following fact:

Theorem 1.5 (Ludwig, Reitzner). Let T1, T2 be triangulations (dissections into
simplices) of P ⊂ Rd. Then T1 → T2 via a sequence of 2-moves (see Figure 17.3
of Igor’s book).

Igor emphasizes that it can be non-obvious to move between two triangula-
tions (see Figures 17.2 and 17.4).

Lemma 1.6. In d = 3, ϕ is invariant under 2-moves.

Proof of lemma. Consider Figure 17.3. The dihedrals coming from the red edges
contribute nothing due to them adding up to a rational multpile of π. Mean-
while the original edges of the tetrahedron add up properly, due to things being
multiplied by edge lengths.

The proof of Ludwig-Reitzner is similar to many topology style proofs.
R→∞
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1 2-move connectivity of triangulations

Definition 1.1. A 2-move is a transfer as in Figure 1, or its higher dimensional
analogues.

⇐⇒

Figure 1: A typical 2-move

Theorem 1.2 (LR 2006). Let P be a convex polytope in Rd with triangulations
(not necessarily face-to-face) T1, T2. Then T1, T2 are connected by a series of
2-moves.

Lemma 1.3. “Flips” are obtained as 2-moves.

For the proof, see Figure 17.4 in Igor’s book.

Lemma 1.4. Every two full triangulations of a convex polygon P are connected
via flips.

Definition 1.5. A star triangulation is a full triangulation of a polygon P
where all triangles have a common vertex.

Our proof of Lemma 1.4 is just the observation that we can (reversibly)
reduce any two triangulations to the same star triangulation.

Lemma 1.6. Let P = P1 t P2, and let Ti be star triangulations of Pi. Then
T1 t T2 is 2-move connected to a star triangulation of P .

Proof of Lemma 1.6. A simple reduction. See the proof of Lemma 17.11 and
Figure 17.5 in Igor’s book.

Our main theorem will be proved by a tricky induction.

Proof of Theorem. We want to show that every triangulation T is equivalent to
a star triangulation of P . We induct on the number of polygons in polygonal
dissections Q of P .

Claim 1.7. Every star subtriangulation of Q is connected to a star triangulation
of P . By a subtriangulation we mean that every polygon in the dissection Q is
star triangulated.

Observe that the base case is when Q is just P , and all star triangulations of
P are connected. For bigger cases, select an interior edge e and chop P,Q into
two pieces P1, Q1;P2, Q2 along the line containing e (see Figure 17.6 in Igor’s
book).

Observe that the number of polygons goes down from Q to Qi. To finish,
we need to apply Lemma 1.6 to the polygons of Q that were cut, as well as to
P1, P2.
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Theorem 1.8. Same result for non-convex polytopes.

Proof. For a non-convex P with triangulations T1, T2, refine T1 using T2. For
each polytope of this refinement, use our theorem to reduce it to Ti.

For higher dimensions, we need to argue that our Lemmas still hold. In fact,
this is false: Lemma 1.4 is open in R3, and false in dimensions 5 (or maybe 6).
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1 Polytope algebra

Theorem 1.1 (Sydler c.1960). Suppose P,Q ⊂ R3 are convex polytopes such
that volP = volQ. Further suppose that for all additive functions f , ϕf (P ) =
ϕf (Q) (where ϕ is the Dehn valuation). Then P ∼ Q and vice versa (scissors
congruence).

No proof provided: Sydler’s proof is really long, and the modern proof while
shorter requires k-theory.

Proposition 1.2. Let ∆ be the regular tetrahedron. Then ∆ 6∼ c1∆1 ⊕ c2∆2,
for any positive constants c1, c2. In particular, ∆ is not scissors congruent to
the triangular bipyramid.

1.1 Complementarity lemma

Lemma 1.3. Suppose A⊕B ∼ C ⊕D and that A ∼ C. Then B ∼ D.

1.2 Tiling lemma

Lemma 1.4. Suppose P is scissors congruent to c1P ⊕ c2P ⊕ · · · ⊕ cmP with
each ci positive. Then P ∈ R, where

R = {R : R ∼ α · C}, (1)

with C the unit cube. Igor calls such polytopes “Rectifiable.”

1.3 One more lemma

Lemma 1.5. Let P ⊂ R3, α1, . . . , αk > 0 and α1 + · · ·+ αk = 1. Then

P ∼ α1P ⊕ · · · ⊕ αkP ⊕R, (2)

where R is rectifiable.

Proof. Write P =
⊕

∆i. Since rectifiable polytopes are closed under addi-
tion, it suffices to show that the result holds for any tetrahedron ∆i. This is
accomplished via proof by picture: see Figure 16.1 of Igor’s book.

Note that Igor’s picture involves a mirror reflection, so we do need to confirm
that polytopes are scissors congruent to their mirror images. Note again that it
suffices to show this is true on tetrahedra. For a given tetrahedron, inscribe a
sphere inside it, and take the barycentric subdivision using the contact points.
By the construction of the sphere, these resulting subtetrahedra are symmetric,
and we’re done (see exercise 15.3).

Theorem 1.6. Suppose n×P = P ⊕· · ·⊕P is rectifiable. Then P is rectifiable.
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Proof. We have
n× P ∼ R1, (3)

n · P ∼ (n× P )⊕R2. (4)

Thus we have
n · P ∼ R1 ⊕R2, (5)

and so n ·P is rectifiable. Since R is closed under homotheties, we are done.
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1 More on polytope algebra

Recall from yesterday: the question is to determine when polytopes P,Q are
scissors congruent in R3.

Theorem 1.1 (Dehn). ∆ is not rectifiable, where ∆ is the regular tetrahedron.

1.1 Things we already proved

Lemma 1.2. Let α1 + · · ·+ αk = 1. Then

P ∼ α1P ⊕ · · · ⊕ αkP +R, (1)

for some rectifiable R.

Theorem 1.3. Suppose n×P = P ⊕· · ·⊕P is rectifiable. Then P is rectifiable
as well.

1.2 Today

Theorem 1.4. If A⊕B ∼ C ⊕D and B ∼ D, then A ∼ C.

Proof. First, note that necessarily volB = volD. Let A′ = 1
nA, and similarly

for B′, C ′, D′. By Lemma 1.2,

A ∼ (n×A′)⊕R1, (2)

C ∼ (n× C ′)⊕R2. (3)

Now,

volR1 = volR2 =

(
1− 1

n2

)
volA. (4)

Additionally we have

vol(n×B′)

volA
→ 0; n→∞. (5)

The point here is, we can pick n large enough so that

R1 ∼ (n×B′)⊕ S (6)

(in a nutshell, n/n3 shrinks so eventually we can fit some copies of B in R1).
Here comes the hurricane: we have

A ∼ (n×A′)⊕R1 (7)

∼ (n×A′)⊕ (n×B′)⊕ S (8)

∼ n× (A′ ⊕B′)⊕ S (9)

∼ n× (C ′ ⊕D′)⊕ S (10)

∼ (n× C ′)⊕ (n×D′)⊕ S (11)

∼ (n× C ′)⊕ (n×B′)⊕ S (12)

∼ (n× C ′)⊕R1 (13)

∼ C. (14)

1



This completes the proof.

1.3 Some fun theorems

After all this, we get a reward.

Theorem 1.5 (Sydler). 1. P is rectifiable if and only if

P ∼ c1P ⊕ · · · ⊕ ckP (15)

with ci > 0, k ≥ 2.

2. P is rectifiable if and only if P ∼ cP ⊕R for some rectifiable R.

Corollary 1.6. ∆ is not scissors congruent to multiple smaller copies of itself.

Corollary 1.7. ∆ is not scissors congruent to a smaller regular tetrahedron
and a cube.

Proof of Theorem 1.5. One direction of each of Sydler’s criteria is easy.
For the second statement, by Lemma 1.2 we have

cP ⊕R ∼ P ∼ cP ⊕ (1− c)P ⊕R′. (16)

Cancelling cP from both sides, we have

(1− c)P ⊕R′ ∼ R. (17)

Thus, P is rectifiable.
For the first statement, let c = c1 + · · ·+ ck > 1 and assume the right hand

side: by Lemma 1.2

cP ∼ c1P ⊕ · · · ⊕ ckP ⊕R ∼ P ⊕R. (18)

Ignoring the middle, we have

cP ∼ P ⊕R, (19)

and now we finish by applying the second criterion to conclude that P is recti-
fiable.

Theorem 1.8. Let ∆1 be the tetrahedron given by the equations

x, y, z ≥ 0;x+ y + z ≤ 1. (20)

Let ∆2 be the “Hill tetrahedron” given by the four vertices

∆2 = conv[(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)] (21)

(see Figure 16.2). Then no two of ∆,∆1,∆2 (properly scaled for volume) are
scissors congruent.
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Proof. Recall that 6 copies of ∆2 form a cube. Thus, ∆ cannot be scissors
congruent to ∆2.

Next, observe that ∆ and four copies of ∆1 can be assembeled into a cube.
If ∆ ∼ c∆1, we would immediately have by Sydler that ∆ is rectifiable. Thus,
∆ is not scissors congruent to ∆1.

Also, observe that if we chop off four corner tetrahedra from ∆ (3D triforce
it), we get an octahedron. The octahedron can be cut up into 8 copies of ∆1.
Thus, we have

∆ = 4×
(

1

2
∆

)
⊕ 8× (c∆1). (22)

This provides another proof that ∆ is not scissors congruent to ∆1.
Finally, if ∆1 ∼ ∆2, then ∆1 is rectifiable. However, as in the second

paragraph the cube minus four copies of ∆1 gives us a copy of ∆. This would
imply that ∆ is rectifiable, so we conclude that ∆1 is not scissors congruent to
∆2.

Corollary 1.9. None of these tetrahedra are scissors congruent to the octahe-
dron Q.

Proof. First, observe that that Q is not rectifiable, as Q = 8×∆1. Thus, ∆2 is
not scissors congruent to Q, as ∆2 is rectifiable.

2 Second hour

Theorem 2.1. In Wonderland, Alice is scissors congruent to The Rabbit.

Definition 2.2. In Wonderland we say P ' cP for all positive c. We write
P � Q if P ∼ Q under this new equivalence

Essentially, we are allowed to grow and shrink polytopes at will in our cutting
and gluing. Thus our theorem says that every two polytopes are the same under
this equivalence.

Proof. It suffices to show that all tetrahedra are rectifiable. Observe that we
have

∆ � 2×∆⊕R1, (23)

∆ � 3×∆⊕R2. (24)

Cancelling we have
∆⊕R2 � R1, (25)

and by Sydler this implies that ∆ is rectifiable.

This says that size is important.

3



2.1 Higher dimensions

Claim 2.3. Q4 is rectifiable.

This is a consequence of the following fact.

Proposition 2.4. Q4 tiles R4 periodically.

Hint for proof: consider D4. Then we just quote the following theorem.

Theorem 2.5. If P tiles Rd periodically, then P is rectifiable.

Proof. Just re-slice Rd into parallelepipeds.

This is an interesting exception, as 4, 2 are the only dimensions in which the
cross polytope is rectifiable.

Theorem 2.6 (Jessen). For every P ∈ R4, there is a P ′ ∈ R3 such that
P ∼ P ′ × [0, 1].

2.2 Monge equivalence

Definition 2.7. For polytopes P,Q in R3, we say P ./ Q if there is a map
ϕ : P → Q such that

1. ϕ is continuous,

2. ϕ is volume preserving,

3. ϕ is piecewise linear.

Such a map ϕ is called a Monge map.

We’ve already kind of shown that without the continuity criterion, every-
thing would be equivalent (prove all equal volume tetrahedra are the same, then
decompose P,Q into equal volume tetrahedra).

Igor poses the following question for fun: take two unit squares with a small
square removed somewhere from each. Are they Monge equivalent (see Figure
18.5)?

Theorem 2.8. If P is PL-homeomorphic to Q and volP = volQ, then P ./ Q.

In fact, without much more work we get the full theorem.

Theorem 2.9. If P,Q have the same volume, then P ./ Q.

As the first of the above two theorems suggests, it turns out we should focus
on the first two criteria.

Lemma 2.10. There exists a ϕ satisfying the first two criteria.

Proof. Consider first for polygons: we can reduce the number of vertices until
we reach a triangle (see Figure 18.1).

For higher dimensions, cut our polytopes up into mutual simplicial cones
(see Figure 18.2).

We now know that we can build a PL-homeomorphism ϕ. We’d like to
modify our idea slightly to get a volume preserving ϕ.
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1 Borsuk problem

(Chapter 3 of Igor’s book)
Let X ⊂ Rd be convex (polytope) with diam(X) = 1. Can we partition X

into sets X1, . . . , Xd+1 such that diam(Xi) < diam(X)?

Proposition 1.1. For d = 2 we can partition X into four sets of smaller
diameter.

Proof is by looking at the quadrants of a circle. Unfortunately, we cannot
get away with splitting a circle into three pieces: consider an equilateral triangle
with side lengths 1 for X.

Theorem 1.2 (Last time). Let X = {x1, . . . , xn} ⊂ R2 such that every 3 points
can be covered with a unit circle. Then all of X can be covered with a unit circle.

Lemma 1.3. Suppose that three points x1, x2, x3 have pairwise distances less

than 1. Then all three points can be covered with a circle of radius r =
√

1
3 .

Theorem 1.4 (Borsuk conjecture for d = 2). Scott-style proof: figure 3.2 and
the surrounding argument.

Conjecture 1.5 (Borsuk). We can do this in every dimension.

This was disproved, “in a terrible horrible no-good way.” However, the result
holds in three dimensions (remains open in d = 4, . . . , 200 or so).

Theorem 1.6. The Borsuk conjecture holds for d = 3.

Theorem 1.7 (Kahn,Kalai). For N = c
√
d, there exists an X ⊂ Rd such that

for all partitions X =
⋃N

i=1 Xi, one of the pieces Xi has diam(Xi) = diam(X).

Open problem: improve the lower bound of N to cd.

2 Why did people believe it?

Apparently lots of people believed that the Borsuk conjecture would hold. The
next theorems possibly explain why.

Theorem 2.1. The Borsuk conjecture holds for any centrally symmetric convex
polytope.

The proof is simple: draw any hyperplane through the center (passing
through no vertices).

Theorem 2.2. The Borsuk conjecture holds for smooth convex bodies.
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